Annals of Pure and Applied Mathematics Vol. 28, No. 2, 2023, 63-71 ISSN: 2279-087X (P), 2279-0888(online) Published on 7 December 2023 www.researchmathsci.org *DOI: http://dx.doi.org/10.22457/apam.v28n2a05925*

Annals of **Pure and Applied Mathematic**

The Co-Intersection Graphs of Ideals of Rings

*S.Jaber Hoseini** **and** *Yahya Talebi*

Department of Mathematics, Faculty of Mathematical Sciences University of Mazandaran, Babolsar, Iran email: Sj.hosseini@stu.umz.ac.ir email: talebi@umz.ac.ir *Corresponding author.

Received 23 October 2023; accepted 4 December 2023

Abstract. Let $I^*(R)$ be the set of all nontrivial left ideals of ring R. The Co-intersection graph of ideals of R, denoted by $\Omega(R)$, is a simple undirected graph with the vertex set $I^*(R)$, and two distinct vertices I and J are adjacent if and only if $I + J \neq R$. This paper derives a sufficient and necessary condition for $\Omega(R)$ to be a complete graph. Among other results, we determine the domination number of $\Omega(\mathbb{Z}_n)$. Further, the good and excellent decision numbers of $\Omega(\mathbb{Z}_n)$ are studied in the paper.

Keywords: Co-intersection graph, Domination number, Decision number.

AMS Mathematics Subject Classification (2010): 05C25, 05C40, 05C45, 05C69

1. Introduction

The concept of associating a graph to a ring was initially proposed in [5]. He let all ring elements be vertices of the graph and was interested mainly in coloring. In [4], the zerodivisor graph, whose vertices are nonzero zero-divisors, was introduced and investigated by Anderson and Livingston. Many papers have been written about how to assign a graph to a ring; for instance, see [1, 2, 3, 4, 11, 12]. Also, several authors have investigated the intersection and co-intersection graphs of algebraic structures such as groups, rings, and modules, see [2, 7, 9, 10]. The co-intersection graph of submodules is introduced in [9]. Further, some results on the Co-Intersection graphs of ideals of rings are presented in [14]. This is how the paper is structured: Section 2 introduces some definitions and preliminaries. We devote Section 3 to studying for completeness of the co-intersection graph. Also, we present some results about the domination number of co-intersection graph $\Omega(R)$ in this section. Finally, the good decision number and the excellent decision number of $\Omega(\mathbb{Z}_n)$ are studied in Section 4.

2. Preliminaries

The definitions of ring theory and graph theory are provided in this section. In addition, we introduce the Co-intersection graph of a ring and discuss some fundamental concepts related to rings and maximal left ideals.

In this paper, let R denote a ring. We mean from a nontrivial ideal of R is a nonzero proper left ideal of R. By $I^*(R)$, we denote the set of all nontrivial left ideals of R. A ring R is said to be *local* if it has a unique maximal left ideal. The ring of $n \times n$ matrices over R is denoted by $M_n(R)$. The sets of all nonzero maximal left ideals of R and all nonzero minimal left ideals of R are denoted by $Max(R)$ and $Min(R)$, respectively.

A graph G is an ordered pair $G = (V, E)$, that consists of a nonempty set V of vertices, and a set $E \subseteq [V]^2$ of edges, where $[V]^2$ is the set of all 2-element subsets of V. Two vertices $u, v \in V$ are *adjacent* if $uv \in E$ (for simplicity we use uv instead of subset $\{u, v\}$). The *neighbourhood* of a vertex $u \in V$ is $N(u) = \{v \in V | uv \in E\}$, and the *closed neighbourhood* of u is $N[u] = N(u) \cup \{u\}$. The degree of a vertex u in a graph G is the size of set $N(u)$, which is denoted by $deg(u)$. We denote by $\Delta(G)$ the maximum degree of the vertices of G. A complete graph of order n, denoted by K_n , is a graph in which any two distinct vertices are adjacent. A *null graph* is a graph containing no edges. In the graph theory, a *dominating set* for a graph $G = (V, E)$ is a subset D of V such that every vertex not in D is adjacent to at least one member of D . The *domination numbery* (G) is the number of vertices in the smallest dominating set for G. If $G = (V, E)$ is a finite graph, define $f(U) = \sum_{u \in U} f(u)$, for a function $f: V \to \{-1,1\}$ and $U \subseteq V$. A function $f: V \to \{-1,1\}$ is called a *good function* of G, if $f(N(v)) \geq 1$, for each $v \in V$. The *good decision number* of G, which is denoted by $\lambda(G)$, is the minimum value of $f(V)$, taken over all good function f. The function f is called an *excellent function*, if $f(N[v]) \ge 1$ for each $v \in V$. The minimum value of $f(V)$, taken over all excellent function f , is called the *excellent decision number* of G, and denoted by $\lambda(G)$.

