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Abstract. Let I*(R) be the set of all nontrivial left ideals of rily The Co-intersection
graph of ideals oR, denoted by2(R), is a simple undirected graph with the vertex set
I"(R), and two distinct verticed and J are adjacent if and only if +] # R.
This paper derives a sufficient and necessary tiondor 2(R) to be a complete graph.
Among other results, we determine the dominatiomimer of(z,). Further, the good
and excellent decision nhumbersffz,,) are studied in the paper.
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1. Introduction

The concept of associating a graph to a ring witigllg proposed in [5]. He let all ring
elements be vertices of the graph and was intefresgenly in coloring. In [4], the zero-
divisor graph, whose vertices are nonzero zercsdigi was introduced and investigated
by Anderson and Livingston. Many papers have bedtenw about how to assign a graph
to a ring; for instance, see [1, 2, 3, 4, 11, A0, several authors have investigated the
intersection and co-intersection graphs of algebstiuctures such as groups, rings, and
modules, see [2, 7, 9, 10]. The co-intersectiomplymaf submodules is introduced in [9].
Further, some results on the Co-Intersection grapltkeals of rings are presented in [14].
This is how the paper is structured: Section 2oihices some definitions and
preliminaries. We devote Section 3 to studying dompleteness of the co-intersection
graph. Also, we present some results about thertidion number of co-intersection graph
N(R) in this section. Finally, the good decision numdned the excellent decision number
of 2(z,) are studied in Section 4.

2. Preliminaries

The definitions of ring theory and graph theoryamavided in this section. In addition, we
introduce the Co-intersection graph of a ring amtubs some fundamental concepts
related to rings and maximal left ideals.
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In this paper, leR denote a ring. We mean from a nontrivial ideat é a nonzero
proper left ideal oR. By I*(R), we denote the set of all nontrivial left ideafsko A ring
R is said to béocal if it has a unique maximal left ideal. The ringrok n matrices over
R is denoted bw,,(R). The sets of all nonzero maximal left idealsRofnd all nonzero
minimal left ideals oR are denoted by/ax(R) andMin(R), respectively.

A graph¢ is an ordered pai¢ = (V,E), that consists of a nonempty $étof
vertices, and a sé& < [V]? of edges, wherf/]? is the set of all 2-element subsetd/of
Two verticesu, v € V areadjacentif uv € E (for simplicity we useuiv instead of subset
{u, v}). Theneighbourhoodf a vertexu € V is N(u) = {v € V|uv € E}, and theclosed
neighbourhoof u is N[u] = N(u) U {u}. The degree of a vertexin a graphG is the
size of setV(u), which is denoted bgeg(u). We denote byl(G) the maximum degree
of the vertices ofi. A complete graph of order, denoted by,,, is a graph in which any
two distinct vertices are adjacentnéill graphis a graph containing no edges. In the graph
theory, adominating sefor a graphz = (V, E) is a subseb of V such that every vertex
not inD is adjacent to at least one membed of hedomination numbet(¢) is the number
of vertices in the smallest dominating set éorlf ¢ = (V,E) is a finite graph, define
fU) = Yyuey f (W), for a functionf:V - {—1,1} andU € V. A functionf:V - {-1,1}
is called egood functiorof G, if f(N(v)) > 1, for eaclw € V. Thegood decision number
of G, which is denoted b¥((), is the minimum value ¢f(V), taken over all good function
f. The functionf is called anexcellent functionif f(N[v]) = 1 for eachv € V. The
minimum value off (V), taken over all excellent functigh is called thexcellent decision

numberof G, and denoted b¥(G).

Definition 2.1. The Co-intersection grapfa(R) of ring R, is an undirected simple graph
whose the vertex s@(!) (R)) = I*(R) is a set of all nontrivial ideals & and two distinct
verticesl, ] are adjacent if and only ff+ ] # R.

Remark 2.2. LetR = z, be the integers module. Suppose that; andm, are two
factors ofn. So <m; > +<m, >=< (in,,m,) >, where (m,,m,) is the greatest
common divisor af,, m,.

Example 3.3. Suppose thaR = Z,,5. ThenI*(R) ={<3>,<5><9><15><
25>,< 45>, < 75>} and the co-intersection gragh(R) is as follow:

<3> <55

/ \\\ e //77\\

/ \ . e
e vl
7 >)< \
<9 > é\ﬁ-—ﬁﬁ_\ // B ,/’/) <25>
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Figure 1: The Co-intersection Gragh(Z55s).
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3. The Domination Number and Completeness

In this section, we characterize the domination lneinof co-intersection graph(z,), and
we present some results for the domination numbe?(®); also, we study the total
dominating set of2(z,,). Further, we derive a sufficient and necessarylitiom for 2(R)
to be a complete graph. Furthermore, we deternhi@evalues ofi for which2(z,,) is a
complete graph.

