More on the Exponential Diophantine Equation

$$
23^{x}+233^{y}=z^{2}
$$

Chikkavarapu Gnanendra Rao

Department of Mathematics, Rajiv Gandhi University of Knowledge Technologies
RGUKT Srikakulam Campus, Pin 532402, Andhra Pradesh, India
Email-id: gnanendramaths@rguktsklm.ac.in
Received 3 November 2023; accepted 1 December 2023
Abstract. In this paper, it is shown that the exponential diophantine equation $23^{x}+$ $233^{y}=z^{2}$ is found to have a unique solution $(\mathrm{x}, \mathrm{y}, \mathrm{z})=(1,1,16)$ in non-negative integers x, y, and z by using Catalan's conjecture, factorization methods, and modular arithmetic, and elementary mathematical concepts. Moreover, its generalization is proved at the end.

Keywords: Exponential diophantine equation, Catalan's conjecture, integer solution, modular arithmetic, non-linear equation

AMS Mathematics Subject Classification (2010): 11D61, 11D72

1. Introduction

In 1844 Eugene Charles Catalan conjectured a theorem known as Catalan's Conjecture [1] (or Mihailescu's theorem [2]). It was proved by Mihailescu in 2002 at Paderborn University. In 2007, Dumitru [3] proved that the Diophantine equation $2^{x}+5^{y}=z^{2}$ has exactly two non-negative integer solutions $(x, y, z)=(3,0,3),(2,1,3)$. Nechemia Burshtein $[6,8,11,12,14]$ worked on the solutions of the Diophantine equations of the form $p^{x}+q^{y}=z^{2}$. In 2018, Rao [7] proved that the Diophantine equation $3^{x}+7^{y}=z^{2}$ has exactly two solutions in non-negative integers $(x, y, z)=(1,0,2)$ and $(2,1,4)$. In 2019, Asthana and Singh [9] proved that the Diophantine equation $53^{x}+143^{y}=z^{2}$ has exactly two solutions $(x, y, z)=(0,1,12),(1,1,14)$. In 2019, Burshtein [8] proved that the Diophantine Equation $11^{x}+23^{y}=z^{2}$ with Consecutive positive integers x , y , has exactly one solution $(x, y, z)=(2,1,2)$. In 2013, Rabago [4] worked on two diophantine equations $3^{x}+19^{y}=z^{2}$ and $3^{x}+91^{y}=z^{2}$. In 2013 Chotchaisthit [5] solved the Diophantine equation $2^{x}+11^{y}=z^{2}$. In 2023, Srimud and Tadee [10] worked on the Diophantine equation $3^{x}+b^{y}=z^{2}$, where b is a positive integer such that $b \equiv 5 \bmod 20$ or $b \equiv 5 \bmod 30$ for non-negative integer solutions.

Chikkavarapu Gnanendra Rao

In 2023, Orosram [13] worked on the Diophantine equation $(p+n)^{x}+p^{y}=z^{2}$, where $p, p+n$ are prime numbers and n is a positive integer such that $n \equiv 0(\bmod 4)$. But for $p=23, n=210, p+n=233$ where $n \equiv 2(\bmod 4)$, this paper finds the gap in the recent work by Orosram [13].
In 2020, Burstein [12] worked on the Diophantine equation $(10 K+A)^{x}+$ $(10 M+A)^{y}=z^{2}$, for $A=1,3,7,9$. In which he proved that it has infinitely many integer solutions for $A=3$, and $K=10 M^{2}+7 M+1, \mathrm{~K}, \mathrm{M}$ are integers. But for $K=2$ and $A=$ $3, M=23$ and as $K \neq 10 M^{2}+7 M+1$ this paper finds the gap in the work by Burshtein[12].

Thus an attempt is made to solve the Diophantine equation $p^{x}+q^{y}=z^{2}$ with the prime numbers $\mathrm{p}=23, \mathrm{q}=233$ and $\mathrm{q}-\mathrm{p}=210$.It has a unique solution in nonnegative integers $(x, y, z)=(1,1,16)$. Hence as a generalization the Diophantine equation $23^{\mathrm{x}}+233^{\mathrm{y}}=\mathrm{w}^{k n}$ is investigated for non-negative integers in $x, y, w, k>0, n>0$ and $k n>1, k n$ is an even positive integer also.