Definition 2.1. *The Co-intersection graph* $\Omega(R)$ *of ring R, is an undirected simple graph* whose the vertex set $V(\Omega(R)) = I^*(R)$ is a set of all nontrivial ideals of R and two distinct *vertices I, J are adjacent if and only if* $I + J \neq R$.

Remark 2.2. Let $R = \mathbb{Z}_n$ be the integers modulo n. Suppose that m_1 and m_2 are two factors of n . So $\lt m_1 > + \lt m_2 \gt = \lt (m_1, m_2) >$, where (m_1, m_2) is the greatest *common divisor of* m_1, m_2 .

Example 3.3. Suppose that $R = Z_{225}$. Then $I^*(R) = \{ < 3 > 0 < 5 > 0 < 15 > 0 < 15 > 0 < 15 > 1$ $25 > c < 45 > c < 75 >$ } and the co-intersection graph $\Omega(R)$ is as follow:

Figure 1: The Co-intersection Graph $\Omega(Z_{225})$.

3. The Domination Number and Completeness

In this section, we characterize the domination number of co-intersection graph $\Omega(\mathbb{Z}_n)$, and we present some results for the domination number of $\Omega(R)$; also, we study the total dominating set of $\Omega(\mathbb{Z}_n)$. Further, we derive a sufficient and necessary condition for $\Omega(R)$ to be a complete graph. Furthermore, we determine the values of *n* for which $\Omega(\mathbb{Z}_n)$ is a complete graph.

Proposition 3.1. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i 's are all distinct prime numbers, and *also* $G = \Omega(\mathbb{Z}_n)$. Then the domination number $\gamma(G)$ is two, if $\alpha_i = 1$ for all $1 \leq i \leq k$; *and otherwise* $\gamma(G) = 1$ *.*

Proof: At first, suppose that $\alpha_{i} > 1$, for some $1 \leq i_1 \leq k$. We show that the set $\{1 = \leq i_1 \leq k_1\}$ $p_1p_2\cdots p_k$ >} is a dominating set for G. As $\alpha_{i_1} > 1$, then $p_1p_2\cdots p_k \neq n$ and therefore I is an nontrivial ideal of \mathbb{Z}_n . Now assume that $J = \langle m \rangle$ is an nontrivial ideal of \mathbb{Z}_n different from I , where m is a factor of n . It is obvious that the greatest common divisor of m and $p_1p_2\cdots p_k$ is grater than one. Then $I + J = \langle (m, p_1p_2\cdots p_k) \rangle \neq \mathbb{Z}_n$. Hence I and *J* are adjacent and $\gamma(G) = 1$.

Now suppose that $\alpha_i = 1$ for all $1 \le i \le k$. Let $a_1 = p_1 p_2 \cdots p_{k-1}$, $a_2 =$ $p_2p_3 \cdots p_k$, then $I_1 = < a_1 >$ and $I_2 = < a_2 >$ are two nontrivial ideals of \mathbb{Z}_n . Assume that $J = \langle m \rangle$ is an nontrivial ideal of \mathbb{Z}_n different from I_1, I_2 , where m is a factor of n. At least one of the greatest common divisor, (m, a_1) or (m, a_2) is grater than one. Therefore there is an edge between *J* and one of the vertices I_1, I_2 . Hence, $\{a_1, a_2\}$ is a dominating set for G and $\gamma(G) \le 2$. On the other hand, because $\alpha_i = 1$ for all $1 \le i \le k$, for each nontrivial ideal $\lt m >$ of \mathbb{Z}_n , there is nontrivial ideal $\lt \frac{n}{m}$ $\frac{n}{m}$ >, such that < m > +< $\frac{n}{m}$ >< $1 \geq \mathbb{Z}_n$. Then $\gamma(G) > 1$. Then $\gamma(G) = 2$.

Proposition 3.2. Let $R = R_1 \times \cdots \times R_n$ and $G_i = \Omega(R_i)$. Then $\gamma(\Omega(R)) = \infty$ if $\gamma(G_i) =$ ∞ for each 1 ≤ i ≤ n, otherwise $\gamma(\Omega(R)) = min{\gamma(G_i)}$ 1 ≤ i ≤ n}.

