Decomposition of Complete Tripartite Graphs into Cycles and Paths of Length \boldsymbol{k}

S. Priyadarsini
Department of Mathematics, Periyar University, Salem
Tamil Nadu, India.
email: priyaah.ss@gmail.com

Received 7 September 2023; accepted 11 October 2023
Abstract. Let C_{k} and P_{k} respectively denote a cycle and a path on k vertices. In this paper, we give necessary and sufficient conditions for the existence of $(k ; p, q)$-decomposition of $K_{r, s, t}$ when k is prime.
Keywords: Cycle, Path, Complete Tripartite Graph, Decomposition of Graphs.
AMS Mathematics Subject Classification (2010): 05C38, 05C51

1. Introduction

Here, we consider finite undirected simple graphs. Let $K_{n_{1}, n_{2}, \ldots, n_{r}}$ denote a complete rpartite graph with part sizes $n_{1} n_{2}, \ldots, n_{r}$ where each $n_{i}>0$ is an integer. A partition of a graph G into edge-disjoint subgraphs $G_{1}, G_{2}, G_{3}, \ldots, G_{n}$ such that their union gives G is called a decomposition of G. Let C_{k} and P_{k} respectively denote a cycle and a path on k vertices. They are also called k-cycle and k-path, respectively. We say that the complete tripartite graph $K_{r, s, t}$ has a $\left\{C_{k}, P_{k}\right\}_{p, q^{-}}$decomposition of $K_{r, s, t}$ if $K_{r, s, t}$ can be decomposed into p copies of C_{k} and q copies of P_{k} for all possible values of p and q . Throughout this paper, the partite sets of the complete tripartite graph $K_{r, s, t}$ with $1 \leq r \leq s \leq t$, are assumed to be $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\},\left\{b_{1}, b_{2}, \ldots, b_{s}\right\}$ and $\left\{c_{1}, c_{2}, \ldots, c_{t}\right\}$. The problem of finding necessary and sufficient conditions to decompose complete bipartite graphs into k-cycles was solved by Sotteau[14]. Cavenagh[5] has shown that $K_{m, m, m}$ can be decomposed into k -cycles if and only if $k \leq 3 m$ and k divides $3 m^{2}$. Billington [2] gave necessary and sufficient conditions for the existence of a decomposition of any complete tripartite graph into 3-cycles and 4-cycles. Mahmoodian and Mirzakhani [11] proved the existence of a C_{5} decomposition of $K_{r, s, t}$ whenever the necessary conditions are satisfied and two of the partite sets have equal size, except when $r=s \equiv 0(\bmod 5)$ and $t \equiv 0(\bmod 5)$. The authors of $[1,3,6,7]$ also studied this problem. Billington, et al. [4] gave necessary and sufficient conditions for the existence of path and cycle decomposition of complete equipartite graphs with 3 and 5 parts. Jeevadoss and Muthusamy [9] gave necessary and sufficient conditions for the existence of $\left\{P_{k+1}, C_{k}\right\}_{p, q^{-}}$decomposition of $K_{m, n}$ and K_{n}, when $m \geq \frac{k}{2}, n \geq\left\lceil\frac{k+1}{2}\right\rceil$ for $k \equiv 0(\bmod 4)$ and when $m, n \geq 2 k$ for $k \equiv 2(\bmod 4)$.

S. Priyadarsini

Ganeshmurthy and Paulraja [8] gave necessary and sufficient conditions for the existence of a complete $\left\{C_{3}, C_{6}\right\}$-decomposition of $K_{a, b, c}, a \leq b \leq c$. Priyadarsini and Muthusamy [13] proved the existence of decomposition of $K_{r, s, t}$ into paths and cycles of length 3. Manikandan and Paulraja [12] gave necessary and sufficient conditions for the existence of C_{p}-decomposition of some regular graphs.

In this paper, we study the existence of $\left\{C_{k}, P_{k}\right\}$-decomposition of $K_{r, s, t}$, so we abbreviate the notation as $(k ; p, q)$-decomposition. The obvious necessary condition for such existence is $k(p+q)=|E(G)|$. We only consider cases where the vertices r, s and t are of even degree in which the case $q \neq 1$ is also obvious, since the endpoints of a single path in the decomposition would have to have odd degree. Hence, all the vertex degrees are even and $q \neq 1$. We prove that $K_{r, s, t}$ has a $(k ; p, q)$ - decomposition where at least any two of the partite sets are divisible by k when $\mathrm{k} \geq 5$ is prime. Let $K_{r, s, t}$ be the complete tripartite graph with parts r , s and t , where $r=\left\{a_{1}, a_{2}, a_{3}, \ldots, a_{r}\right\}, s=\left\{b_{1}, b_{2}, b_{3}, \ldots, b_{s}\right\}$ and $t=\left\{c_{1}, c_{2}, c_{3}, \ldots, c_{t}\right\}$.

