Annals of Pure and Applied Mathematics Vol. 28, No. 2, 2023, 63-71 ISSN: 2279-087X (P), 2279-0888(online) Published on 7 December 2023 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v28n2a05925

Annals of Pure and Applied <u>Mathematics</u>

The Co-Intersection Graphs of Ideals of Rings

S.Jaber Hoseini^{*} and Yahya Talebi

Department of Mathematics, Faculty of Mathematical Sciences University of Mazandaran, Babolsar, Iran email: Sj.hosseini@stu.umz.ac.ir email: talebi@umz.ac.ir *Corresponding author.

Received 23 October 2023; accepted 4 December 2023

Abstract. Let $I^*(R)$ be the set of all nontrivial left ideals of ring R. The Co-intersection graph of ideals of R, denoted by $\Omega(R)$, is a simple undirected graph with the vertex set $I^*(R)$, and two distinct vertices I and J are adjacent if and only if $I + J \neq R$. This paper derives a sufficient and necessary condition for $\Omega(R)$ to be a complete graph. Among other results, we determine the domination number of $\Omega(\mathbb{Z}_n)$. Further, the good and excellent decision numbers of $\Omega(\mathbb{Z}_n)$ are studied in the paper.

Keywords: Co-intersection graph, Domination number, Decision number.

AMS Mathematics Subject Classification (2010): 05C25, 05C40, 05C45, 05C69

1. Introduction

The concept of associating a graph to a ring was initially proposed in [5]. He let all ring elements be vertices of the graph and was interested mainly in coloring. In [4], the zero-divisor graph, whose vertices are nonzero zero-divisors, was introduced and investigated by Anderson and Livingston. Many papers have been written about how to assign a graph to a ring; for instance, see [1, 2, 3, 4, 11, 12]. Also, several authors have investigated the intersection and co-intersection graphs of algebraic structures such as groups, rings, and modules, see [2, 7, 9, 10]. The co-intersection graph of submodules is introduced in [9]. Further, some results on the Co-Intersection graphs of ideals of rings are presented in [14]. This is how the paper is structured: Section 2 introduces some definitions and preliminaries. We devote Section 3 to studying for completeness of the co-intersection graph $\Omega(R)$ in this section. Finally, the good decision number and the excellent decision number of $\Omega(\mathbb{Z}_n)$ are studied in Section 4.

2. Preliminaries

The definitions of ring theory and graph theory are provided in this section. In addition, we introduce the Co-intersection graph of a ring and discuss some fundamental concepts related to rings and maximal left ideals.

In this paper, let *R* denote a ring. We mean from a nontrivial ideal of *R* is a nonzero proper left ideal of *R*. By $I^*(R)$, we denote the set of all nontrivial left ideals of *R*. A ring *R* is said to be *local* if it has a unique maximal left ideal. The ring of $n \times n$ matrices over *R* is denoted by $M_n(R)$. The sets of all nonzero maximal left ideals of *R* and all nonzero minimal left ideals of *R* are denoted by Max(R) and Min(R), respectively.

A graph G is an ordered pair G = (V, E), that consists of a nonempty set V of vertices, and a set $E \subseteq [V]^2$ of edges, where $[V]^2$ is the set of all 2-element subsets of V. Two vertices $u, v \in V$ are *adjacent* if $uv \in E$ (for simplicity we use uv instead of subset $\{u, v\}$). The neighbourhood of a vertex $u \in V$ is $N(u) = \{v \in V | uv \in E\}$, and the closed *neighbourhood* of u is $N[u] = N(u) \cup \{u\}$. The degree of a vertex u in a graph G is the size of set N(u), which is denoted by deg(u). We denote by $\Delta(G)$ the maximum degree of the vertices of G. A complete graph of order n, denoted by K_n , is a graph in which any two distinct vertices are adjacent. A *null graph* is a graph containing no edges. In the graph theory, a *dominating set* for a graph G = (V, E) is a subset D of V such that every vertex not in D is adjacent to at least one member of D. The *domination number* $\gamma(G)$ is the number of vertices in the smallest dominating set for G. If G = (V, E) is a finite graph, define $f(U) = \sum_{u \in U} f(u)$, for a function $f: V \to \{-1, 1\}$ and $U \subseteq V$. A function $f: V \to \{-1, 1\}$ is called a good function of G, if $f(N(v)) \ge 1$, for each $v \in V$. The good decision number of G, which is denoted by $\lambda(G)$, is the minimum value of f(V), taken over all good function f. The function f is called an *excellent function*, if $f(N[v]) \ge 1$ for each $v \in V$. The minimum value of f(V), taken over all excellent function f, is called the *excellent decision number* of G, and denoted by $\overline{\lambda(G)}$.