Proof: If $\gamma(G_i) = \infty$ for each $1 \leq i \leq n$ then $\gamma(\Omega(R)) = \infty$. Suppose that $\gamma_0 = \gamma(G_{i_0}) = \gamma(G_{i_0})$ $min\{\gamma(G_i)|1 \leq i \leq n\}$ and $D_{i_0} = \{I_1, \dots, I_{\gamma_0}\}\$ is a dominating set for G_{i_0} . Thus $D = \{0 \times$ $\cdots \times I_j \times \cdots \times 0 | I_j \in D_{i_0}, 1 \le j \le \gamma_0$ is a dominating set for G and thus $\gamma(\Omega(R)) \le \gamma_0$. On the other hand, as $R_1 \times \cdots \times I \cdots \times R_n$ is a left ideal of R, for each left ideal I of R_{i_0} , thus $\gamma(\Omega(R)) \geq \gamma_0$. Therefore $\gamma(\Omega(R)) = \gamma_0$.

Lemma 3.3. Let R be a ring with unity element 1 and $G = \Omega(R)$. Then $\gamma(G) \leq |Max(R)|$ *and the equality is hold if* $Max(R) \cap Min(R) \neq \emptyset$.

Proof: $Max(R)$ is a dominating set for G, as if I is a left ideal of R, then either $I \in Max(R)$ or there is a maximal left ideal m contain *I* and thus $I + m \neq R$. Also, if $Max(R) \cap$ $Min(R) \neq \emptyset$, then , G is a null graph and thus $\gamma(G) = |Max(R)|$.

Example 3.4. Let *Z* be the ring of integers. Max $(\mathbb{Z}) = \{ \langle p \rangle | for prime number p \}$ is *a dominating set for* $\Omega(\mathbb{Z})$. As, the number of prime numbers is infinite and $\lt m$ \gt $+\lt$ $p \geq z$ for each prime number $p \nmid m, m \in \mathbb{Z}$, thus $\gamma(z) = |Max(R)| = \infty$. This example *shows that the converse of Lemma 3.3 is not true.*

A dominating set D in G is a *total dominating set* if $G[D]$ has no isolated vertex. It is obvious that if D is a total dominating set, then it is a dominating set and also $|D| \ge 2$. In the next proposition, we show that $\Omega(Z_n)$ has a total dominating set of size 2 for each $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ where $\sum_{i=1}^k \alpha_i \ge 3$.

Proposition 3.5. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i 's are all distinct prime numbers and $\sum_{i=1}^{k} \alpha_i \geq 3$. Then $\Omega(\mathbb{Z}_n)$ has a total dominating set of size 2.

Proof: Let $a_1 = p_1 p_2 \cdots p_{k-1}, a_2 = p_{k-1} p_k$ for $k \ge 3, a_1 = p_1 p_2, a_2 = p_2$ for $k = 2$ and $a_1 = p_1, a_2 = p_1^2$ for $k = 1$. Then $D = \{I_1 = , I_2 = \}$ is a total dominating set for $\Omega(\mathbb{Z}_n)$.

In the following, we provide a necessary and sufficient conditions for complete graph $\Omega(R)$.

Proposition 3.6. Let R be a ring with unity element 1. Co-intersection graph $\Omega(R)$ is *complete if and only if has a unique maximal left ideal. In other words, co-intersection graph* $\Omega(R)$ *is complete if and only if R is a local ring* ($|Max(R)| = 1$).

Proof: Suppose that m is a unique maximal left ideal of R .

Now assume that J_1, J_2 are two arbitrary different proper left ideals of R. Then $J_1 \subset m$ and $J_2 \subset m$; therefore $J_1 + J_2 \subset m \neq R$. Hence J_1, J_2 are adjacent in $\Omega(R)$ and $\Omega(R)$ is a complete graph.

Conversely, let $\Omega(R)$ be a complete graph. Suppose that m is a maximal left ideal of R. The ideal m is a unique maximal left ideal of R. Otherwise, there are at least two maximal left ideals, and according to [14, Lemma 3.1], there are two non-adjacent vertices in $\Omega(R)$, and then $\Omega(R)$ is not a complete graph. Hence m is unique.