To prove our results, we state the following:
Theorem 1. ([12]). For any prime $p \geq 11, m \geq 3, C_{p} \mid K_{m} * \overline{K_{n}}$ if and only if $n(m-1)$ is even and $p \mid m(m-1) n^{2}$.
2. ($\boldsymbol{k} ; \boldsymbol{p}, \boldsymbol{q}$)-decomposition of $\boldsymbol{K}_{r, s, t}$ when $\boldsymbol{k} \geq 5$ is prime

In this section we investigate the existence of ($k ; p, q$) -decomposition of complete tripartite graph when $k \geq 5$ is prime.
Let $\left(a_{1} b_{1} c_{1} c_{(k-1) / 2} a_{1}\right)$ and $P\left(b_{1} c_{1} b_{2} c_{2} c_{(k+1) / 2}\right)$ respectively denote the cycle C_{k} and path P_{k} of length k.
Construction 1. Let C_{α} and C_{β} be two cycles of length k , where
$C_{\alpha}=\left(a_{1} b_{i+(k-l)} a_{2} c_{j+l} a_{3} b_{i+(k-(l-1))} \ldots a_{r} b_{i} c_{j} \ldots c_{j+k-\left(\frac{k-(2 r+1)}{2}\right)} a_{1}\right)$
and
$C_{\beta}=$
$\left(a_{1} b_{(i+1)+(k-l)} a_{2} c_{(j+1)+l} a_{3} b_{(i+1)+(k-(l-1))} \ldots a_{r} b_{i+1} c_{j+1} \ldots c_{(j+1)+k-\left(\frac{k-(2 r+1)}{2}\right)} a_{1}\right)$.
$C_{\alpha} \cup C_{\beta}=P_{\alpha} \cup P_{\beta}$
where
$P_{\alpha}=P\left(b_{i+(k-l)} a_{1} b_{(i+1)+(k-l)} a_{2} c_{j+l} a_{3} b_{i+(k-(l-1))} \ldots a_{r} b_{i} c_{j} \ldots c_{j+k-\left(\frac{k-(2 r+1)}{2}\right)}\right)$
and
$P_{\beta}=$
$P\left(b_{i+(k-l)} a_{2} c_{(j+1)+l} a_{3} b_{(i+l)+(k-(l-1))} \ldots a_{r} b_{i+1} c_{j+1} \ldots c_{(j+1)+k-\left(\frac{k-(2 r+1)}{2}\right)} a_{1} c_{j+k-\left(\frac{k-(2 r+1)}{2}\right)}\right)$

Construction 2. The complete bipartite graph $K_{k, k}$ can be decomposed into k copies of P_{k} when $k \geq 5$ is prime as follows:

Decomposition of Complete Tripartite Graphs into Cycles and Paths of Length k $P\left(b_{i} c_{j} b_{i+1} c_{j+(k-1)} b_{i+2} c_{j+(k-2)} b_{i+3} \ldots b_{i+\left(\frac{k-1}{2}\right)} c_{j+\left(\frac{k-1}{2}\right)}\right)$ for $i=j=\{1,2, \ldots, k\}$, where addition with the subscripts are taken modulo k .

Construction 3. The complete bipartite graph $K_{s, t}$ can be decomposed into P_{k} when at least one of s , t is even and divisible by k . If s is even and t is divisible by k , then we have

$$
P\left(b_{i} c_{j} b_{i+1} c_{j+1} b_{i+2} c_{j+2} \ldots c_{j+\left(\frac{k-3}{2}\right)} b_{i+\left(\frac{k-1}{2}\right)^{c_{j+(k-1)}}}\right)
$$