2. Preliminaries

Proposition 2.1 (Catalan's Conjecture)
The only solution of the Diophantine equation $a^{x}-b^{y}=1$ is $(a, x, b, y)=(3,2,2,3)$, where $\mathrm{a}, \mathrm{b}, \mathrm{x}$ and y are integers with minimum $\{\mathrm{a}, \mathrm{b}, \mathrm{x}, \mathrm{y}\}>1$.
Proof: This conjecture was proved by Mihailescu [2] in 2004.
Now we will prove the following three lemmas by the Catalan's conjecture.

Lemma 2.1. Let x and z be non-negative integers. The Diophantine equation $23^{x}+1=$ z^{2} has no solutions.

Proof: let x and z be non-negative integers and $23^{x}+1=z^{2}$
If $x=0$ then, $z^{2}=2$, this not solvable for integers.
If $z=0$ then $23^{x}=-1$, this is impossible.
If $x=1$ then $z^{2}=24$, no integer solution
When $z=1$ there is impossibility. So let $x>1$ and $z>1$.
Then clearly $\min \{x, y, 23,2\}>1$ and from (1), we get $23^{x}-z^{2}=1$.
By Catalan's Conjecture 2.1, the equation (1) has no solutions.

Lemma 2.2. The Exponential Diophantine equation $1+233^{y}=z^{2}$ has no non-negative integer solution in y and z.

More on the Exponential Diophantine Equation $23^{x}+233^{y}=z^{2}$

Proof: If possible let y and z be non-negative integers such that $233^{y}+1=z^{2}$.
If $y=0$, then $z^{2}=2$ which is not solvable.
If $\mathrm{z}=0$ then $233^{\mathrm{y}}=-1$ which is impossible.
If $y=1$ then $z^{2}=234$ this is not solvable.
The case $z=1$ will never occur.So take $y>1, z>1$. Then clearly
$\min \{x, y, 233,2\}>1$.
By Catalan's Conjecture 2.1, the equation (2) has no solutions.

Lemma 2.3. Suppose x, y, z are non-negative integers related by the Exponential Diophantine equation $23^{\mathrm{x}}+233^{\mathrm{y}}=\mathrm{z}^{2}$. Then z is even only if and only if either x is odd and y is even or x is even and y is odd only.

Proof: Let x, y, z be non-negative integers such that $23^{x}+233^{y}=z^{2}$.
We know that $23^{x} \equiv\left\{\begin{array}{c}3 \bmod 4 \text { if } x \text { is odd } \\ 1 \bmod 4 \text { if } x \text { is even }\end{array}\right.$ and $233^{y} \equiv\left\{\begin{array}{l}3 \bmod 4 \text { if } y \text { is odd } \\ 1 \bmod 4 \text { if } y \text { is even }\end{array}\right.$

Case 1. When both x and y are even or both x and y are odd.
We get $z^{2}=23^{x}+233^{y} \equiv 2 \bmod 4$
This is a contradiction to $z^{2} \equiv 0 \bmod 4$ or $1 \bmod 4$
Therefore there is no solution when both x and y are even or odd.
Case 2. Either x is odd and y is even or x is even and y is odd.
Then we get $z^{2}=23^{x}+233^{y} \equiv 0 \bmod 4$. Hence z is even only.

3. Main results

Theorem 3.1. Let x, y and z be non-negative integers. Then the exponential Diophantine equation $23^{x}+233^{y}=z^{2}$ has the unique solution $(x, y, z)=(1,1,16)$.

Proof: Let x, y and z be non-negative integers such that $23^{x}+233^{y}=z^{2}$.
Case 1. When $y=0$
By the lemma 2.1 the equation (3) has no solutions.

Case 2. When $x=0$
By the Lemma 2.2 the equation (3) has no solutions.

Chikkavarapu Gnanendra Rao

Case 3. When $x \geq 1$ and $z \geq 1$.
In view of lemma 2.3, it is enough to consider two cases only to prove the theorem.

Subcase 3.1. Suppose that y is odd and x is even.
When y is odd, i.e. let $y=2 k+1$. Here k is a non-negative integer.
We will separate this case into two parts: Part I and Part II.