Example 3.7. *Ring* \mathbb{Z} *has more than one maximal ideal. Then* $\Omega(\mathbb{Z})$ *is not complete.*

Example 3.8. *Suppose that* ^ *is a field, Then:*

- *Let* $R = \mathbb{F}[X]$ *be the polynomial ring over field* \mathbb{F} *. Then* $\Omega(R)$ *is not complete.*
- Let $R = M_n(\mathbb{F})$ be the ring of $n \times n$ matrices over field \mathbb{F} . Then $\Omega(R)$ is not *complete.*

According to the Hilbert basis theorem, ring $R = \mathbb{F}[X]$ *is a Noetherian ring, and* $\lt x$, \lt , $x + 1$ > are two maximal ideal of R. Then $\Omega(R)$ is not complete.

As $\mathbb F$ *is a field, then* $R = \mathbb M_n(\mathbb F)$ *is a left Noetherian ring, and*

 $m_1 = \{ [a_{ij}]_{n \times n} | 1 \le i, j \le n, a_{ij} \in \mathbb{F}, a_{i1} = 0 \},$

 $m_2 = \{ [b_{ij}]_{n \times n} | 1 \le i, j \le n, b_{ij} \in \mathbb{F}, b_{i2} = 0 \}$

are two maximal left ideal of R. Then $\Omega(R)$ *is not complete.*

4. The decision number of $\Omega(\mathbb{Z}_n)$

The bad decision number and the nice decision number of $\Omega(\mathbb{Z}_n)$ have been investigated. In this section, the good decision number and the excellent decision number of $G = \Omega(\mathbb{Z}_n)$ are investigated for each n .

At first, some lemma's are presented in the following, and finally, the results are combined to a single theorem.

Lemma 4.1. *Let* $n = p^{\alpha}$, $\alpha \ge 3$, and also $G = \Omega(\mathbb{Z}_n)$. Thus,

$$
\lambda(G) = \begin{cases} 2, & \text{for odd } \alpha, \\ 3, & \text{for even } \alpha, \end{cases} \text{ and } \overline{\lambda(G)} = \begin{cases} 2, & \text{for odd } \alpha, \\ 1, & \text{for even } \alpha. \end{cases}
$$

Proof: The proof is similar to [14, Lemma 4.1]

Lemma 4.2. Let $k \geq 3$, $n = p_1 p_2 \cdots p_k$, where p_i 's are all distinct prime numbers, and $G = \Omega(\mathbb{Z}_n)$. We have $\lambda(G) \in \{0, 2, 4\}, \lambda(G) \in \{0, 2\}.$ **Proof:** Define the function $f: V \to \{-1,1\}$ as:

$$
f(\) = \begin{cases} 1, & if \ p_1 | a, \\ 1, & a = p_2 ... p_k \text{ or } a = p_2 \\ -1 & otherwise \end{cases}
$$

Assume that $\langle a \rangle$ is a nontrivial ideal of \mathbb{Z}_n , and $a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$. Let $A = \{i | a_i \neq 0\}$.

- If $p_1 | a$, then there are at least $2^{k-1} 2$ elements of $N(< a >)$ with value 1 and at most $2^{k-1} - 3$ elements of $N(*a*)$ with value -1 under the function f. Therefore, $f(N(*a* >)) \ge 1$ and $f(N(*a* >)) \ge 2$ as $f(*a* >) = 1$.
- If $p_1 \nmid a$, then there are at least $2^{k-1} 2^{k-|A|-1}$ elements of $N \le a > 0$ with value 1 and at most $2^{k-1} - 2^{k-|A|-1} - 2$ elements of $N(*a*)$ with value -1 under the function f. So, $f(N(*a* >)) \ge 2$ and $f(N(*a* >)) \ge 1$.

Hence, f is a good (and excellent) function and $f(V) = 4$, thus $\lambda(G)$, $\lambda(G) \leq 4$. Similarly, it can be proved that the function

$$
g(\) = \begin{cases} 1, & if \ p_1 | a \,, \\ 1, & if \ a = p_2 \dots p_k \,, \\ -1 & otherwise. \end{cases}
$$

is an excellent function and hence $\lambda(G) \leq 2$. Now let $v_0 = p_2 \cdots p_k$, we have $N($v_0 >)=V(G)\{($v_0 >, \}$).$ If f is a good$ function, then $f(N < v_0 >) \ge 2$, because of $|N(< v_0 >)|$ is even. Also, $f(N < v_0 >])$ is at most equal to 1 for an excellent function f. Thus, $f(V(G)) \geq 0$ for any good or excellent function f. Further, $\lambda(G)$, $\overline{\lambda(G)}$ are both even, as $|V(G)|$ is even. Hence, $\lambda(G) \in$ $\{0,2,4\}, \lambda(G) \in \{0,2\}.$

In the next two lemma's we show that $\lambda(\Omega(Z_n)) = 3, \overline{\lambda(\Omega(Z_n))} = 1$, when $k \geq 1$ 2, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, and α_i 's are all even numbers.