for i is odd, $j=1, k+1,2 k+1,3 k+1, \ldots$ and i is even, $j=\frac{k+1}{2}, \frac{3 k+1}{2}, \frac{5 k+1}{2}, \frac{7 k+1}{2}, \ldots$, where $1 \leq i \leq s, 1 \leq j \leq t$ and addition with the subscripts i, j are taken modulo s, t respectively. Hence we get $s\left(\frac{t}{k}\right)$ copies of P_{k}. Similarly, if t is even, then we have $P\left(c_{j} b_{i} c_{j+1} b_{i+1} c_{j+2} b_{i+2} \ldots b_{i+\left(\frac{k-3}{2}\right)} c_{j+\left(\frac{k-1}{2}\right)} b_{i+(k-1)}\right)$ for j is odd, $i=1, k+1,2 k+$ $1,3 k+1, \ldots$ and j is even, $i=\frac{k+1}{2}, \frac{3 k+1}{2}, \frac{5 k+1}{2}, \frac{7 k+1}{2}, \ldots$, where $1 \leq i \leq s, 1 \leq j \leq t$ and addition with the subscripts i, j are taken modulo s , t respectively.

Lemma 1. If $\mathrm{k}, \mathrm{r}, \mathrm{s}, \mathrm{t}$ be positive integers such that $r, s, t \equiv 0(\bmod k)$, and $k \geq 5$ is prime, then the complete tripartite graph $K_{r, s, t}$ with $r \leq s \leq t$, has $(k ; p, q)$ - decomposition.
Proof: Let $r=s=t \equiv 0(\bmod k)$, then the graph $K_{r, r, r}$ can be decomposed into $\left(\frac{r}{k}\right)^{2} K_{k, k, k}$. The graph $K_{k, k, k}$ can be decomposed into C_{k} by Theorem 1. By Construction 1 , we get 3 k copies of P_{k}. Let $s=t$, then the graph $K_{r, s, s}$ can be decomposed into
$\left(\frac{r}{k}\right)\left(\frac{s}{k}\right) K_{k, k, k} \cup\left(\frac{s}{k}\right)\left(\frac{s}{k}-\frac{r}{k}\right) K_{k, k}$.
Let $s<t$, then the graph $K_{r, s, t}$ can be decomposed into
$K_{r, s, s} \cup K_{r, t-s} \cup K_{s, t-s}$
where $K_{r, t-s}=\left(\frac{r}{k}\right)\left(\frac{t-s}{k}\right) K_{k, k}$ and $K_{s, t-s}=\left(\frac{s}{k}\right)\left(\frac{t-s}{k}\right) K_{k, k}$. The graph $K_{k, k}$ can be decomposed into P_{k} by Construction 2. Hence the graph $K_{r, s, t}$ has the desired decomposition.

Lemma 2. If $\mathrm{k}, \mathrm{r}, \mathrm{s}, \mathrm{t}$ and r^{\prime} be positive integers such that $r \equiv r^{\prime}(\bmod k), \quad s, t \equiv$ $0(\bmod k)$ and $k \geq 5$ is prime, then the complete tripartite graph $K_{r, s, t}$ with $r \leq s \leq t$, has ($k ; p, q$)- decomposition.
Proof. Case (i): r^{\prime} is odd.
Subcase (a): $r^{\prime} \leq \frac{k+1}{2}$. Let $\mathrm{r}, \mathrm{s}, \mathrm{t}$ are all odd and $r=r^{\prime}$, then the graph $K_{r^{\prime}, k, k}$ can be decomposed into k copies of C_{k} as follows:
$\left(a_{1} b_{i+(k-l)} a_{2} c_{j+l} a_{3} b_{i+(k-(l-1))} a_{4} c_{j+(l-1)} a_{5} b_{i+(k-(l-2))} a_{6} c_{j+(l-2)} \ldots b_{i+(k-1)} a_{r^{\prime}-1} c_{j+1}\right.$ $a_{r^{\prime}} b_{i} c_{j} b_{i+1} c_{j+(k-1)} b_{i+2} c_{j+(k-2)} \ldots b_{\left.\left.i+\left(\frac{k-(2 r+1)}{2}\right)^{c} c_{j+\left(k-\left(\frac{k-(2 r+1)}{2}\right)\right.}\right) a_{1}\right)}$
for $i=j=\{1,2,3, \ldots, k\}$ and $l=\frac{r-1}{2}$. The remaining edges give $2 r^{\prime}$ copies of P_{k} and we have the following construction:

