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Abstract. In this study, we introduce the delta Nirmala index and its exponential of a graph. 
Also, we define the multiplicative delta Nirmala index of a graph.  Furthermore, we 
compute these indices for certain nanotubes.  
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1. Introduction 
In this paper, G denotes a finite, simple, connected graph, V(G) and E(G) denote the vertex 
set and edge set of G. The degree dG(u) of a vertex u is the number of vertices adjacent to 
u. Let δ(G) denote the minimum degree among the vertices of G. We refer [1] for undefined 
notations and terminologies. 
 Graph indices have their applications in various disciplines of Science and 
Technology.  
           The δ vertex degree was introduced in [2] and it is defined as 

( ) ( ) 1.u Gd u Gδ δ= − +
 

           We introduce the delta Nirmala index of a graph and it is defined as 
   

 

( )
( )

.u v
uv E G

N Gδ δ δ
∈

= +  

          Considering the delta Nirmala index, we define the delta Nirmala exponential of a 
graph G as      

( )
( )

, .u v

uv E G

N G x x δ δδ +

∈
=   

Recently, some delta Banhatti indices were studied in [3, 4, 5, 6].  
         We define the multiplicative delta Nirmala index of a graph G as 

( )
( )

.u v
uv E G

NII Gδ δ δ
∈

= +∏  

Recently, some Nirmala indices were studied in [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
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In this paper, we determine the delta Nirmala index and its corresponding exponential of 
some nanotubes. Also, we compute the delta multiplicative Nirmala index of some 
nanotubes.   
 
2. Results for HC5C7[p,q] nanotubes 
In this section, we focus on the family of nanotubes, denoted by HC5C7[p,q], in which p is 
the number of heptagons in the first row and q rows of pentagons repeated alternately. Let 
G be the graph of a nanotube HC5C7[p,q]. 
 

 
Figure 1: 2-D lattice ofnanotubeHC5C7 [8, 4] 

 
       The 2-D lattice of nanotube HC5C7[p, q] is shown in Figure 1..By calculation, we 
obtain that G has 4pq vertices and 6pq – p edges. The graph G has two types of edges based 
on the degree of end vertices of each edge as follows: 
 E1 = {uv∈E(G) | dG(u) = 2, dG(v) = 3},  |E1| = 4p. 
 E2 = {uv∈E(G) | dG(u) = dG(v) = 3},  |E2| = 6pq – 5p. 
Clearly δ(G)=2. Therefore δu =dG(u) – δ(G) + 1 =dG(u) – 1. Thus there are two types of δ-
edges as given in Table 1. 
 

 δu,δv\ uv ∈ E(G) Number of edges 

(1, 2) 4p 

(2, 2) 6pq –5p  

Table 1: δ-edge partition of HC5C7[p, q] 
 

Theorem 1. Let G be the graph of a nanotube HC5C7[p, q]. Then  

(i) [ ]( ) ( )
5 7 , 12 4 3 10 .N HC C p q pq pδ = + −  

(ii) [ ]( ) ( )3 2
5 7 , , 4 6 5 .N HC C p q x px pq p xδ = + −

 

Proof: From definitions and by using Table 1, we deduce  

(i) [ ]( )
( )

5 7 , u v
uv E G

N HC C p qδ δ δ
∈

= +
 

4 1 2 (6 5 ) 2 2p pq p= + + − +
 

                                           
( )12 4 3 10 .pq p= + −

 

(ii) [ ]( )
( )

5 7 , , u v

uv E G

N HC C p q x x δ δδ +

∈

= 
 

( )1 2 2 24 6 5px pq p x+ += + −
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                                           = ( )3 24 6 5 .px pq p x+ −  

 

Theorem 2. Let G be the graph of a nanotube HC5C7[p, q]. Then  

[ ]( ) 2 (6 5 )
5 7 , 3 2 .p pq pNII HC C p qδ −= ×

 

Proof: From definition and by using Table 1, we deduce  

 [ ]( )
( )

5 7 , u v
uv E G

NII HC C p qδ δ δ
∈

= +∏
 

( ) ( )4 (6 5 )
1 2 2 2

p pq p−
= + × +

 

                                             

2 (6 5 )3 2 .p pq p−= ×  
3. Results for SC5C7[p,q] nanotubes 
In this section, we focus on the family of nanotubes, denoted by SC5C7[p,q], in which p is 
the number of heptagons in the first row and q rows of vertices and edges are repeated 
alternately. The 2-D lattice of nanotube SC5C7[p,q] is presented in Figure 2. 

 
Figure 2: 2-D lattice of nanotube SC5C7[p,q] 

 
Let G be the graph of SC5C7[p,q]. By calculation, we obtain that G has 4pq vertices 

and 6pq – p edges. Also by calculation, we get that G has three types of edges based on the 
degree of end vertices of each edge as follows: 
 E1 = {uv∈E(G) | dG(u) =  dG(v) = 2},  |E1| = q. 
 E2 = {uv∈E(G) | dG(u) = 2,dG(v) = 3},  |E2| = 6q. 
 E2 = {uv∈E(G) | dG(u) = dG(v) = 3},  |E3| = 6pq – p–7q. 
 Clearly δ(G)=2. Thusδu = dG(u) – δ(G) + 1 = dG(u) – 1. There are three types of δ-
edges as given in Table 2. 
 

 δu,δv\ uv ∈ E(G) Number of edges 

(1, 1) q  

(1, 2) 6q  

(2, 2) 6pq –p–7q 

Table 2: δ-edge partition ofSC5C7[p, q] 
Theorem 3. Let G be the graph of a nanotube SC5C7[p, q]. Then  
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(i) [ ]( ) ( )
5 7 , 12 2 2 6 3 14 .N SC C p q pq p qδ = − + + −

  

(ii) [ ]( ) ( )
11 1
32 2

5 7 , , 6 6 7 .N SC C p q x qx qx pq p q xδ = + + − −
 
 

Proof: From definitions and by using Table 2, we deduce  

(i) [ ]( )
( )

5 7 , u v
uv E G

N SC C p qδ δ δ
∈

= +
 

1 1 6 1 2 (6 7 ) 2 2q q pq p q= + + + + − − +
 

                                         
( )12 2 2 6 3 14 .pq p q= − + + −  

(ii) [ ]( )
( )

( )
1

2 2

1 1 1

1 1 1 2
5 7 , , 6 6 7u v

uv E G

S B SC C p q x x qx qx pq p q xδ δδ ++ + +

∈

= = + + − −
    

                                              = ( )
11 1
32 26 6 7 .qx qx pq p q x+ + − −

                                           

 
Theorem 4. Let G be the graph of a nanotube HC5C7[p, q]. Then  

 [ ]( ) 2 (6 5 )
5 7 , 3 2 .p pq pNII SC C p qδ −= ×  

Proof: From definition and by using Table 1, we deduce  

 [ ]( )
( )

( ) ( )4 (6 5 )

5 7 , 1 2 2 2
p pq p

u v
uv E G

NII SC C p qδ δ δ
−

∈

= + = + × +∏
                                                

                                             

2 (6 5 )3 2 .p pq p−= ×  
4. Conclusion                      
In this paper, we have defined the delta Nirmala and multiplicative delta Nirmala indices 
of a graph. Also, the delta Nirmala and multiplicative delta Nirmala indices of certain 
nanotubes are determined. 
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