Lemma 4.3. Let $k \ge 2$, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i 's are all distinct prime numbers, α_i 's *are all even numbers, and* $G = \Omega(\mathbb{Z}_n)$ *. Then,* $\lambda(G) \leq 3$ *, and* $\lambda(G) \leq 1$ *.* **Proof:** Let $m_i = \frac{\alpha_i}{2}$ $f_2^{i_1}$ for each $1 \le i \le k$. Define the function $f: V \to \{-1,1\}$ as: $f(< a >)$ = $\overline{\mathcal{L}}$ \mathbf{I} \int_{1}^{1} , if $p_1^{a_1} \dots p_i^{a_i} |a$ and $p_{i+1}^{m_{i+1}} |a$ and $p_{i+1}^{a_{i+1}} a \nmid a$ for some $0 \le i \le k-1$ 1, if $a_1 = 2$ and $a = p_1^2$, 1, if $a_1 \neq 2$ and $a = p_1 p_2 ... p_k$,

−1 otherwise Suppose that $a >$ is a nontrivial ideal of z_n , and $a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$. Let $A = \{i | a_i \neq 0\}$, and $t = min\{i \vee a_i \neq 0\}$.

Case 1. If $p_1 \nmid a$, then $f \leq a > 0 = -1$, further, if $a_1 = 2$, then

$$
X = \sum_{i=t}^{k} m_i \prod_{j=i+1}^{k} (\alpha_j + 1) + \sum_{i=1}^{t-1} m_i \left(\prod_{j \in A, j > i} (\alpha_j + 1) - 1 \right) \prod_{j \notin A, j > i} (\alpha_j + 1)
$$

ants of $N \le a > l$ have value 1 under the function f and

elements of $N[\le a >]$ have value 1 under the function f, and

$$
Y = \sum_{i=t}^{k} m_i \prod_{j=i+1}^{k} (\alpha_j + 1) - \prod_{j \notin A, j > t} (\alpha_j + 1)
$$

+
$$
\sum_{i=1}^{t-1} m_i \left(\prod_{j \in A, j > t} (\alpha_j + 1) - 1 \right) \prod_{j \notin A, j > t} (\alpha_j + 1)
$$

elements of $N \le a >$ have value -1 under the function f. Because of, $f \le a >$ = -1, thus X elements of $N(*a*)$ have value 1, and $Y-1$ elements of $N(*a*)$ have value -1 . If $\alpha_1 \neq 2$, then $X + 1$ elements of $N \leq \alpha > 1$ have value 1, and $Y - 2$ elements of N (< a >) have value -1. Thus,

$$
f(N(\)\) = \begin{cases} X - Y + 1 = \sum_{i=t}^{k} \prod_{j \notin A, j > t} \(a_j + 1\) + 1, & \text{if } a_1 = 2, \\ X - Y + 3 = \sum_{i=t}^{k} \prod_{j \notin A, j > t} \(a_j + 1\) + 3, & \text{if } a_1 \neq 2. \end{cases}
$$

Consequently, $f(N(*a*>)) \ge 2$ and $f(N(*a* >)) \ge 1$. Hence, f is both a good function and a excellent function.

Case 2. If $p_1 | a$, then $t = 1$. If $f(\langle a \rangle) = 1$, then $f(N(\langle a \rangle)) = X - (Y - 1) = 1$ $\sum_{i=1}^{k} \prod_{j \notin A, j > t} (a_j + 1) + 1 \ge 2$, and $f(N[\langle a \rangle] \ge 3.$ If $f(\langle a \rangle) = -1$, then $f(N(\langle a \rangle))$ $a >$) = X + 1 – (Y – 2) = $\sum_{i=1}^{k} \prod_{j \notin A, j > t} (a_j + 1) + 3 \ge 4$, and $f(N[\langle a \rangle] \ge 3$. By the definition of the function *f*

$$
Z + 1 = \sum_{i=1}^{k} m_i \prod_{j=i+1}^{k} (\alpha_j + 1) + 1
$$

vertices of G have value 1, and $Z - 2$ elements of $N \le a > 1$ have value -1. Hence, $\lambda(G)$, $\lambda(G) \leq 3$.