S. Priyadarsini

$P\left(c_{j} b_{1} c_{j+1} b_{2} c_{j+2} b_{3} \ldots c_{j+\left(\frac{k-1}{2}\right)} b_{\frac{k+1}{2}}\right)$ and $P\left(b_{\left.\left.\frac{k+1}{2} c_{j+\left(\frac{k+1}{2}\right.}\right) \frac{b_{k+3}^{2}}{2} c_{j+\left(\frac{k+3}{2}\right)} \ldots c_{j-1} b_{k} c_{j}\right)}\right.$
for $j \equiv 0(\bmod 2)<k$, where addition with the subscripts are taken modulo k. Let $s=t \equiv$ $0(\bmod k)$, then the graph $K_{r^{\prime}, s, s}$ can be decomposed into
$\left(\frac{s}{k}\right) K_{r^{\prime}, k, k} \cup\left(\frac{s}{k}\right)\left(\frac{s}{k}-1\right) K_{k, k}$.
For $s<t$, the graph $K_{r^{\prime}, s, t}$ can be decomposed into $K_{r^{\prime}, s, s} \cup K_{r^{\prime}+s, t-s}$,
Where $K_{r^{\prime}+s, t-s}$ can be decomposed into $\left(\frac{t-s}{2 k}\right) K_{r^{\prime}+k, 2 k} \cup\left(\frac{s-k}{k}\right)\left(\frac{t-s}{k}\right) K_{k, k}$.
The graph $K_{r^{\prime}+k, 2 k}$ can be decomposed into $2\left(k+r^{\prime}\right)$ copies of P_{k} by Construction 3.
Let $r \equiv r^{\prime}(\bmod k)$ and $s=t$, then the graph $K_{r, s, s}$ can be decomposed into

$$
K_{r^{\prime}, s, s} \cup 2\left(\frac{s}{k}\right)\left(\frac{r-r^{\prime}}{k}\right) K_{k, k}
$$