Proposition 3.1. Letn = p;'p,? - p,*, wherep;’s are all distinct prime numbers, and
also G = 2(z,). Then the domination numbg(G) is two, ife; =1 forall 1 <i < k;
and otherwise/(G) = 1.
Proof: At first, suppose that; > 1, for somel < i; < k. We show that the s¢t =<
P1Pb2 - Pk >} is a dominating set faf. As «;, > 1, thenp,p, --- py, # n and thereforé
is an nontrivial ideal ofz,,. Now assume thgt=<m > is an nontrivial ideal ofz,
different froml, wherem is a factor oh. It is obvious that the greatest common divisor of
m andp,p, -+ py iS grater than one. Thént ] =< (in, p1p, -+ px) >+ z,. Hencel and
J are adjacent and(G) = 1.

Now suppose thatr; =1 for all 1<i<k. Let a; =p1py Pr_1,02 =
P2bs3 -+ Pk, thenl; =< a; > andl, =< a, > are two nontrivial ideals of,,. Assume that
J =< m > is an nontrivial ideal of,, different from/,,I,, wherem is a factor ofn. At
least one of the greatest common diviger, a,) or (m, a,) is grater than one. Therefore
there is an edge betwegand one of the verticdg I,. Hence{a,, a,} is a dominating set
for G andy(G) < 2. On the other hand, becausge=1 for all 1 <i <k, for each
nontrivial ideal< m > of z,, there is nontrivial ideat - >, such thak m > +< = ><

1> z,. Theny(G) > 1. Theny(G) = 2.

Proposition 3.2. LetR = Ry X - X R, andG; = 2(R;). Theny(Q(R)) = w0 if y(G;) =
o for eachl < i < n, otherwisey (2(R)) = min{y(G)|1 < i < n}.

Proof: If y(G;) = oo for eachl < i < n theny(2(R)) = . Suppose that, = y(G;,) =
min{y(G)|1 < i <n} andD;, = {I;,-, 1, } is a dominating set fa&; . ThusD = {0 x
X [j XX 0|l; € Dy, 1 < j <y,} is a dominating set fof and thus;/(!)(R)) <7o.
On the other hand, & x --- X I--- X R, is a left ideal oRR, for each left ideal of R,
thusy(2(R)) = y,. Thereforey (2(R)) = v,.

Lemma 3.3. LetR be a ring with unity elemedtandG = 2(R). Theny(G) < |[Max(R)|
and the equality is hold Max(R) n Min(R) # @.

Proof: Max(R) is a dominating set fa¥, as ifl is a left ideal oRR, then eithef € Max(R)
or there is a maximal left ideah contain/ and thusl + m # R. Also, if Max(R) n
Min(R) # @, then ¢ is a null graph and thygG) = |[Max(R)|.

Example 3.4. LetZ be the ring of integerdfax (z) = {< p > |for prime number p} is
a dominating set foR2(z). As, the number of prime numbers is infinite anth > +<
p >= z for each prime number t m,m € Z, thusy(z) = [Max(R)| = . This example
shows that the converse of Lemma 3.3 is not true.
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A dominating seD in G is atotal dominating seif G[D] has no isolated vertex. It
is obvious that iD is a total dominating set, then it is a dominatetand als¢D| > 2.
In the next proposition, we show tha€Z,,) has a total dominating set of sizdor each

n=p;ipy? - pr whereyl a; > 3.

Proposition 3.5. Letn = p;*p, % -+ p. ¥, Wherep;’s are all distinct prime numbers and

Yk  a; = 3. Then(z,) has a total dominating set of size

Proof: Leta; = p1py *** Pr—1, a2 = Pr_1Px fOrk = 3,a, = p1py,a, = p, fork = 2 and
a, = py,a, = p? for k = 1. ThenD = {I, =< a; >,I, =< a, >} is a total dominating
set for2(z,).

In the following, we provide a necessary and sigfit conditions for complete graph
0(R).

Proposition 3.6. Let R be a ring with unity elemerit. Co-intersection grapt2(R) is
complete if and only iR has a unique maximal left ideal. In other words,irtersection
graph2(R) is complete if and only R is a local ring (Max(R)| = 1).