Definition 2.1. The Co-intersection graph $\Omega(R)$ of ring R, is an undirected simple graph whose the vertex set $V(\Omega(R)) = I^*(R)$ is a set of all nontrivial ideals of R and two distinct vertices I, J are adjacent if and only if $I + J \neq R$.

Remark 2.2. Let $R = \mathbb{Z}_n$ be the integers modulo n. Suppose that m_1 and m_2 are two factors of n. So $< m_1 > + < m_2 > = < (m_1, m_2) >$, where (m_1, m_2) is the greatest common divisor of m_1, m_2 .

Example 3.3. Suppose that $R = Z_{225}$. Then $I^*(R) = \{<3>, <5>, <9>, <15>, <25>, <45>, <75>\}$ and the co-intersection graph $\Omega(R)$ is as follow:

Figure 1: The Co-intersection Graph $\Omega(Z_{225})$.

3. The Domination Number and Completeness

In this section, we characterize the domination number of co-intersection graph $\Omega(\mathbb{Z}_n)$, and we present some results for the domination number of $\Omega(R)$; also, we study the total dominating set of $\Omega(\mathbb{Z}_n)$. Further, we derive a sufficient and necessary condition for $\Omega(R)$ to be a complete graph. Furthermore, we determine the values of *n* for which $\Omega(\mathbb{Z}_n)$ is a complete graph.

Proposition 3.1. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i 's are all distinct prime numbers, and also $G = \Omega(\mathbb{Z}_n)$. Then the domination number $\gamma(G)$ is two, if $\alpha_i = 1$ for all $1 \le i \le k$; and otherwise $\gamma(G) = 1$.

Proof: At first, suppose that $\alpha_{i_1} > 1$, for some $1 \le i_1 \le k$. We show that the set $\{I = \langle p_1 p_2 \cdots p_k \rangle\}$ is a dominating set for *G*. As $\alpha_{i_1} > 1$, then $p_1 p_2 \cdots p_k \ne n$ and therefore *I* is an nontrivial ideal of \mathbb{Z}_n . Now assume that $J = \langle m \rangle$ is an nontrivial ideal of \mathbb{Z}_n different from *I*, where *m* is a factor of *n*. It is obvious that the greatest common divisor of *m* and $p_1 p_2 \cdots p_k$ is grater than one. Then $I + J = \langle (m, p_1 p_2 \cdots p_k) \rangle \ne \mathbb{Z}_n$. Hence *I* and *J* are adjacent and $\gamma(G) = 1$.

Now suppose that $\alpha_i = 1$ for all $1 \le i \le k$. Let $a_1 = p_1 p_2 \cdots p_{k-1}, a_2 = p_2 p_3 \cdots p_k$, then $I_1 = \langle a_1 \rangle$ and $I_2 = \langle a_2 \rangle$ are two nontrivial ideals of \mathbb{Z}_n . Assume that $J = \langle m \rangle$ is an nontrivial ideal of \mathbb{Z}_n different from I_1, I_2 , where m is a factor of n. At least one of the greatest common divisor, (m, a_1) or (m, a_2) is grater than one. Therefore there is an edge between J and one of the vertices I_1, I_2 . Hence, $\{a_1, a_2\}$ is a dominating set for G and $\gamma(G) \le 2$. On the other hand, because $\alpha_i = 1$ for all $1 \le i \le k$, for each nontrivial ideal $\langle m \rangle$ of \mathbb{Z}_n , there is nontrivial ideal $\langle \frac{n}{m} \rangle$, such that $\langle m \rangle + \langle \frac{n}{m} \rangle < 1 \ge \mathbb{Z}_n$. Then $\gamma(G) > 1$. Then $\gamma(G) = 2$.