Part I. $23^{\mathrm{x}}+233^{2 \mathrm{k}+1}=\mathrm{z}^{2}$ or $23^{\mathrm{x}}+(8+225) 233^{2 \mathrm{k}}=\mathrm{z}^{2}$
i.e. $23^{\mathrm{x}}+8.233^{2 \mathrm{k}}=\mathrm{z}^{2}-225.233^{2 \mathrm{k}}=\left(\mathrm{z}-15.233^{\mathrm{k}}\right)\left(\mathrm{z}+15.233^{\mathrm{k}}\right)$

There are two possibilities for this equation

$$
\left\{\begin{array} { c }
{ z - (1 5 . 2 3 3 ^ { \mathrm { k } }) = 1 } \\
{ z + (1 5 . 2 3 3 ^ { \mathrm { k } }) = 2 3 ^ { \mathrm { x } } + (8 . 2 3 3 ^ { 2 \mathrm { k } }) }
\end{array} \quad \text { or } \quad \left\{\begin{array}{c}
z+\left(15.233^{\mathrm{k}}\right)=1 \\
z-\left(15.233^{\mathrm{k}}\right)=23^{\mathrm{x}}+\left(8.233^{2 \mathrm{k}}\right)
\end{array}\right.\right.
$$

Solving the first set of equations we get $\left(30.233^{k}\right)=23^{\mathrm{x}}+\left(8.233^{2 \mathrm{k}}\right)-1$
$23^{\mathrm{x}}-1=\left(30.233^{\mathrm{k}}\right)-\left(8.233^{2 \mathrm{k}}\right)=233^{\mathrm{k}}\left(30-\left(8.233^{\mathrm{k}}\right)\right)$
Then $233^{\mathrm{k}}=1$ and $\left(30-\left(8.233^{\mathrm{k}}\right)\right)=23^{\mathrm{x}}-1$
$\Rightarrow k=0,23^{\mathrm{x}}=23 \Rightarrow x=1$. So that $y=1$. $z^{2}=256 . \Rightarrow z=16$
Thus there is a solution $(x, y, z)=(1,1,16)$
Solving the second set of equations, $\left(30.233^{\mathrm{k}}\right)=1-23^{\mathrm{x}}-\left(8.233^{2 \mathrm{k}}\right)$
$\Rightarrow 1-23^{\mathrm{x}}=8.233^{2 \mathrm{k}}+\left(30.233^{\mathrm{k}}\right)=233^{\mathrm{k}}\left(30+\left(8.233^{\mathrm{k}}\right)\right)$
$\Rightarrow \mathrm{k}=0$ and $23^{x}=-37$ this is impossible.

Part II. Again we have $23^{x}+233^{2 k+1}=\mathrm{z}^{2}$ or $23^{\mathrm{x}}+(256-23) 233^{2 k}=\mathrm{z}^{2}$.
So that $23^{\mathrm{x}}+(-23) 233^{2 \mathrm{k}}=\mathrm{z}^{2}-(256)\left(233^{2 \mathrm{k}}\right)$

$$
=\left(\mathrm{z}-(16)\left(233^{\mathrm{k}}\right)\right)\left(\mathrm{z}+(16)\left(233^{\mathrm{k}}\right)\right)
$$

There are two possibilities for this equation
$\left\{\begin{array}{c}\left(z-(16)\left(233^{k}\right)\right)=1 \\ z+(16)\left(233^{k}\right)=23^{\mathrm{x}}+(-23) 233^{2 k}\end{array} \quad\right.$ Or $\quad\left\{\begin{array}{c}z-(16)\left(233^{k}\right)=23^{\mathrm{x}}+(-23) 233^{2 k} \\ z+(16)\left(233^{k}\right)=1\end{array}\right.$
Solving the first set of equations, $23^{\mathrm{x}}-1=233^{\mathrm{k}}\left(32+23.233^{\mathrm{k}}\right)$