For $s<t$, the graph $K_{r, s, t}$ can be decomposed into
$K_{r, s, s} \cup\left(\frac{t-s}{2 k}\right) K_{k+r^{\prime}, 2 k} \cup\left(\frac{t-s}{k}\right)\left(\frac{(r+s)-\left(k+r^{\prime}\right)}{k}\right) K_{k, k}$.
If r, s and t are even, then the graph $K_{r, S, S}$ can be decomposed into
$\left(\frac{s}{k}\right) K_{r^{\prime}, k, k} \cup\left(\frac{s}{k}\right)\left(\frac{s}{k}-1\right) K_{k, k} \cup 2\left(\frac{s}{k}\right)\left(\frac{r-r^{\prime}}{k}\right) K_{k, k}$.
For $s<t, \quad K_{r, s, t}=K_{r, s, s} \cup\left(\frac{s}{k}\right)\left(\frac{t-s}{k}\right) K_{k, k} \cup K_{r, t-s}$,
Where $K_{r, t-s}$ can be decomposed into $r\left(\frac{t-s}{k}\right)$ copies of P_{k} by Construction 3.
Subcase (b): $r^{\prime}>\frac{k+1}{2}$. Let $\mathrm{r}, \mathrm{s}, \mathrm{t}$ are all odd. If $(k-1) \equiv 2(\bmod 4)$, then the graph $K_{r^{\prime}, k, k}$ can be decomposed into
$K_{r^{\prime}-\left(\frac{k+1}{2}\right), k, k} \cup 2 K_{\frac{k+1}{2}, k}$.
The graph $K_{r^{\prime}, s, s}$ can be decomposed into $K_{r^{\prime}-\left(\frac{k+1}{2}\right), s, s} \cup 2\left(\frac{s}{k}\right) K_{\frac{k+1}{2}, k}$.
The graph $K_{r, s, s}$ can be decomposed into $K_{r^{\prime}, s, s} \cup 2\left(\frac{r-r^{\prime}}{k}\right)\left(\frac{s}{k}\right) K_{k, k}$.
If r, s and t are all even, then the graph $K_{r, s, S}$ can be decomposed into
$\left(\frac{s}{k}\right) K_{r^{\prime}-\left(\frac{k+1}{2}\right)} \cup 2 K_{\frac{k+1}{2}, s} \cup\left(\frac{s}{k}\right)\left(\frac{s}{k}-1\right) K_{k, k} \cup 2\left(\frac{r-r^{\prime}}{k}\right)\left(\frac{s}{k}\right) K_{k, k}$.
For $s<t$, the graph $K_{r, s, t}$ can be decomposed into
$K_{r, s, s} \cup\left(\frac{t-s}{2 k}\right) K_{r^{\prime}, 2 k} \cup\left(\frac{r-r^{\prime}}{k}\right)\left(\frac{t-s}{k}\right) K_{k, k} \cup\left(\frac{s}{k}\right)\left(\frac{t-s}{k}\right) K_{k, k}$.
Hence the desired decomposition is obtained.
If $(k-1) \equiv 0(\bmod 4)$, then the graph $K_{r^{\prime}, k, k}$ can be decomposed into
$K_{r^{\prime}-\left(\frac{k+3}{2}\right), k, k} \cup 2 K_{\frac{k+3}{2}, k}$.
The graph $K_{r^{\prime}, s, S}$ can be decomposed into $K_{r^{\prime}-\left(\frac{k+3}{2}\right), s, S} \cup 2\left(\frac{s}{k}\right) K_{\frac{k+3}{2}, k}$. The graph $K_{r, s, S}$ can be decomposed into $K_{r^{\prime}, s, s} \cup 2\left(\frac{r-r^{\prime}}{k}\right)\left(\frac{s}{k}\right) K_{k, k}$.
If r, s and t are all even, then the graph $K_{r, s, S}$ can be decomposed into
$\left(\frac{s}{k}\right) K_{r^{\prime}-\left(\frac{k+3}{2}\right)} \cup 2 K_{\frac{k+3}{2}, s} \cup\left(\frac{s}{k}\right)\left(\frac{s}{k}-1\right) K_{k, k} \cup 2\left(\frac{r-r^{\prime}}{k}\right)\left(\frac{s}{k}\right) K_{k, k}$.
For $s<t$, the graph $K_{r, s, t}$ can be decomposed into
$K_{r, s, s} \cup\left(\frac{t-s}{2 k}\right) K_{r^{\prime}, 2 k} \cup\left(\frac{r-r^{\prime}}{k}\right)\left(\frac{t-s}{k}\right) K_{k, k} \cup\left(\frac{s}{k}\right)\left(\frac{t-s}{k}\right) K_{k, k}$.
Hence the required decomposition is obtained.
Case (ii): r^{\prime} is even.
Subcase $(\mathbf{c}): r^{\prime} \leq \frac{k+1}{2}$. Either r, s, t are all odd or even and $(k-1) \equiv 0(\bmod 4)$, then the graph $K_{r, s, s}$ can be decomposed into
$\left(\frac{s}{k}\right) K_{\frac{k+1}{2}, k, k} \cup\left(\frac{s}{k}\right)\left(\frac{s}{k}-1\right) K_{k, k} \cup 2\left(\frac{s}{k}\right) K_{k-1, k} \cup\left(\frac{2 r-(3 k-1)}{k}\right)\left(\frac{s}{k}\right) K_{k, k}$.
If $(\mathrm{k}-1) \equiv 2(\bmod 4)$, then the $\operatorname{graph} k_{r, s, s}$ can be decomposed into
$\left(\frac{s}{k}\right) K_{\frac{k+3}{2}, k, k} \cup\left(\frac{s}{k}\right)\left(\frac{s}{k}-1\right) K_{k, k} \cup 2\left(\frac{s}{k}\right) K_{k-1, k} \cup\left(\frac{2 r-(3 k+1)}{k}\right)\left(\frac{s}{k}\right) K_{k, k}$.
For $s<t$, then the graph $K_{r, s, t}$ can be decomposed into
$K_{r, s, s} \cup K_{k+r^{\prime}, t-s} \cup K_{(r+s)-\left(k+r^{\prime}\right), t-s}$,
where $K_{k+r^{\prime}, t-s}=\left(\frac{t-s}{2 k}\right) K_{k+r^{\prime}, 2 k}$ and $K_{(r+s)-\left(k+r^{\prime}\right), t-s}=\left(\frac{(r+s)-\left(k+r^{\prime}\right)}{k}\right)\left(\frac{t-s}{k}\right) K_{k, k}$.
Subcase (d): Let $r^{\prime}>\frac{k+1}{2}$. Either all of $\mathrm{r}, \mathrm{s}, \mathrm{t}$ are odd or even, then the graph
$K_{r, s, t}=K_{r-r^{\prime}, s, s} \cup\left(\frac{t+s}{k}\right) K_{r^{\prime}, k} \cup\left(\frac{(r+s)-r^{\prime}}{k}\right)\left(\frac{t-s}{k}\right) K_{k, k}$.
Hence obtained the required decomposition.
Lemma 3. If $\mathrm{r}, \mathrm{s}, \mathrm{t}$ and s^{\prime} be positive integers such that $r, t \equiv 0(\bmod k), s \equiv s^{\prime}(\bmod k)$ and $k \geq 5$ is prime, then the complete tripartite graph $K_{r, s, t}$ with $r \leq s \leq t$, has ($k ; p, q$) - decomposition.
Proof. Case (i): $\mathrm{r}, \mathrm{s}, \mathrm{t}$ are all odd. Let s^{\prime} is odd and $s \neq r+k$, then the graph $K_{r, s, t}$ can be decomposed into
$K_{r, s-\left(k+s^{\prime}\right), s-\left(k+s^{\prime}\right)} \cup\left(\frac{t-\left(s-\left(k+r^{\prime}\right)\right)}{k}\right)\left(\frac{(r+s)-\left(k+s^{\prime}\right)}{k}\right) K_{k, k} \cup\left(\frac{r}{k}\right) K_{k, k+s^{\prime}} \cup\left(\frac{t-3 k}{2 k}\right) K_{k+s^{\prime}, 2 k}$ $\cup K_{k+s^{\prime}, 3 k}$.
If s^{\prime} is even, then the graph $K_{r, s, t}$ can be decomposed into
$K_{r, s-\left(2 k+s^{\prime}\right), s-\left(2 k+s^{\prime}\right)} \cup\left(\frac{r}{k}\right) K_{k, 2 k+s^{\prime}} \cup K_{r, t-\left(s-\left(2 k+s^{\prime}\right)\right)} \cup K_{s-\left(2 k+s^{\prime}\right), t-\left(s-\left(2 k+s^{\prime}\right)\right)} \cup$ $K_{2 k+s^{\prime}, t}$.
Case (ii): $\mathrm{r}, \mathrm{s}, \mathrm{t}$ are all even. Let s^{\prime} is odd and $s \neq r+k$, then $K_{r, s, t}$ can be decomposed into
$K_{r, s-\left(k+s^{\prime}\right), s-\left(k+s^{\prime}\right)} \cup\left(\frac{t-\left(s-\left(k+s^{\prime}\right)\right)}{k}\right)\left(\frac{(r+s)-\left(k+s^{\prime}\right)}{k}\right) K_{k, k} \cup\left(\frac{r}{k}\right) K_{k, k+s^{\prime}} \cup\left(\frac{t}{2 k}\right) K_{k+s^{\prime}, 2 k}$.
If s^{\prime} is even, then the graph $K_{r, s, t}$ can be decomposed into
$K_{r, s-\left(2 k+s^{\prime}\right), s-\left(2 k+s^{\prime}\right)} \cup\left(\frac{r}{k}\right) K_{k, 2 k+s^{\prime}} \cup K_{r, t-\left(s-\left(2 k+s^{\prime}\right)\right)} \cup\left(\frac{s-\left(2 k+s^{\prime}\right)}{k}\right)\left(\frac{t-\left(s-\left(2 k+s^{\prime}\right)\right)}{k}\right) K_{k, k}$
$\cup K_{2 k+s^{\prime}, t}$.
By using Construction 1, 2 and 3, the graph $K_{r, s, t}$ has the required decomposition.