Similarly, it can be concluded that the function

$$
g(\)
$$

= $\begin{cases} 1, & \text{if } p_1^{a_1} \dots p_i^{a_i} | a \text{ and } p_{i+1}^{m_{i+1}} | a \text{ and } p_{i+1}^{a_{i+1}} \nmid a \text{ for some } 0 \le i \le k-1, \\ -1, & \text{otherwise} \end{cases}$

is an excellent function over $V(G)$ and hence, $\overline{\lambda(G)} \leq 1$

Lemma 4.4. Let $k \geq 2$, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, α_i 's are all even numbers, and $G = \Omega(\mathbb{Z}_n)$. *Then,* $\lambda(G) = 3$ *, and* $\overline{\lambda(G)} = 1$ *.*

Proof: Assume that f is a good function over $V(G)$. If there is $\lt v \gt \in G$ of maximum degree $\Delta(G) = n - 1$, such that $f(*v*) = 1$, then $f(V(G)) \geq 3$, because of $|N(*v*)| = |V(G) { *v*>}|$ is an even number. For $k = 2$ more than of half of all

vertices are of maximum degree $\Delta(G) = n - 1$ thus, there exist a $\lt v \gt \in G$ of maximum degree $\Delta(G) = n - 1$, such that $f(*v*) = 1$. Hence, $\lambda(G) \geq 3$ for $k = 2$. So suppose that $k \ge 3$ and $f(\langle u \rangle) = -1$ for each $\langle v \rangle \in G$ of maximum degree $\Delta(G) = n - 1$. Suppose that $\alpha_1 \leq \alpha_2 \leq \cdots \leq \alpha_k$, and let $a_1 = p_1, a_2 = p_2, a_3 =$ $p_3 \cdots p_k$. There are at least $\frac{\alpha_1 \prod_{i=2}^k (\alpha_i+1)}{2}$ elements of $N(< a_1 >)$ with value 1 under the function f. As, $f(< u>) = -1$ for each $< v> \in G$ of maximum degree $\Delta(G) = n - 1$, thus the number of vertices in $\{N(< a_1 >) \cup N(< a_2 >)\cup N(< a_3 >)\}\)$ with value 1 is at least \overline{L}

$$
X = \frac{\alpha_1 \prod_{i=2}^k (\alpha_i + 1)}{2} + \frac{\alpha_2 \prod_{\substack{i=1 \ i \neq 2}}^k (\alpha_i + 1)}{2} + \frac{\left(\prod_{i=1}^k (\alpha_i + 1) - 1\right)(\alpha_1 + 1)(\alpha_2 + 1)}{2}
$$

$$
-\alpha_1 \alpha_2 \prod_{i=3}^k (\alpha_i + 1) - (\alpha_2 + 1) \prod_{i=1}^k \alpha_i - (\alpha_1 + 1) \prod_{i=2}^k \alpha_i + 3 \prod_{i=1}^k \alpha_i.
$$

With some manipulation we get $X \geq \frac{\prod_{i=1}^{k} (\alpha_i + 1) + 1}{2}$ $\frac{N(t+1)+1}{2} = \frac{|V(G)|+3}{2}$ $\frac{f_1(1)}{2}$, and hence $f(V(G)) \geq 3$. Consequently, $\lambda(G) \geq 3$.

Now suppose that f is an excellent function and $a = p_1 \cdots p_k$. We have $N \le a > V(G)$. and thus $|N| < a > |$ is an odd number and then, $f(N| < a > |) \ge 1$, as f is an excellent function.

On the other side $\lambda(G) \leq 3$ and $\lambda(G) \leq 1$ from Lemma 4.3. Therefore $\lambda(G) = 3$ and $\overline{\lambda(G)} = 1$

Lemma 4.5. Let $k \ge 2$, α_1 be an odd number, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, and also $G = \Omega(Z_n)$. If *there exist an* $1 \le s \le k$ *such that* $\alpha_s > 1$ *then,* $\lambda(G) \le 2$ *and* $\overline{\lambda(G)} \le 2$ *.* **Proof:** Let $m = \frac{\alpha_1+1}{2}$ $\frac{1}{2}$. Define the function $f: V \to \{-1,1\}$ as:

$$
f(\) = \begin{cases} 1, & \text{if } a_1 = 1 \text{ and } \(\(p_1|a \text{ and } a_1 \neq p_1\) \text{ or } a = p_s \text{ or } a = \frac{n}{p_1}\) \\ 1, & \text{if } a_1 \neq 1 \text{ and } \(p_1^m|a \text{ or } a_1 = p_1 \dots p_k\), \\ -1, & \text{otherwise} \end{cases}
$$