More on the Exponential Diophantine Equation $23^{x}+233^{y}=z^{2}$

$\Rightarrow \mathrm{k}=0$ and $23^{\mathrm{x}}=56$. This is not solvable for x.
Solving the second set of equations, $23^{\mathrm{x}}-1=233^{\mathrm{k}}\left(23.233^{\mathrm{k}}-32\right)$
$\Rightarrow k=0$ and $23^{\mathrm{x}}=-8$, this is impossible.
Subcase 3.2. Suppose that x is odd and y is even
When x is odd i.e., $x=2 k+1$ for some non-negative integer k, then

$$
\begin{gathered}
233^{y}=z^{2}-23^{2 k+1}=z^{2}-(16+7) 23^{2 k} \\
\Rightarrow 233^{y}+(7) 23^{2 k}=z^{2}-(16) 23^{2 k}=\left(z-(4) 23^{k}\right)\left(z+(4) 23^{k}\right)
\end{gathered}
$$

There are two possibilities for this equation

$$
\left\{\begin{array} { c }
{ (z - (4) 2 3 ^ { k }) = 1 } \\
{ (z + (4) 2 3 ^ { k }) = 2 3 3 ^ { y } + (7) 2 3 ^ { 2 k } }
\end{array} \quad \text { Or } \quad \left\{\begin{array}{c}
\left(z-(4) 23^{k}\right)=233^{y}+(7) 23^{2 k} \\
\left(z+(4) 23^{k}\right)=1
\end{array}\right.\right.
$$

From first set of equations we get

$$
\begin{aligned}
& 8\left(23^{k}\right)=233^{y}+(7) 23^{2 k}-1 \\
& \Rightarrow 233^{y}-1=8\left(23^{k}\right)-(7) 23^{2 k}=23^{k}\left(8-(7) 23^{k}\right) \\
& \Rightarrow \mathrm{k}=0 \text { and then } 233^{y}=2
\end{aligned}
$$

This is not possible. Hence there is no solution.
Solving the second set of equations we get

$$
\begin{align*}
& \Rightarrow 8\left(23^{k}\right)=1-233^{y}-(7) 23^{2 k} \\
& \Rightarrow 233^{y}-1=-(7) 23^{2 k}-8\left(23^{k}\right)=23^{k}\left(-(7) 23^{k}-8\right) \\
& \Rightarrow 23^{k}=1 \text { and }\left(-(7) 23^{k}-8\right)=233^{y}-1 \\
& \Rightarrow \mathrm{k}=0 \text { and } 233^{y}=-14, \tag{5}
\end{align*}
$$

This is impossible. Therefore there are no solutions in this case.
Therefore $(x, y, z)=(1,1,16)$ is the unique non-negative integer solution of the Diophantine equation $23^{x}+233^{y}=z^{2}$.

Corollary 3.1. Let $x, y, w, n>0$ be non-negative integers. The Diophantine equation $23^{\mathrm{x}}+233^{\mathrm{y}}=\mathrm{w}^{2 n}$ has three solutions $(\mathrm{x}, \mathrm{y}, \mathrm{w}, \mathrm{n})=(1,1,2,4),(1,1,4,2),(1,1,16,1)$.
Proof: suppose that x , y and z non-negative integers such that $23^{\mathrm{x}}+233^{\mathrm{y}}=\mathrm{w}^{2 \mathrm{n}}$.
Let $z=w^{n}$.Then equation (6) becomes $23^{x}+233^{y}=z^{2}$.
Then by theorem 3.1, we have $(x, y, z)=(1,1,16)$.
Then we have $\mathrm{w}^{n}=\mathrm{z}=16$, solving this we get

Chikkavarapu Gnanendra Rao

$$
w=2, \mathrm{n}=4 \text { Or } w=4, \mathrm{n}=2 \text { Or } w=16, \mathrm{n}=1
$$

Therefore the solutions are $(x, y, w, n)=(1,1,2,4),(1,1,4,2),(1,1,16,1)$.