Proposition 3.2. Let $R = R_1 \times \cdots \times R_n$ and $G_i = \Omega(R_i)$. Then $\gamma(\Omega(R)) = \infty$ if $\gamma(G_i) = \infty$ for each $1 \le i \le n$, otherwise $\gamma(\Omega(R)) = \min\{\gamma(G_i) | 1 \le i \le n\}$.

Proof: If $\gamma(G_i) = \infty$ for each $1 \le i \le n$ then $\gamma(\Omega(R)) = \infty$. Suppose that $\gamma_0 = \gamma(G_{i_0}) = \min\{\gamma(G_i) | 1 \le i \le n\}$ and $D_{i_0} = \{I_1, \dots, I_{\gamma_0}\}$ is a dominating set for G_{i_0} . Thus $D = \{0 \times \dots \times I_j \times \dots \times 0 | I_j \in D_{i_0}, 1 \le j \le \gamma_0\}$ is a dominating set for G and thus $\gamma(\Omega(R)) \le \gamma_0$. On the other hand, as $R_1 \times \dots \times I \dots \times R_n$ is a left ideal of R, for each left ideal I of R_{i_0} , thus $\gamma(\Omega(R)) \ge \gamma_0$.

Lemma 3.3. Let *R* be a ring with unity element 1 and $G = \Omega(R)$. Then $\gamma(G) \leq |Max(R)|$ and the equality is hold if $Max(R) \cap Min(R) \neq \emptyset$.

Proof: Max(R) is a dominating set for *G*, as if *I* is a left ideal of *R*, then either $I \in Max(R)$ or there is a maximal left ideal *m* contain *I* and thus $I + m \neq R$. Also, if $Max(R) \cap Min(R) \neq \emptyset$, then *,G* is a null graph and thus $\gamma(G) = |Max(R)|$.

Example 3.4. Let Z be the ring of integers. $Max(\mathbb{Z}) = \{ | \text{for prime number } p \}$ is a dominating set for $\Omega(\mathbb{Z})$. As, the number of prime numbers is infinite and $< m > + = \mathbb{Z}$ for each prime number $p \nmid m, m \in Z$, thus $\gamma(\mathbb{Z}) = |Max(R)| = \infty$. This example shows that the converse of Lemma 3.3 is not true.

A dominating set *D* in *G* is a *total dominating set* if *G*[*D*] has no isolated vertex. It is obvious that if *D* is a total dominating set, then it is a dominating set and also $|D| \ge 2$. In the next proposition, we show that $\Omega(Z_n)$ has a total dominating set of size 2 for each $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$ where $\sum_{i=1}^k \alpha_i \ge 3$.

Proposition 3.5. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i 's are all distinct prime numbers and $\sum_{i=1}^{k} \alpha_i \geq 3$. Then $\Omega(\mathbb{Z}_n)$ has a total dominating set of size 2.

 $\sum_{i=1}^{k} \alpha_i \ge 3. \text{ Then } \Omega(\mathbb{Z}_n) \text{ has a total dominating set of size 2.}$ **Proof:** Let $a_1 = p_1 p_2 \cdots p_{k-1}, a_2 = p_{k-1} p_k \text{ for } k \ge 3, a_1 = p_1 p_2, a_2 = p_2 \text{ for } k = 2 \text{ and } a_1 = p_1, a_2 = p_1^2 \text{ for } k = 1.$ Then $D = \{I_1 = \langle a_1 \rangle, I_2 = \langle a_2 \rangle\}$ is a total dominating set for $\Omega(\mathbb{Z}_n)$.

In the following, we provide a necessary and sufficient conditions for complete graph $\Omega(R)$.

Proposition 3.6. Let *R* be a ring with unity element 1. Co-intersection graph $\Omega(R)$ is complete if and only if *R* has a unique maximal left ideal. In other words, co-intersection graph $\Omega(R)$ is complete if and only if *R* is a local ring (|Max(R)| = 1).

Proof: Suppose that *m* is a unique maximal left ideal of *R*.