Suppose that $\lt a >$ is a nontrivial ideal of \mathbb{Z}_n , and $a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$. Let $A = \{i | a_i \neq 0\}$. **Case 1.** $\alpha_1 \neq 1$:

• If $a_1 = 0$, thus $f(\langle a \rangle) = -1$. There are

$$
X = m \left(\prod_{i=2}^{k} (\alpha_i + 1) - \prod_{i \notin A, i \neq 1} (\alpha_i + 1) \right)
$$

elements in $N($a >$) with value 1 under f . Also, There are $X - 2$ elements in$ $N(\langle a \rangle)$, with value -1 under f. Hence $f(N(\langle a \rangle)) = 2$, and $f(N[a]) = 1$. • If $a_1 \neq 0$:

If $f(\le a >) = -1$, then there are $Z = m \prod_{i=2}^{k} (\alpha_i + 1)$ elements in $N(\le a >)$ with value 1 and

$$
W = (m-1)\prod_{i=2}^{k} (\alpha_i + 1) - 2 + \prod_{i=2}^{k} - \prod_{i \notin A} (\alpha_i + 1)
$$

elements in $N(*a*)$, with value -1 under f. Hence, $f(N(*a*>)=2 +$ $\prod_{i \notin A} (a_i + 1) \geq 3$, and $f(N[a]) \geq 2$. If $f(\le a >)=1$, then there are $Z-1$ elements in $N(\le a >)$ with value 1 and $W + 1$ elements in $N(*a*)$, with value -1 under f. Hence, $f(N(*a*>)$) = $\prod_{i \notin A} (a_i + 1) \geq 1$, and $f(N[a]) \geq 2$.

Case 2. $\alpha_1 = 1$:

- If $a_1 = a_s = 0$. There are $X = \prod_{i=2}^{k} (\alpha_i + 1) \prod_{i \notin A, i \neq 1} (\alpha_i + 1)$ elements in $N(*a*)$ with value 1 and $X - 2$ elements in $N(*a*)$ with value -1 under f. Hence, $f(N(*a* >)) = 2$, and $f(N(*a* >)) = 1$.
- If $a_1 \neq 0$, $a_s = 0$. At first suppose that $f \leq a > 0 = 1$ thus $a \neq p_1$. There are $\prod_{i=2}^{k} (\alpha_i + 1) - 2$ elements in $N \le a > \text{ with value 1 and } \prod_{i=2}^{k} (\alpha_i + 1) - 2$ elements in $N(< a>)$ with value 1 and $\prod_{i=2}^{k} (a_i + 1) - \prod_{i \notin A} (a_i + 1)$ elements in $N(< a>)$ with value -1 under f. Therefore, $f(N(< a>)) = \prod_{i \notin A} (a_i + 1) - 2 \ge 1$ and $f(N(< a>)) \ge 2$ as $a_s \ge 2$. $f(N[\langle a \rangle]) \geq 2$ Now suppose that $f(\langle a \rangle) = -1$ thus $a = p_1$. Similarly, $f(N(\langle a \rangle)) =$ $\prod_{i\neq 1}(a_i+1)-2\geq 1$. Furthermore, if $k\geq 3$ then, $f(N(*a* >))=\prod_{i\neq 1}(a_i+1)$ 1) $-2 \ge 3 \times 2 - 2 = 4$ and $f(N < \alpha > 1) \ge 3$, and if $k = 2, \alpha_s \ge 3$ then, $f(N(*a* >)) \ge 4 - 2 = 2, f(N(*a* >)) \ge 1.$
- If $a_1, a_5 \neq 0$. Thus, $f(\langle a \rangle) = 1$ and there are $\prod_{i=2}^{k} (\alpha_i + 1) 1$ elements in $N(< a>)$ with value 1 and $\prod_{i=2}^{k} (\alpha_i + 1) - \prod_{i \notin A} (\alpha_i + 1) - 1$ elements in $N(< a)$ $a >$) with value −1 under f. Hence, $f(N(*a*>) = \prod_{i \notin A} (a_i + 1) \ge 1$, and $f(N \le a > 0) \ge 2$.
- If $a_1 = 0, a_s \neq 0$. Similar to the previous items discussed so far, if $f(\le a >) = 1$, then $f(N(*a*>)) \ge 2$, and $f(N(*a* >)) \ge 3$, and if $f(*a* >) = -1$, then $f(N(*a* >)) \ge 4$, and $f(N(*a* >)) \ge 3$.