S. Priyadarsini

Lemma 4. If $\mathrm{k}, \mathrm{r}, \mathrm{s}, \mathrm{t}$ and t^{\prime} be positive integers such that $r, s \equiv 0(\bmod k), t \equiv t^{\prime}(\bmod k)$ and $k \geq 5$, is prime, then the complete tripartite graph $K_{r, s, t}$ with $r \leq s \leq t$, has $(k ; p, q)-$ decomposition.
Proof: Either all of r, s and t are odd or even and $t \neq s+k$. If t^{\prime} is odd, then the graph $K_{r, s, t}$ can be decomposed into
$K_{r, s, s} \cup\left(\frac{r+s}{k}\right) K_{k, k+t^{\prime}} \cup\left(\frac{r+s}{k}\right)\left(\frac{(t-s)-\left(k+t^{\prime}\right)}{k}\right) K_{k, k}$.
If t^{\prime} is even, then the graph $K_{r, s, t}$ can be decomposed into
$K_{r, s, s} \cup\left(\frac{r+s}{k}\right) K_{k, k+t^{\prime}-1} \cup\left(\frac{r+s}{k}\right) K_{k, k+1} \cup\left(\frac{r+s}{k}\right)\left(\frac{(t-s)-\left(2 k+t^{\prime}\right)}{k}\right) K_{k, k}$.
By using Construction 1, 2 and 3, the graph $K_{r, s, t}$ has the required decomposition.