Now assume that J_1 , J_2 are two arbitrary different proper left ideals of R. Then $J_1 \subset m$ and $J_2 \subset m$; therefore $J_1 + J_2 \subset m \neq R$. Hence J_1 , J_2 are adjacent in $\Omega(R)$ and $\Omega(R)$ is a complete graph.

Conversely, let $\Omega(R)$ be a complete graph. Suppose that *m* is a maximal left ideal of *R*. The ideal *m* is a unique maximal left ideal of *R*. Otherwise, there are at least two maximal left ideals, and according to [14, Lemma 3.1], there are two non-adjacent vertices in $\Omega(R)$, and then $\Omega(R)$ is not a complete graph. Hence *m* is unique.

Example 3.7. *Ring* \mathbb{Z} *has more than one maximal ideal. Then* $\Omega(\mathbb{Z})$ *is not complete.*

Example 3.8. Suppose that \mathbb{F} is a field, Then:

- Let $R = \mathbb{F}[X]$ be the polynomial ring over field \mathbb{F} . Then $\Omega(R)$ is not complete.
- Let $R = M_n(\mathbb{F})$ be the ring of $n \times n$ matrices over field \mathbb{F} . Then $\Omega(R)$ is not complete.

According to the Hilbert basis theorem, ring $R = \mathbb{F}[X]$ is a Noetherian ring, and $\langle x \rangle, \langle x + 1 \rangle$ are two maximal ideal of R. Then $\Omega(R)$ is not complete.

As \mathbb{F} is a field, then $R = \mathbb{M}_n(\mathbb{F})$ is a left Noetherian ring, and

 $m_1 = \{ [a_{ij}]_{n \times n} | 1 \le i, j \le n, a_{ij} \in \mathbb{F}, a_{i1} = 0 \},\$

 $m_2 = \{ [b_{ij}]_{n \times n} | 1 \le i, j \le n, b_{ij} \in \mathbb{F}, b_{i2} = 0 \}$

are two maximal left ideal of R. Then $\Omega(R)$ is not complete.

4. The decision number of $\Omega(\mathbb{Z}_n)$

The bad decision number and the nice decision number of $\Omega(\mathbb{Z}_n)$ have been investigated. In this section, the good decision number and the excellent decision number of $G = \Omega(\mathbb{Z}_n)$ are investigated for each n.

At first, some lemma's are presented in the following, and finally, the results are combined to a single theorem.

Lemma 4.1. Let $n = p^{\alpha}$, $\alpha \ge 3$, and also $G = \Omega(\mathbb{Z}_n)$. Thus,

$$l(G) = \begin{cases} 2, & \text{for odd } \alpha, \\ 3, & \text{for even } \alpha, \end{cases} \text{ and } \overline{\lambda(G)} = \begin{cases} 2, & \text{for odd } \alpha, \\ 1, & \text{for even } \alpha. \end{cases}$$

Proof: The proof is similar to [14, *Lemma* 4.1]

Lemma 4.2. Let $k \ge 3$, $n = p_1 p_2 \cdots p_k$, where p_i 's are all distinct prime numbers, and $G = \Omega(\mathbb{Z}_n)$. We have $\lambda(G) \in \{0,2,4\}, \overline{\lambda(G)} \in \{0,2\}$. **Proof:** Define the function $f: V \to \{-1,1\}$ as:

$$f(\langle a \rangle) = \begin{cases} 1, i \ j \ a \\ 1, i \ f \ p_1 | a, \\ 1, a = p_2 \dots p_k \ or \ a = p_2 \\ -1 & otherwise \end{cases}$$

Assume that $\langle a \rangle$ is a nontrivial ideal of \mathbb{Z}_n , and $a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$. Let $A = \{i | a_i \neq 0\}$.