Corollary 3.2. Let $x, y, w, n>0$ be non-negative integers. Then the Diophantine
equation $23^{\mathrm{x}}+233^{\mathrm{y}}=\mathrm{w}^{4 n}$ has two solutions $(x, y, w, n)=(1,1,2,2),(1,1,4,1)$.
Proof: suppose that x, y and z non-negative integers such that $23^{x}+233^{y}=w^{4 n}$.
Let $z=w^{2 n}$.Then equation (7) becomes $23^{x}+233^{y}=z^{2}$.
Then by theorem 3.1, we have $(x, y, z)=(1,1,16)$.
Then we have $\mathrm{w}^{2 n}=\mathrm{z}=16$, solving this we get $w=2, \mathrm{n}=2$ and $w=4, \mathrm{n}=1$.
Therefore the solutions are $(x, y, w, n)=(1,1,2,2),(1,1,4,1)$

Corollary 3.3. Let $x, y, w, n>0$ be non-negative integers. Then the Diophantine equation $23^{\mathrm{x}}+233^{\mathrm{y}}=\mathrm{w}^{8 n}$ has the unique solution $(x, y, w, n)=(1,1,2,1)$.
Proof: suppose that x, y and z non-negative integers such that $23^{x}+233^{y}=w^{8 n}$.
Let $Z=w^{4 n}$.
Then equation (6) becomes $23^{x}+233^{y}=z^{2}$.
Then by theorem 3.1 , we have $(x, y, z)=(1,1,16)$.
Then we have $\mathrm{w}^{4 n}=\mathrm{z}=16$, solving this we get $w=2, \mathrm{n}=1$.
Therefore the solution is $(x, y, w, n)=(1,1,2,1)$

Theorem 3.2 (Generalization of the theorem 3.1): Let $x, y, w, k>0, n>0$ be nonnegative integers and $k n>1, k n$ is an even positive integer. Then
I. The solutions of the Diophantine equation $23^{\mathrm{x}}+233^{\mathrm{y}}=\mathrm{w}^{k n}$ are given by

$$
\begin{aligned}
& (x, y, w, n, k)=(1,1,2,4,2),(1,1,4,2,2),(1,1,16,1,2),(1,1,2,2,4),(1,1,4,1,4) \\
& (1,1,2,1,8),(1,1,2,8,1),(1,1,4,4,1),(1,1,16,2,1)
\end{aligned}
$$

II. The Diophantine equation $23^{\mathrm{x}}+233^{\mathrm{y}}=\mathrm{w}^{k n}$ has no solutions if $k n \neq 2,4,8$.

Proof: Suppose $x, y, w, k>0, n>0$ are non-negative integers and $k n>1, k n$ is an even positive integer such that $23^{\mathrm{x}}+233^{\mathrm{y}}=\mathrm{w}^{\mathrm{kn}}$.

Let $Z=w^{\frac{k n}{2}}$.

$$
\text { More on the Exponential Diophantine Equation } 23^{x}+233^{y}=z^{2}
$$

Then equation (6) becomes $23^{x}+233^{y}=z^{2}$.
Then by theorem 3.1, we have $(x, y, z)=(1,1,16)$. Then we have $w^{\frac{k n}{2}}=z=16$, solving this we get $(w=2, \mathrm{kn}=8)$ or $(w=4, \mathrm{kn}=4)$ or $(w=2, \mathrm{kn}=16)$

$$
\begin{gathered}
\text { Hence }(x, y, w)=(1,1,2),(n, k)=(4,2),(2,4),(1,8),(8,1) \\
\text { Or }(x, y, w)=(1,1,4),(n, k)=(2,2),(1,4),(4,1) \\
\operatorname{Or}(x, y, w)=(1,1,2),(n, k)=(2,1),(1,2)
\end{gathered}
$$

Hence the solutions which agree Corollary 3.1 are

$$
(x, y, w, n, k)=(1,1,2,4,2),(1,1,4,2,2),(1,1,16,1,2)
$$

The solutions which agree with Corollary 3.2 are

$$
(x, y, w, n, k)=(1,1,2,2,4),(1,1,4,1,4)
$$

The solution which agrees Corollary 3.3 is

$$
(x, y, w, n, k)=(1,1,2,1,8)
$$

The other solutions are

$$
(x, y, w, n, k)=(1,1,2,8,1),(1,1,4,4,1),(1,1,16,2,1)
$$

These are the complete solutions of (9), which exist when $k n=2,4,8$ only.
It follows that (9) has no solutions when $k n \neq 2,4,8$.

4. Open problem

Let p and q be positive prime numbers. We may ask for the set of all solutions (x, y, z) for the Exponential Diophantine Equation $p^{x}+q^{y}=z^{2}$, where x, y, z are non-negative integers.