Therefore, f is a good function over G, also, f is an excellent function if $k \neq 2$ or $\alpha_s \geq 3$. Further, it is easy to check that $\lambda(\Omega(\mathbb{Z}_{p1p_2^2})) = 2$. Hence, $\lambda(G) \le 2$ and $\lambda(G) \le 2$ as, $f(V) = 2.$

Lemma 4.6. Let $k \ge 2$, α_1 be an odd number, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, and also $G = \Omega(\mathbb{Z}_n)$. If *there exist an* $1 \le s \le k$ *such that* $\alpha_s > 1$ *then,* $\lambda(G) = \overline{\lambda(G)} = 2$ *.*

Proof: Suppose that f is an excellent function and $a = p_1 \cdots p_k$. We have $N \le a > 1$ $V(G)$ and thus $|N| < a > |$ is an even number and then, $f(N| < a > |) \ge 2$, as f is an excellent function. Hence, $\overline{\lambda(G)} = 2$ according to the Lemma 4.5.

Further, similar to the proof of Lemma 4.4, it can be shown that $\lambda(G) = 2$.

Finally, the following theorem can immediately be concluded from the above discussions.

Theorem 4.7. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i 's are all distinct prime numbers, and also $G = \Omega(\mathbb{Z}_n)$. If $n \neq p, p^2, pq$ then,

$$
\lambda(G) = \begin{cases}\n0 \text{ or } 2 \text{ or } 4 & \text{if } a_i = 1 \text{ for } 1 \le i \le k \\
3 & \text{if } a_i \text{ is an even number for all } 1 \le i \le k \\
2 & \text{otherwise}\n\end{cases}
$$

Further, if $n \neq p$ *then,*

$$
\overline{\lambda(G)} = \begin{cases}\n0 \text{ or } 2 & \text{if } a_i = 1 \text{ for } 1 \le i \le k \\
1 & \text{if } a_i \text{ is an even number for all } 1 \le i \le k \\
2 & \text{otherwise}\n\end{cases}
$$

Acknowledgements. We are very much thankful to the reviewers for their careful reading of our manuscript and suggestions for improvement of the paper.

Conflicts of Interest: The authors declare that there is no conflict of interest.

Author's Contributions: All authors contributed equally.

REFERENCES

- 1. S.Akbari and S.Khojasteh, Commutative rings whose cozero-divisor graphs are unicyclic or of bounded degree, *Comm. Algebra,* 42 (2014) 1594-1605.
- 2. S.Akbari, R.Nikadish and M.J.Nikmehr, Some results on the intersection graphs of ideals of rings, *Journal of Algebra and its Applications*, (2013) 12(4) 1250200(13 pages).
- 3. D.F.Anderson and A.Badawi, The total graph of a commutative ring, *J. Algebra*, 320 (2008) 2706-2719.
- 4. D.F.Anderson and P.S.Livingston, The zero-divisor graph of a commutative ring, *J. Algebra,* 217 (1999) 434-447.
- 5. I.Beck, Coloring of commutative rings, *J. Algebra*, 116 (1988) 208-226.
- 6. J.A.Bondy and U.S.R.Murty, *Graph Theory, Graduate Texts in Mathematics,* 244, Springer, New York, 2008.
- 7. B.Csákány and G.Poll´ak, The graph of subgroups of a finite group, *Czechoslovak Math. J.*, 19 (1969) 241-247.
- 8. K.R.Goodearl and R.B.Warfield, *An Introduction to Noncommutative Notherian Rings*, Cambridge University Press, Cambridge, 2004.
- 9. L.A.Mahdavi and Y.Talebi, Co-intersection graph of submodules of a module, *Algebra and Discrete Mathematics,* 21(1), (2016). 128-143.
- 10. L.A.Mahdavi and Y.Talebi, Properties of Co-intersection graph of submodules of a module, *Journal of Prime Research in Mathematics,* 13 (2017) 16-29.
- 11. S.P.Redmond, On zero-divisor graphs of small finite commutative rings, *Discrete Math.*, 307 (2007) 1155-1166.
- 12. H.Wang, Graphs associated to co-maximal ideals of commutative rings, *J. Algebra,* 320(7) (2008) 2917–2933.
- 13. C.Wang, The negative decision number in graphs, *Australasian Journal of Combinatorics,* 41 (2008) 263-272.
- 14. S.J.Hoseini and Y.Talebi, A Study on Co-intersection Graphs of Rings, to appear in *Italian J. of Pure and App. Math.*