- If p₁|a, then there are at least 2^{k-1} 2 elements of N(< a >) with value 1 and at most 2^{k-1} 3 elements of N(< a >) with value -1 under the function f. Therefore, f(N(< a >)) ≥ 1 and f(N[< a >]) ≥ 2 as f(< a >) = 1.
 If p₁ ∤ a, then there are at least 2^{k-1} 2^{k-|A|-1} elements of N(< a >) with value
- If $p_1 \nmid a$, then there are at least $2^{k-1} 2^{k-|A|-1}$ elements of $N(\langle a \rangle)$ with value 1 and at most $2^{k-1} 2^{k-|A|-1} 2$ elements of $N(\langle a \rangle)$ with value -1 under the function f. So, $f(N(\langle a \rangle)) \ge 2$ and $f(N[\langle a \rangle]) \ge 1$.

Hence, *f* is a good (and excellent) function and f(V) = 4, thus $\lambda(G), \overline{\lambda(G)} \le 4$. Similarly, it can be proved that the function

$$g(\langle a \rangle) = \begin{cases} 1, & \text{if } p_1 | a, \\ 1, & \text{if } a = p_2 \dots p_k, \\ -1 & \text{otherwise.} \end{cases}$$

is an excellent function and hence $\lambda(G) \leq 2$. Now let $v_0 = p_2 \cdots p_k$. we have $N(\langle v_0 \rangle) = V(G) \setminus \{\langle v_0 \rangle, \langle p_1 \rangle\}$. If *f* is a good function, then $f(N \langle v_0 \rangle) \geq 2$, because of $|N(\langle v_0 \rangle)|$ is even. Also, $f(N[\langle v_0 \rangle])$ is at most equal to 1 for an excellent function *f*. Thus, $f(V(G)) \geq 0$ for any good or excellent function *f*. Further, $\lambda(G), \overline{\lambda(G)}$ are both even, as |V(G)| is even. Hence, $\lambda(G) \in \{0,2,4\}, \overline{\lambda(G)} \in \{0,2\}$.

In the next two lemma's we show that $\lambda(\Omega(Z_n)) = 3, \overline{\lambda(\Omega(Z_n))} = 1$, when $k \ge 2, n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, and α_i 's are all even numbers.

Lemma 4.3. Let $k \ge 2$, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i 's are all distinct prime numbers, α_i 's are all even numbers, and $G = \Omega(\mathbb{Z}_n)$. Then, $\lambda(G) \le 3$, and $\overline{\lambda(G)} \le 1$. **Proof:** Let $m_i = \frac{\alpha_i}{2}$ for each $1 \le i \le k$. Define the function $f: V \to \{-1, 1\}$ as:

f(< a >) $= \begin{cases} 1, & \text{if } p_1^{a_1} \dots p_i^{a_i} | a \text{ and } p_{i+1}^{m_{i+1}} | a \text{ and } p_{i+1}^{a_{i+1}} a \nmid a \text{ for some } 0 \le i \le k-1 \\ 1, & \text{if } a_1 = 2 \text{ and } a = p_1^2, \\ 1, & \text{if } a_1 \neq 2 \text{ and } a = p_1 p_2 \dots p_k, \\ -1 & \text{otherwise} \end{cases}$

Suppose that $a > is a nontrivial ideal of <math>\mathbb{Z}_n$, and $a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$. Let $A = \{i | a_i \neq 0\}$, and $t = min\{i \lor a_i \neq 0\}$.

Case 1. If $p_1 \nmid a$, then $f(\langle a \rangle) = -1$, further, if $\alpha_1 = 2$, then

$$X = \sum_{i=t}^{k} m_i \prod_{j=i+1}^{k} (\alpha_j + 1) + \sum_{i=1}^{t-1} m_i \left(\prod_{j \in A, j > i} (\alpha_j + 1) - 1 \right) \prod_{j \notin A, j > i} (\alpha_j + 1)$$