Proof: Suppose thath is a unique maximal left ideal &

Now assume thdi, /, are two arbitrary different proper left idealsRofThen/; € m and
J» € m; thereforej; +J, € m # R. HenceJ;, J, are adjacent i@(R) and2(R) is a
complete graph.

Conversely, le2(R) be a complete graph. Suppose thds a maximal left ideal
of R. The idealm is a unique maximal left ideal &. Otherwise, there are at least two
maximal left ideals, and according to [14, LemniH,3here are two non-adjacent vertices
in 2(R), and them2(R) is not a complete graph. Heneeis unique.

Example 3.7. Ringz has more than one maximal ideal. ThEz) is not complete.

Example 3.8. Suppose thdF is a field, Then:
. LetR = F[X] be the polynomial ring over fielfl ThenR(R) is not complete.
. Let R = M, (F) be the ring ofn x n matrices over fieldf. Then2(R) is not
complete.
According to the Hilbert basis theorem, riRg= F[X] is a Noetherian ring, ang x >, <
x + 1 > are two maximal ideal d@t. Then2(R) is not complete.
AsF is a field, therR = M, (FF) is a left Noetherian ring, and
mp = {[aij]nxnll < l,] =n, aij €F, aj; = 0};
my = {[bijlnxnll < i,j < n,b;j € F, by, = 0}
are two maximal left ideal gf. ThenQ(R) is not complete.

4. The decision number of Q(z,,)
The bad decision number and the nice decision nuofid(z,,) have been investigated.
In this section, the good decision number and xigelient decision number &f = 2(z,,)
are investigated for eaeh

At first, some lemma’s are presented in the follogyiand finally, the results are
combined to a single theorem.
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Lemma4.l. Letn = p%, a = 3, and alsoG = 2(z,). Thus,

26) = {2, for odd «, andi(c) = {2, for odd «,
3, forevena, 1, for evena.

Proof: The proof is similar to[14, Lemma 4.1]

Lemma 4.2. Letk = 3, n = p;p, - px, Wherep;’s are all distinct prime numbers, and
G = 0(z,). We havel(G) € {0,2,4}, A(G) € {0,2}.
Proof: Define the functiorf:V - {—1,1} as:
1, ifpila
f(<a>)={1, a=p;..px0ra=np,
—1 otherwise
Assume thak a > is a nontrivial ideal of,,, anda = p;*py? -+ p,~. LetA = {i|a; # 0}.

. If p,|a, then there are at lea®t™! — 2 elements oN (< a >) with valuel and at
most 2¥~1 — 3 elements ofN(< a >) with value —1 under the functiory.
Thereforef(N(<a>)) =1andf(N[<a>])=22asf(<a>)=1.
«  If p; t a, then there are at lea®t™! — 2%~141-1 elements o (< a >) with value
1 and at mosgk~1 — 2k-141-1 _ 2 elements ol (< a >) with value—1 under
the functionf. So,f(N(< a >)) =2 andf(N[< a >]) = 1.
Hence f is a good (and excellent) function gh@) = 4, thusA(G),m < 4.
Similarly, it can be proved that the function
1, ifpila,
9(<a>)=11, ifa=p;..px,
_____ -1 otherwise.

is an excellent function and hent@:) < 2.
Now let vy = p, -+ pi. We haveN(< vy >) = V(G)\{< vy >, < p; >}. If f is a good
function, therf (N < vy, >) > 2, because oiN (< v, >)| is even. Alsof (N[< vy >]) is
at most equal td for an excellent functiofi. Thus,f(V(G)) > 0 for any good or excellent
function f. Further, 2(G),A(G) are both even, a§/(G)| is even. Henced(G) €
{0,2,4}, 1(G) € {0,2}.

In the next two lemma’s we show the2(Z,,)) = 3,4(2(Z,)) = 1, whenk >
2,n=p;'p,? - py¥, anda;'s are all even numbers.