Main Theorem. Let p and q be non negative integers and let $\mathrm{r}, \mathrm{s}, \mathrm{t}$ be positive integers. The complete tripartite graph $K_{r, s, t}$ with $r \leq s \leq t$, has ($k ; p, q$)- decomposition when $k \geq 5$ is prime if and if $k(p+q)=r s+s t+t r, q \neq 1$. These necessary conditions are sufficient when at least any two of the parts are divisible by k .
Proof: This follows from the Lemmas 1, 2, 3 and 4.

3. Conclusion

The objective of this manuscript is to find the decomposition of complete tripartite graphs into cycles and paths for all possible values of p and q when $\mathrm{k} \geq 5$ is prime. I find the necessary conditions for such existence and also proved these necessary conditions are sufficient when at least any two of the parts are divisible by k .

Acknowledgements. I thank the reviewer for taking time and effort to review this manuscript and the comments that have improved its quality.
Conflicts of Interest. This is a single authored paper. There is no conflict of Interest.
Authors' Contributions. This is the authors' sole contribution.

REFERENCES

1. S.Alipour, E.S.Mahmoodian, E.Mollaahmadi, On decomposing complete tripartite graphs into 5-cycles, Australasian Journal of Combinatorics, 54 (2012) 289-301.
2. E.J.Billington, Decomposing complete tripartite graphs into cycles of length 3 and 4, Discrete Mathematics, 197/198 (1999) 123-135.
3. E.J.Billington and N.J.Cavenagh, Decomposing complete tripartite graphs into 5cycles when the partite sets have similar size, Aequationes Mathematica, 82 (2011) 277-289.
4. E.J.Billington, N.J.Cavenagh and B.R.Smith, Path and cycle decompositions of complete equipartite graphs: 3 and 5 parts, Discrete Mathematics, 310 (2010) 241-252.
5. N.J.Cavenagh, Decompositions of complete tripartite graphs into k cycles, Australasian Journal of Combinatorics, 18 (1998) 193-200.
6. N.J.Cavenagh, Further decompositions of complete tripartite graphs into 5-cycles, Discrete Mathematics, 256 (2002) 55-81.
7. N.J.Cavenagh and E.J.Billington, On decomposing complete tripartite graphs into 5cycles, Australasian Journal of Combinatorics, 22 (2000) 41-62.

Decomposition of Complete Tripartite Graphs into Cycles and Paths of Length k
8. S.Ganeshamurthy and P.Paulraja, Decomposition of complete tripartite graphs into cycles of lengths 3 and 6, Australasian journal of Combinatorics, 73 (2019) 220-241.
9. S.Jeevadoss and A.Muthusamy, Decomposition of complete bipartite graphs into paths and cycles, Discrete Mathematics, 331 (2014) 98-108.
10. C.C.Lindner and C.A.Rodger, Design Theory, $2^{\text {nd }}$ Ed., CRC Press, Boca Raton 2009.
11. Mahmoodian and M.Mirzhakhani, Decomposition of complete tripartite graphs into 5cycles, in: Combinatorial Advances, (Eds.: C.J.Colbourn and E.S.Mahmoodian), Kluwer Academic Publishers, Dordrecht, (1995) 235-241.
12. R.S.Manikandan and P.Paulraja, C_{p} - Decomposition of some regular graphs, Discrete Mathematics, 306 (2006) 429-451.
13. S.Priyadarsini and A.Muthusamy, Decomposition of complete tripartite graphs into cycles and paths of length three, Contributions to Discrete Mathematics, 15 (2020) 117-129.
14. D.Sotteau, Decomposition of $K_{m, m}\left(K *_{m, n}\right)$ into cycles (circuits) of length $2 k$, Journal of Combinatorial Theory Series B, 30 (1981) 75-81.