Ints of $N \leq a > 1$ have value 1 under the function f and

elements of N[< a >] have value 1 under the function *f*, and

$$Y = \sum_{i=t}^{n} m_{i} \prod_{j=i+1}^{n} (\alpha_{j} + 1) - \prod_{j \notin A, j > t} (\alpha_{j} + 1) + \sum_{i=1}^{t-1} m_{i} \left(\prod_{j \in A, j > i} (\alpha_{j} + 1) - 1 \right) \prod_{j \notin A, j > i} (\alpha_{j} + 1)$$

elements of $N[\langle a \rangle]$ have value -1 under the function f. Because of, $f(\langle a \rangle) = -1$, thus X elements of $N(\langle a \rangle)$ have value 1, and Y - 1 elements of $N(\langle a \rangle)$ have value -1. If $\alpha_1 \neq 2$, then X + 1 elements of $N(\langle a \rangle)$ have value 1, and Y - 2 elements of $N(\langle a \rangle)$ have value -1. Thus,

$$f(N(\langle a \rangle)) = \begin{cases} X - Y + 1 = \sum_{i=t}^{k} \prod_{j \notin A, j > t} (a_j + 1) + 1, & \text{if } a_1 = 2, \\ X - Y + 3 = \sum_{i=t}^{k} \prod_{j \notin A, j > t} (a_j + 1) + 3, & \text{if } a_1 \neq 2. \end{cases}$$

Consequently, $f(N(\langle a \rangle)) \ge 2$ and $f(N[\langle a \rangle]) \ge 1$. Hence, *f* is both a good function and a excellent function.

Case 2. If $p_1 | a$, then t = 1. If $f(\langle a \rangle) = 1$, then $f(N(\langle a \rangle)) = X - (Y - 1) = \sum_{i=1}^{k} \prod_{j \notin A, j > t} (a_j + 1) + 1 \ge 2$, and $f(N[\langle a \rangle]) \ge 3$. If $f(\langle a \rangle) = -1$, then $f(N(\langle a \rangle)) = X + 1 - (Y - 2) = \sum_{i=1}^{k} \prod_{j \notin A, j > t} (a_j + 1) + 3 \ge 4$, and $f(N[\langle a \rangle]) \ge 3$. By the definition of the function f

$$Z + 1 = \sum_{i=1}^{k} m_i \prod_{j=i+1}^{k} (\alpha_j + 1) + 1$$

vertices of G have value 1, and Z - 2 elements of $N(\langle a \rangle)$ have value -1. Hence, $\lambda(G), \overline{\lambda(G)} \leq 3$.

Similarly, it can be concluded that the function

$$g(< a >) = \begin{cases} 1, & \text{if } p_1^{a_1} \dots p_i^{a_i} | a \text{ and } p_{i+1}^{m_{i+1}} | a \text{ and } p_{i+1}^{a_{i+1}} \nmid a \text{ for some } 0 \le i \le k-1 \\ -1, & \text{otherwise} \end{cases}$$

is an excellent function over V(G) and hence, $\overline{\lambda(G)} \leq 1$

Lemma 4.4. Let $k \ge 2$, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, α_i 's are all even numbers, and $G = \Omega(\mathbb{Z}_n)$. Then, $\lambda(G) = 3$, and $\overline{\lambda(G)} = 1$.

Proof: Assume that f is a good function over V(G). If there is $\langle v \rangle \in G$ of maximum degree $\Delta(G) = n - 1$, such that $f(\langle v \rangle) = 1$, then $f(V(G)) \geq 3$, because of $|N(\langle v \rangle)| = |V(G)\{\langle v \rangle\}|$ is an even number. For k = 2 more than of half of all

vertices are of maximum degree $\Delta(G) = n - 1$ thus, there exist $a < v > \in G$ of maximum degree $\Delta(G) = n - 1$, such that f(< v >) = 1. Hence, $\lambda(G) \ge 3$ for k = 2. So suppose that $k \ge 3$ and f(< u >) = -1 for each $< v > \in G$ of maximum degree $\Delta(G) = n - 1$. Suppose that $\alpha_1 \le \alpha_2 \le \cdots \le \alpha_k$, and let $a_1 = p_1, a_2 = p_2, a_3 = p_3 \cdots p_k$. There are at least $\frac{\alpha_1 \prod_{i=2}^k (\alpha_i + 1)}{2}$ elements of $N(< a_1 >)$ with value 1 under the function f. As, f(< u >) = -1 for each $< v > \in G$ of maximum degree $\Delta(G) = n - 1$, thus the number of vertices in $\{N(< a_1 >) \cup N(< a_2 >) \cup N(< a_3 >)\}$ with value 1 is at least

