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Abstract. For a graph �  with vertex set ���� � 	
�, 
, 
�, … … 
��  the partial 
complement Mycielskian of graph � is the graph � |��� with vertex set �|������ � � ∪
� ∪ 	�� corresponding to each vertex  
� in ����. Introduce a new vertex �� and let U = 
{ ��:1 � � � �, 
� ∈ � and � � 1,2,3, … … ��  is a set disjoint from �,  take another vertex 
�  and add edges from �  to all vertices in U. &��|���� � &��� ∪ '
�
( /
�
( ∉
 &���+ ∪ 	��/� ∈ ��. In this article, we explore the basic properties of the complement of 
the Mycielskian graph. 
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1. Introduction  
All graphs considered in this paper are finite and connected without loops or multiple 
edges. Let � � ��, &� be a graph with order n and size m. If �, 
 ∈ ���� are said to be 
adjacent if , � �
 ∈ &���. The degree of vertex 
 ∈ ���� is the number of edges incident 
to 
 in � denoted by -,./�
�. A graph � is said to be connected if there exists a path 
between any two vertices. Let �̅ denote the complement of graph �, where the order and 

size of �̅  are n and 1�
22 3 4, respectively. For �, 
 ∈ ����, the distance -��, 
� is the 

length of the shortest path connecting the vertices �, 
 . Vertex independent number 
denoted by 5��� is a maximum number of vertices, no two of which are adjacent. The 
vertex covering number denoted by 6��� is a minimum number of vertices that cover all 
edges of �. Edge independent number denoted by 5′��� is a maximum number of edges, 
no two of which are adjacent. Edge covering number denoted by 6′��� is a minimum 
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number of edges that cover all edges of � [1,2,3,4,6,7,9]. A circuit 8 in a graph � is said 
to be an Eulerian circuit if 8 contains every edge of �. A connected graph that contains an 
Eulerian circuit is called an Eulerian graph. A cycle in a graph � that contains every vertex 
of � is called the Hamiltonian cycle of �. A connected graph that contains a Hamiltonian 
cycle is called a Hamiltonian graph. A graph � is said to be an eulerian if and only if every 
vertex is of even degree [8].  

Motivated by the research on Mycielskian graph and Partial Complement 
Mycielskian graph, we found some results on the properties of Eulerian, Vertex 
Independent and Vertex Covering Number, Edge Independent and Edge Covering Number, 
Maximum degree, Minimum degree, isomorphic of partial complement Mycielskian graph. 
 
2. Mycielskian graph                       
In order to get a triangle-free graph with a small clique number and high chromatic number, 
a graph was introduced by Mycielski called the Mycielskian graph denoted by �(�) and 
defined as: For a given graph G with vertex set �(�) = {
�, 
, 
�, … … 
�} is the graph 
obtained by applying the following steps: 

1. Corresponding to each vertex 
� in �(�), introduce a new vertex �� and let � ={ ��: 
1 ≤ � ≤ �}.    
Add edges from each vertex �� of � to the vertex 
( if  
�
( ∈  &(�).  

2.    Take another vertex � and add edges from � to all vertices in �.  
 The new graph thus obtained is called the Mycielski graph of � and is denoted by    
  �(�) [5]. 
 
3. Partial complement Mycielskian graph  
For a graph �  with vertex set �(�) = {
�, 
, 
�, … … 
�} the partially complement 
Mycielskian of graph �  is the graph � |(�)  with vertex set �|��(�)� = � ∪ � ∪ {�} 
corresponding to each vertex  
�  in �(�).  Introduce a new vertex ��  and let U = 
{ ��:1 ≤ � ≤ �, 
� ∈ � and � = 1,2,3, … … �}  is a set disjoint from �,  take another vertex 
�  and add edges from �  to all vertices in U. &��|(�)� = &(�) ∪ '
�
( /
�
( ∉
 &(�)+ ∪ {��/� ∈ �}.  
 
4. Main results 
Theorem 1. No of vertices of partial complement Mycielskian graph �|(�) is 2� + 1. 
Proof: Let �  be a graph with �  vertices and 4  edges, then the resulting partial 
complement Mycelskain graph has 2� + 1 vertices, i.e. The graph has � original vertices 
of �  and �  duplicate vertices with one more vertex �  adjacent to �  duplicate vertices, 
hence has � + � + 1 = 2� + 1 number of vertices. 

Theorem 2. Degree of vertices of partial complement Mycielskian graph �|(�) 
i. -,.=|(/)(
�) = � − 1 

ii. -,.=|(/) 1
�
|2 = � − deg (
�) 

iii.  -,.=|(/)(�) = �. 
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Proof: i) Suppose the degree of 
� ∈ �(�) is @ then by definition of partial complement 
Mycelskain graph, the duplicate of non-adjacent vertices of 
�  contributes � − @ − 1 
degree in 
� ∈ �|(�(�)) implies degree of 
� in �|(�) = � − @ − 1 + @ = � − 1. 
        ii) Suppose if the degree of 
� ∈ �(�) is @, then the duplicate vertices of 
� which is 


�
| will be adjacent to non-adjacent vertices of 
� , since 
�

|  are non-adjacent in partial 

complement Mycielskian graph and � is adjacent to 
�
| implies -,.=|(/) 1
�

|2 = � − @ −
1 + 1 = � − deg (
�) 

iii) Since all the duplicate vertices 
�
| ∈ �(�) are adjacent to �, the degree of � will be 

�. 
 

