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Abstract. In this paper, it is shown that the exponentialptiEntine equatior23* +
233Y =z?% is found to have a unique solutidi,y,z) = (1,1,16) in non-negative
integers X, y, and z by using Catalan’s conjecttaetorization methods, and modular
arithmetic, and elementary mathematical conceptsebVer, its generalization is proved
at the end.
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1. Introduction

In 1844 Eugene Charles Catalan conjectured a threkmewn as Catalan’s Conjecture [1]
(or Mihailescu’s theorem [2]). It was proved by Milescu in 2002 at Paderborn
University. In 2007, Dumitru [3] proved that thedphantine equatiop* + 5¥ = z2 has
exactly two non-negative integer solutimsy,z) = (3,0,3),(2,1,3). Nechemia
Burshtein|[6,8,11,12,14] worked on the solutions of the Diophantine equnstiof the
formp* + g¥ = z2. In 2018, Rao [7] proved that the Diophantine ¢igua3™ + 77 = z?2
has exactly two solutions in non-negative integesy,z) = (1,0,2) and2,1,4). In
2019, Asthana and Singh [9] proved that the Diopharequatiorb3* + 143Y = z2 has
exactly two solution&, y, z) = (0,1,12), (1,1,14). In 2019, Burshtein [8] proved that the
Diophantine Equatioh1* + 23Y = z2 with Consecutive positive integers x, y, has eyactl
one solution(x,y,z) = (2,1,2). In 2013, Rabago [4] worked on two diophantine
equations$* + 19¥ = z2 and 3* + 91¥ = z2. In 2013 Chotchaisthit [5] solved the
Diophantine equatio2* + 11Y = z2. In 2023, Srimud and Tadee [10] worked on the
Diophantine equatioB* + b¥ = z2, where b is a positive integer such that 5 mod 20
or b = 5 mod 30 for non-negative integer solutions.
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In 2023, Orosram [13] worked on the Diophantigaation(p + n)* + p¥ = z?2,
wherep, p + n are prime numbers and n is a positive integer the n = 0 (mod 4). But
for p = 23,n = 210,p + n = 233 wheren = 2 (mod 4), this paper finds the gap in the
recent work by Orosram [13].

In 2020, Burstein [12] worked on the Diophantineuagion (10K + A)* +
(10M + A)Y = z? , forA = 1,3,7,9. In which he proved that it has infinitely manyeiger
solutions fo4 = 3, andK = 10M? + 7M + 1, K, M are integers. But fa&k = 2 and4 =

3, M =23 and askK # 10M? + 7M + 1 this paper finds the gap in the work by
Burshtein[12].

Thus an attempt is made to solve the Diophantinatnp™ + q¥ = z? with
the prime numberg = 23,q = 233 andq — p = 210.It has a unique solution in non-
negative integers (x, y, z) = (1, 1, 16). Henca generalization the Diophantine equation
23% 4+ 233Y = wk" is investigated for non-negative integersx,m, w,k > 0,n> 0
andkn > 1, knis an even positive integer also.

2. Preliminaries
Proposition 2.1(Catalan’s Conjecture)

The only solution of the Diophantine equatidn—bY = 1is (a, x, b, y) = (3, 2, 2, 3),
where a, b, x and y are integers witimimum {a, b, x,y} > 1.
Proof: This conjecture was proved by Mihailescu [2] iD20

Now we will prove the following three lemmas by Batalan’s conjecture.

Lemma 2.1.Letx and z be non-negative integers. The Diophantijuaton23* 4+ 1 =

z? has no solutions.

Proof: let x and z be non-negative integers arx$* + 1 = z2 @
If x = 0then,z? = 2, this not solvable for integers.

If z=0then23* = —1, this is impossible.

If x = 1 thenz? = 24, no integer solution

Whenz = 1 there is impossibility. So let> 1 and z > 1.

Then clearlymin{x, y, 23,2} > 1 and from (1), we get3* —z? = 1.

By Catalan’s Conjecture 2.1, the equation (1) leasalutions.

Lemma 2.2.The Exponential Diophantine equatiba- 233Y = z2 has no non-negative

integer solution in y and z.
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Proof: If possible let y and z be non-negative integachghat233Y + 1 = z2. (2
If y=0, thenz? = 2 which is not solvable.
If z=0 then 233Y = —1 which is impossible.
If y =1 thenz? = 234 this is not solvable.
The case = 1 will never occur.So takg > 1,z > 1. Then clearly
min{x, y,233,2} > 1.
By Catalan’s Conjecture 2.1, the equation (2) leasalutions.

Lemma 2.3. Supposex,y,z are non-negative integers related by the Expoalenti
Diophantine equatioR3* + 233Y = z2. Then z is even only if and only if either is odd
andy is even ot is even ang is odd only.