5. Conclusion

In this paper, it is shown that the Exponential Diophantine Equation $23^{x}+233^{y}=z^{2}$ has exactly one non-negative integer solution $(x, y, z)=(1,1,16)$. Moreover, the Diophantine equation $23^{\mathrm{x}}+233^{y}=\mathrm{w}^{k n}$ is investigated for non-negative integers in $x, y, w, k>$ $0, n>0$ and $k n>1, k n$ is an even positive integer. When $k n \neq 2,4,8$, there are no solutions but for $k n=2,4,8$, this produces the solutions
(x, y, w, n, k)
$=(1,1,2,4,2),(1,1,4,2,2),(1,1,16,1,2),(1,1,2,2,4),(1,1,4,1,4),(1,1,2,1,8),(1,1,2,8,1)$, $(1,1,4,4,1),(1,1,16,2,1)$.

Acknowledgements. Thanks to the reviewer for reviewing this paper and suggestions for improvement of the paper.
Conflicts of Interest. This is a single-authored paper. There is no conflict of Interest.

Chikkavarapu Gnanendra Rao

Authors' Contributions. This is the authors' sole contribution.

REFERENCES

1. E.Catalan, Note extraite dune lettre adressee a lediteur, Journal für die Reine und Angewandte Mathematik, 27(1844), 192.
2. P. Mihailescu, Primary cycolotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 2004 (572) (2004) 167-195. https://doi.org/10.1515/crll.2004.048
3. D.Acu, On a Diophantine equation $2^{x}+5^{y}=z^{2}$, General Mathematics, 15(4) (2007) 145-148.
4. J.F.T.Rabago, On two Diophantine equations $3^{x}+19^{y}=z^{2}$ and $3^{x}+91^{y}=z^{2}$, Int. J. of Math. and Scientific Computing, 3 (2013) 28-29.
5. S.Chotchaisthit, On the Diophantine equation $2^{\mathrm{x}}+11^{\mathrm{y}}=\mathrm{z}^{2}$, Maejo Int. J. Sci. Technol., 7(2) (2013) 291-293.
6. N.Burshtein, On the Diophantine equation $\mathrm{p}^{\mathrm{x}}+\mathrm{q}^{\mathrm{y}}=\mathrm{z}^{2}$, Annals of Pure and Applied Mathematics, 13(2) (2017) 229-233.
7. C.G.Rao, On the Diophantine equation $3^{x}+7^{y}=z^{2}, E P R A$ International Journal of Research and Development, 3(6) (2018) 93-95.
8. N.Burshtein, On solutions of the Diophantine equation $11^{x}+23^{y}=z^{2}$ with consecutive positive integers x, y, Annals of Pure and Applied Mathematics, 20(2) (2019) 57-61.
9. S.Asthana and M.M.Singh, On the Diophantine equation $53^{\mathrm{x}}+143^{\mathrm{y}}=$ z^{2}, Annals of Pure and Applied Mathematics, 19(2) (2019) 193-196.
10. K.Srimud and S.Tadee, On the Diophantine equation $3^{x}+b^{y}=z^{2}$, International Journal of Mathematics and Computer Science, 18(1) (2023) 137-142.
11. N.Burshtein, Solutions of the Diophantine equation $p^{x}+(p+6)^{y}=z^{2}$ when $\mathrm{p},(\mathrm{p}+$ 6) are primes and $\mathrm{x}+\mathrm{y}=2,3,4$, Annals of Pure and Applied Mathematics, 17(1) (2018) 101-106.
12. N.Burshtein, On the class of the Diophantine equations $(10 K+A)^{x}+(10 M+$ A) ${ }^{y}=z^{2}$ when $\mathrm{A}=1,3,7,9$ with positive integers $\mathrm{x}, \mathrm{y}, \mathrm{z}$, Annals of Pure and Applied Mathematics, 21(2) (2020) 103-111.
13. W.Orosram, On the Diophantine equation $(p+n)^{x}+p^{y}=z^{2}$ where p and $\mathrm{p}+\mathrm{n}$ are prime numbers, European Journal of Pure and Applied Mathematics, 16(4) (2023) 2208-2212.
14. N.Burshtein, On the Diophantine equation $2^{x}+p^{y}=z^{2}$, Annals of Pure and Applied Mathematics, 16(2) (2018) 471-477.