Lemmad4.3. Letk > 2,n = p;p, % -+ p, <, wherep;’s are all distinct prime numbera;’s
are all even numbers, aritl= 2(z,,). ThenA(G) < 3, andA(G) < 1.
Proof: Letm; = % for eachl < i < k. Define the functiorf: V — {—1,1} as:
f(<a>)
(1L, ifpi*..p"|a and ptla and p/*tataforsome0<i<k-1
_J1, ifa;=2and a=p?
1, ifay#2and a=pip; .0k
—1 otherwise
Suppose that > is a nontrivial ideal of,, anda = p;*p,? - py*. LetA = {ila; # 0},
andt = min{i v a; # 0}.
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Casel. If p; ta, thenf(< a>)= —1 further, ifa; = 2, then

X=Zml- H(aj+1)+2ml [[@+D-1) [] @+

i=t j=i+1 JEA,j>i J&A,j>i
elements oN[< a >] have valud under the functioif, and

v=>m l_[(a,+1)— [] @+1

i=t j=i+1 J&A,j>t
+Zml~ [[@+0-1) [] @+
i=1 JEA,j>i jeA,j>i

elements oN[< a >] have value-1 under the functioif. Because off (< a >) = —1,
thusX elements oN (< a >) have valud, andY — 1 elements oN(< a >) have value
—1. If a; # 2, thenX + 1 elements olN(< a >) have valuel, andY — 2 elements of
N(< a >) have value-1. Thus,

k
(X—Y+1=Z 1_[ (qj+1)+1, ifa =2
i=t

TUjeA >t

X—Y+3=Z 1_[ (a;+1)+3, ifa #2.

- ]SEAj>t
Consequentlyf(N(< a >)) > 2 andf(N[< a >]) > 1. Hencef is both a good function and
a excellent function.

Case 2. Ifpila,thent=1.1If f(<a>)= 1,thenf(N(< a >)) =X—-(-1)-=
Y Mjeajse(aj+1) +1=2,and f(N[< a >]) = 3.Iff(< a >) = —1, then f(N(<
a>)=X+1-(-2)=3 Tjeajse(aj +1)+3=4, and f(N[<a>])=3.
By the definition of the functioh

k k
Z+1:Zmi ﬂ(aj+1)+1

=1 j=i+1
vertices ofG have valuel, andZ — 2 eléments ofN(< a >) have value—-1. Hence,
2(6),A(G) < 3.
Similarly, it can be concluded that the function

g(<a>)

_ {1, if pit..pta and p;;5*|aand p/** ta forsome0<i<k-—1,

- —1, otherwise
is an excellent function ovér(G) and hencem <1

f(N(<a>))=

Lemma 4.4. Letk > 2, n = p;*p,? - pi¥, ;s are all even numbers, ar@= 2(z,).
Then,A(G) = 3, andA(G) = 1.

Proof: Assume thaf is a good function over(G). If there is< v >€ G of maximum
degree A(G) =n—1, such thatf(<v>)=1, then f(V(G)) =3, because of
IN(< v >)| = |V(G){< v >} is an even number. Fér= 2 more than of half of all
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vertices are of maximum degraéG) = n — 1 thus, there exist & v >€ G of maximum
degree A(G) =n—1, such that f(<v>)=1. Hence, A(G) =3 for k=2.
So suppose thakt >3 and f(<u>)=-1 for each<v>e G of maximum
degreed(G) = n — 1. Suppose that; < a, < - < ai, and leta; = p;,a, = py, a3 =

K (an
ps - py.. There are at lea§tli=2%*Y glements ofv(< a, >) with value1 under the
2

functionf. As, f(< u >) = —1 for each< v >€ G of maximum degred(G) =n — 1,
thus the number of vertices{N (< a; >) U N(< a, >) U N(< az >)} with valuel is at
least
k
a, [li=1(a; + 1)
_alliw+D P57 [+ D - D@+ D +1)
2 2

2
K K K K
—a,Q, H(ai +1)—(a, + 1)1_[ai —(aq + 1)1_[ai + 31_[al-.
i=3 i=1 i=2 i=1

. i#2
[li—,(a;+D+1 _ |[V(G)[+3
2 2

X

With some manipulation we gét >

ConsequentlyA(G) = 3.

Now suppose thgt is an excellent function ard= p, --- p,. We haveV[< a >] = V(G)
and thugN[< a >]| is an odd number and thef(N[< a >]) = 1, asf is an excellent
function.

On the other sidd(G) <3 andA(G) <1 from Lemma 4.3. Thereforg(G) = 3 and

A6) =1

, and hencef (V(G)) = 3.

Lemma4.5. Letk > 2, a; be an odd numben, = p;p,? - p*, and alsaG = 2(Z,). If
there exist anl < s < k such thatx, > 1 then,A(G) < 2 andA(G) < 2.