Proof: Let x,y, z be non-negative integers such taf + 233Y = z2.

3 mod 4 if x is odd
1 mod 4 if x is even

3 mod 4 if y is odd
1 mod 4 if y is even

We know tha3* = {

and 233Y = {

Case 1When bothx andy are even or both andy are odd.

We getz? = 23% + 233Y = 2 mod 4

This is a contradiction ta? = 0 mod 4 or 1 mod 4

Therefore there is no solution when bstandy are even or odd.
Case 2 Eitherx is odd and is even ot is even ang is odd.

Then we get? = 23* + 233Y = 0 mod 4. Hencez is even only.

3. Main results
Theorem 3.1.Let x, y and z be non-negative integers. Then tpemrential Diophantine

equation23* + 233Y = z?2 has the unique solutiq,y,z) = (1,1, 16).
Proof: Let x, y and z be non-negative integers such2B&t+ 2339 = z2. 3
Case 1.Wheny =0

By the lemma 2.1 the equation (3) has no solutions.

Case 2Whenx =0

By the Lemma 2.2 the equation (3) has no solutions.
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Case 3Whenx >1 andz > 1.

In view of lemma 2.3, it is enough to consider weses only to prove the theorem.

Subcase 3.1Suppose that is odd and x is even.
When y is odd, i.e. let = 2k + 1. Herek is a non-negative integer.

We will separate this case into two parts: Parid Part Il.

Part |. 23% 4 2332K+1 = 22 or 23% + (8 + 225)2332%K = 72
i.e.23% + 8.2332%K = 72 — 225.233%k=(z — 15.233%)(z + 15.233%)
There are two possibilities for this equation

z—(15.233%) =1 z+(15.233%) =1
z + (15.233%) = 23% + (8.23328) z — (15.233%) = 23% + (8.233%%)

Solving the first set of equations we ¢f&0.233%) = 23 + (8.233%K) — 1

23% — 1 = (30.233) — (8.233%) = 233* (30 — (8.233"))

Then233* = 1 and(30 — (8.233%)) = 23* — 1
=k=0,23*=23=x=1.Sothay = 1. z2 = 256. = z = 16

Thus there is a solutiogx, y, z) = (1,1,16) (4)
Solving the second set of equatiorf3p. 233%) = 1 — 23% — (8.2332K)

= 1 —23% = 8.233%k + (30.233K)=233%(30 + (8.233%))

= k=0 and23* = —37 this is impossible.

Part Il. Again we have3* + 2332K+1 = 72 or23% 4 (256 — 23)2332K = 72
So that23* + (—23)2332k = z2 — (256)(233%%)

(7= (16)(233%))(z + (16)(2335))
There are two possibilities for this equation

{ (z—(16)(233%) =1 or {z — (16)(233K) = 23% + (—23)233%K
z + (16)(233%) = 23% 4 (—23)233%k z+(16)(2339) =1

Solving the first set of equatiorz3* — 1 = 233¥(32 + 23.233K)
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= k = 0 and23* = 56. This is not solvable for.
Solving the second set of equatio$* — 1 = 233%(23.233% — 32)
= k = 0 and23* = -8, this is impossible.
Subcase 3.2Suppose that is odd and y is even
Whenx is odd i.e.x = 2k + 1 for some non-negative integerthen
233Y = z2 — 23%k+1 = 22 _ (16 + 7)232%
= 233Y + (7)23% = 2% — (16)232%% =(z — (4)23%)(z + (4)23%) .
There are two possibilities for this equation
{ (z— (#)23F) =1 {(z — (4)23F) = 2337 + (7)23%
(z + (4)23k) = 2337 + (7)232%k (z+ (#)23F) =1
From first set of equations we get
8(23%) =233 + (7)23%k -1
= 233Y — 1 = 8(23%) — (7)23%F =23%(8 — (7)23F)
= k=0 and ther233Y = 2
This is not possible. Hence there is no solution.
Solving the second set of equations we get
= 8(23%) =1 — 2337 — (7)23%
= 233Y — 1 = —(7)232%k — 8(23%) = 23%(—(7)23* - 8)
= 23% = 1and(—(7)23% —8) =233V - 1
=k=0 and233” = —14,
This is impossible. Therefore there are no solatiorthis case. (5)
Therefore (x,y,z) = (1,1,16)is the unique non-negative integer solution of the

Diophantine equationd3* + 233Y = z2.