Theorem 3. The Number of edges of partial complement Mycielskian graph �|(�) is � −
4. 
Proof: Let �  be a graph with � vertices and 4  edges, also, the partial complement 
Mycielskian graph �|(�) has 2� + 1 vertices. We can make use of the first theorem of 
graph theory, i.e. sum of degree of all vertices is equal to twice the number of edges. 

i.e. ∑ deg (
�)�
�B� = 24 

We know from previous results that  
• -,.=|(/)(
�) = � − 1 

• -,.=|(/) 1
�
|2 = � − deg(
�) 

• -,.=|(/)(�) = � 

The partial complement Mycielskian graph has n vertices of degree n-1 and n duplicate 
vertices of degree � − deg(
�), one vertex x has degree n 
By the first theorem of graph theory, we have 
 �(� − 1) + ∑ (� − -,.
�)�

�B� + � = 2&(�|(�)) 
 � − � + ∑ ��

�B� − ∑ -,. (
�)�
�B� + � = 2&(�|(�)) 

 � + � − 24 = 2&(�|(�)) 

 
�CDE

 =  &(�|(�)) 
 & 1� |(�)2 = � − 4. 

Theorem 4. The partial complement Mycielskian graph is not Eulerian. 
Proof: Let � be a graph and �|(�) be the partial complement Mycielskian graph of �.  
Case 1. If n is odd in �, then vertex x is of odd degree in �|(�) (since the degree of x=no 
of vertices of �) 
Hence � |(�) is not Eulerian. 
Case 2. If n is even, then deg(
�) in �|(�) will be n-1(since each original vertex will be of 
odd degree in �|(�)) 
Hence � |(�) is not Eulerian. 

Theorem 5. Vertex Independent and Vertex Covering Number of partial complement 
Mycielskian graph is � and � + 1. 
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Proof: Since the partial complement Mycielskian graph �|(�) has n independent vertices, 
i.e. the duplicate vertices are always independent. 

By theorem, we have 5(�) + 6(�) = � and also 5 1� |(�)2 = � 

5 1�|(�)2 + 6 1�|(�)2 = 2� + 1 

� + 6 1�|(�)2 = 2� + 1 

6 1�|(�)2 = 2� + 1 − � 

6 1�|(�)2 = � + 1 

Hence, 5 1�|(�)2 = � and 6 1�|(�)2 = � + 1. 

 
Theorem 6. Edge Independent and Edge Covering Number of partial complement 
Mycielskian graph is � and � + 1. 
Proof: Suppose the partially complement Mycielskian graph has edge covering number �, 
then it will cover 2� number of vertices since the partially complement Mycelskain graph 
has 2� + 1 vertices. One vertex is not covered in the graph. So � + 1 edges are required 
to cover 2� + 1 vertices. Therefore, the edge covering number is � + 1. 

By theorem we have 5|(�) + 6|(�) = � and Hence 6| 1�|(�)2 = � + 1 

5| 1�|(�)2 + 6| 1�|(�)2 = 2� + 1 

5| 1�|(�)2 + � + 1 = 2� + 1 

5| 1�|(�)2 = 2� + 1 − � − 1 

5| 1�|(�)2 = � 

Hence 5| 1�|(�)2 = � and 6| 1� |(�)2 = � + 1. 

 
Theorem 7. Maximum degree of partial complement Mycielskian graph is �. 
Proof: It is very clear that partial complement Mycielskian graph has extra vertex x which 
is adjacent to all duplicate vertices so the number of vertices partial complement 
Mycielskian graph is �. 
 
Theorem 8. The minimum degree of partial complement Mycielskain graph is � − ∆(�). 
Proof: Suppose 
�  is a vertex with ∆(�) from the construction of partial complement 

Mycielskain graph 
�
| is adjacent to vertices 
(  which are not adjacent to 
�  in G, from 

result 2 we have -,.(
�
|) = � − -,.(
�) . Hence the minimum degree of partial 

complement Mycielskain graph is � − ∆(�). 
 
Theorem 9. For complete graph G�,  the partial complement Mycielskian graph is 
isomorphic to G� ∪ G�,�. 
Proof: In a complete graph G�, every vertex is adjacent to n-1 vertices. So, every duplicate 
vertex will be adjacent to extra vertex x, which forms a star graph G�,�,  which is 
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disconnected from the complete graph G�. Therefore, the partial complement Mycielskain 
graph of a complete graph G� is isomorphic to G� ∪ G�,�. 

Theorem 10. The partial complement Mycielskian graph is connected if and only if � is 
not isomorphic to G�, � ≥ 2. 
Proof: Suppose the partial complement Mycielskian graph is connected; then it is very 
clear from Theorem 9 that it should not be isomorphic to G�  because the partial 
complement Mycielskian graph of G� is disconnected. 
Conversely, G is not isomorphic to G�, � ≥ 2, then the partial complement Mycielskian 
graph is connected because the partial complement Mycielskian graph is disconnected only 
when � is G�.  

5. Conclusion and scope 
In this article, we have discussed some basic properties of the partial complement 
Mycielskian graph. This study can be further extended to other structural properties of the 
partial complement Mycielskian graph.  
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