Proof: Letm = “1;1. Define the functiorf: V — {—1,1} as:
n
1, ifa,=1and ((pila and a, #p;) ora=ps ora = p—)

_ 1
fl<a>)= 1, ifa; #1land (p*la or a; =p;.-pr),

—1, otherwise
Suppose that a > is a nontrivial ideal of,,, anda = p;*p,? - p,*. LetA = {ila; # O}.
Casel a; # 1:

. If a;, =0, thusf(< a >) = —1. There are
k

X=m H(ai+1)— 1—[ (a; + 1)
i=2 i¢A,i#1
elements iV (< a >) with valuel underf. Also, There ar&l — 2 elements in
N(< a >), with value—1 underf. Hencef (N(< a >)) = 2, andf (N[a]) = 1.
. If a; # 0:
If f(<a>)=—1, then there ar€ = m[]*_,(a; + 1) elements iN(< a >)
with valuel and
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k k
W= (m— 1)1_[(ai+1)—2+1_[—1_[(ai+1)

i=2 i=2 €A
elements inN(< a >), with value —1 under f. Hence,f(N(< a>)) =2+
HieA(al’ +1) =3, and f(N[a]) > 2.
If f(<a>)=1, then there ar& — 1 elements iNN(< a >) with valuel and
W + 1 elements iV (< a >), with value—1 underf. Hence f(N(< a >)) =
HieA(al’ + 1) >1, andf(N[a]) > 2.

Cae2. a; =1:

. If a; =as=0. There areX = [[*,(a; +1) — [ligaiz1(a; + 1) elements in
N(< a >) with valuel andX — 2 elements iV (< a >) with value—1 underf.
Hence f(N(< a >)) =2, andf(N[< a >]) = 1.

. If a; #0,a, =0. At first suppose thaf(< a >) =1 thusa # p,. There are

K J(a;+1) — 2 elements inN(< a >) with value1 and [T ,(a; + 1) — 2
elements inV(< a >) with value1 and[],(a; + 1) — [Tiea(a; + 1) elements
in N(< a >) with value -1 undef. Thereforef (N(< a >)) = [Tiga(a; + 1) —
221 and f(N[<a>]D=2 as ag =2 .
Now suppose thaf(<a >) =—1 thus a = p;. Similarly, f(N(<a>)) =
[liz1(a; + 1) — 2 = 1. Furthermore, ifc > 3 then, f(N(< a >)) = [Tix1(a; +
1)—-2>3%x2-2=4 and f(N[<a>])=3, and if k =2,a;, =3 then,
f(N(<a>)=4-2=2f(N[<a>]) =1

. If aj,as # 0. Thus,f(< a >) =1 and there ar§[* ,(a; + 1) — 1 elements in
N(< a >) with value1l and[T& ,(a; + 1) — [Tiga(a; + 1) — 1 elements inV(<
a >) with value—1 underf. Hence,f(N(< a >)) = [liga(a; +1) = 1, and
f(N[<a>]) =2.

. If a; = 0,a, # 0. Similar to the previous items discussed so fgi(« a >) = 1,
then f(N(<a>))=2, and f(N[<a>]) =3, and if f(<a>) =—1, then
f(N(<a>))=4),andf(N[< a>]) = 3.

Therefore f is a good function ove?, also,f is an excellent function ¥ # 2 ora, > 3.
Further, it is easy to check thafQ(z,,,2)) = 2. Hence,A(G) < 2 andA(G) < 2 as,

FV) = 2.

Lemma4.6. Letk > 2, a; be an odd numben, = p;*p,? -+ p, ¥, and alsaG = 2(zy). If

there exist anl < s < k such thatx; > 1 then,A(G) = A(G) = 2.

Proof: Suppose thaf is an excellent function and= p, ---p;. We haveN[< a >] =
V(G) and thus|N[< a >]| is an even number and thef(N[< a >]) = 2, asf is an
excellent function. Hencé(G) = 2 according to the Lemma 4.5.

Further, similar to the proof of Lemma 4.4, it d@shown thal(G) = 2.

Finally, the following theorem can immediately @ cluded from the above discussions.

Theorem 4.7. Letn = p;'p,? -+ p,. ¥, wherep;’s are all distinct prime numbers, and also
G = Q(z,). Ifn # p,p?,pq then,
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OQor2or4 ifa=1for1<i<k
A(G) = {3 if a; is an even number forall 1 <i <k
2 otherwise

Further, ifn # p then,

Oor2 ifaj=1for1<i<k
AG) = {1 if a;is an evennumber forall1 <i <k
2 otherwise
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