Corollary 3.1. Letx, y, w, n>0 be non-negative integers. The Diopim@n¢quation

23% + 233Y = w?" has three solutior, y,w,n) = (1,1,2,4),(1,1,4,2),(1,1,16,1).
Proof: suppose that x, y and z non-negative integers that@3* + 233Y = w2, (6)
Let z = w™.Then equation (6) becom23* + 233Y = z2

Then by theorem 3.1, we hagey,z) = (1,1,16).

Then we havev™ = z = 16, solving this we get
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w=2n=40rw=4n=20rw=16,n=1.
Therefore the solutions afe y,w,n) = (1,1,2,4),(1,1,4,2),(1,1,16,1).

Corollary 3.2. Let x, y, w, n > 0 be non-negative integers. ThHenDiophantine
equation23* + 233Y = w*" has two solutionéx, y, w,n) = (1,1,2,2), (1,1,4,1).

Proof: suppose that x, y and z non-negative integersthatR3* + 233Y = w*", @)
Let z = w?™.Then equation (7) becom@3* + 233Y = z2 .

Then by theorem 3.1, we hagey,z) = (1,1,16).

Then we havev?™ =z = 16, solving thiswe gev = 2,n=2andw =4,n=1.
Therefore the solutions arex, y,w,n) = (1,1,2,2), (1,1,4,1)

Corollary 3.3. Let x, y, w, n>0 be non-negative integers. ThenDlmhantine equation
23% + 233Y = w8 has the unique solutién, y,w,n) = (1,1,2,1).

Proof: suppose that x, y and z non-negative integers thatd3* + 233Y = w8n, (8)
Letz = wi™,

Then equation (6) becom23* + 2337 = z2.,

Then by theorem 3.1, we hagey,z) = (1,1,16).

Then we havev™ = z = 16, solving this we getv = 2,n = 1.

Therefore the solution igx, y,w,n) = (1,1,2,1)

Theorem 3.2(Generalization of the theorem 3.1).Let x,y,w,k > 0,n > 0 be non-
negative integers arich > 1, kn is an even positive integer. Then
I.  The solutions of the Diophantine equati@®* + 233Y = w*" are given by
(x,y,w,n, k) = (1,1,2,4,2),(1,1,4,2,2),(1,1,16,1,2),(1,1,2,2,4), (1,1,4,1,4),
(1,1,2,1,8),(1,1,2,8,1),(1,1,4,4,1),(1,1,16,2,1).
Il The Diophantine equatidB* + 233Y = w*™ has no solutions #n # 2,4,8.

Proof: Supposex, y,w,k > 0,n > 0 are non-negative integers akwl > 1, kn is an even

positive integer such thas* + 233Y = wkn, 9)

kn
Letz=wz.
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Then equation (6) becom23* + 233Y = z2 .

kn
Then by theorem 3.1, we have (X, y, z) = (1, 1, Téen we havavz = z = 16, solving
this we gefw = 2,kn = 8) or (w = 4,kn = 4) or (w = 2,kn = 16)
Hence (x,y,w) = (1,1,2), (n, k) = (4,2),(2,4),(1,8), (8,1)
Or (xl y' W) = (111I4)I (nl k) = (2'2)1 (1'4)' (4'1)
Or(x,y,w) = (1,1,2),(n, k) = (2,1),(1,2).
Hence the solutions which agree Corollary 3.1 are
(,y,w,n k) = (1,1,2,4,2),(1,1,4,2,2),(1,1,16,1,2)
The solutions which agree with Corollary 3.2 are
(‘xl y; Wl nl k) = (111;21214)1 (111141114)
The solution which agrees Corollary 3.3 is
(x,y,w,n, k) =(1,1,2,1,8)
The other solutions are
(x,y,w,n, k) = (1,1,2,8,1),(1,1,4/4,1),(1,1,16,2,1).
These are the complete solutions of (9), whichtexienkn = 2,4,8 only.
It follows that (9) has no solutions whn + 2,4,8.
4. Open problem
Let p and g be positive prime numbers. We may askhk set of all solution&, y, z) for
the Exponential Diophantine Equatiph+ q¥ = z?, where x,y,zare non-negative
integers
5. Conclusion
In this paper, it is shown that the Exponentialihiantine Equatio@3* + 233Y = z2 has
exactly one non-negative integer solutiany, z) = (1,1,16). Moreover, the Diophantine
equation23* + 233Y = wk® is investigated for non-negative integersy,ig, w,k >
0,n >0 andkn > 1, knis an even positive integer. \Wah kn # 2,4,8, there are no
solutions but for kn = 2,4,8, this produces the solutions
(x,y,w,n, k)

= (1,1,2,4,2), (1,1,4,2,2),(1,1,16,1,2), (1,1,2,2,4), (1,1,4,1,4), (1,1,2,1,8), (1,1,2,8,1),
(1,1,4,4,1),(1,1,16,2,1).
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