$$X = \frac{\alpha_1 \prod_{i=2}^k (\alpha_i + 1)}{2} + \frac{\alpha_2 \prod_{i=1}^k (\alpha_i + 1)}{2} + \frac{\left(\prod_{i=1}^k (\alpha_i + 1) - 1\right)(\alpha_1 + 1)(\alpha_2 + 1)}{2} - \alpha_1 \alpha_2 \prod_{i=3}^k (\alpha_i + 1) - (\alpha_2 + 1) \prod_{i=1}^k \alpha_i - (\alpha_1 + 1) \prod_{i=2}^k \alpha_i + 3 \prod_{i=1}^k \alpha_i.$$

With some manipulation we get $X \ge \frac{\prod_{i=1}^{k} (\alpha_i + 1) + 1}{2} = \frac{|V(G)| + 3}{2}$, and hence $f(V(G)) \ge 3$. Consequently, $\lambda(G) \ge 3$.

Now suppose that *f* is an excellent function and $a = p_1 \cdots p_k$. We have $N[\langle a \rangle] = V(G)$ and thus $|N[\langle a \rangle]|$ is an odd number and then, $f(N[\langle a \rangle]) \ge 1$, as *f* is an excellent function.

On the other side $\lambda(G) \leq 3$ and $\overline{\lambda(G)} \leq 1$ from Lemma 4.3. Therefore $\lambda(G) = 3$ and $\overline{\lambda(G)} = 1$

Lemma 4.5. Let $k \ge 2$, α_1 be an odd number, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, and also $G = \Omega(Z_n)$. If there exist an $1 \le s \le k$ such that $\alpha_s > 1$ then, $\lambda(G) \le 2$ and $\overline{\lambda(G)} \le 2$. **Proof:** Let $m = \frac{\alpha_1 + 1}{2}$. Define the function $f: V \to \{-1, 1\}$ as:

$$f(\langle a \rangle) = \begin{cases} 1, & \text{if } a_1 = 1 \text{ and } ((p_1|a \text{ and } a_1 \neq p_1) \text{ or } a = p_s \text{ or } a = \frac{n}{p_1}) \\ 1, & \text{if } a_1 \neq 1 \text{ and } (p_1^m | a \text{ or } a_1 = p_1 \dots p_k), \\ -1, & \text{otherwise} \end{cases}$$

Suppose that $\langle a \rangle$ is a nontrivial ideal of \mathbb{Z}_n , and $a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$. Let $A = \{i | a_i \neq 0\}$. Case 1. $\alpha_1 \neq 1$:

• If $a_1 = 0$, thus f(< a >) = -1. There are

•

$$X = m\left(\prod_{i=2}^{k} (\alpha_i + 1) - \prod_{i \notin A, i \neq 1} (\alpha_i + 1)\right)$$

elements in $N(\langle a \rangle)$ with value 1 under f. Also, There are X - 2 elements in $N(\langle a \rangle)$, with value -1 under f. Hence $f(N(\langle a \rangle)) = 2$, and f(N[a]) = 1. If $a_1 \neq 0$:

If $f(\langle a \rangle) = -1$, then there are $Z = m \prod_{i=2}^{k} (\alpha_i + 1)$ elements in $N(\langle a \rangle)$ with value 1 and

$$W = (m-1)\prod_{i=2}^{k} (\alpha_i + 1) - 2 + \prod_{i=2}^{k} - \prod_{i \notin A} (\alpha_i + 1)$$

elements in $N(\langle a \rangle)$, with value -1 under f. Hence, $f(N(\langle a \rangle)) = 2 + \prod_{i \notin A} (a_i + 1) \ge 3$, and $f(N[a]) \ge 2$. If $f(\langle a \rangle) = 1$, then there are Z - 1 elements in $N(\langle a \rangle)$ with value 1 and W + 1 elements in $N(\langle a \rangle)$, with value -1 under f. Hence, $f(N(\langle a \rangle)) = \prod_{i \notin A} (a_i + 1) \ge 1$, and $f(N[a]) \ge 2$.

Case 2. $\alpha_1 = 1$:

- If $a_1 = a_s = 0$. There are $X = \prod_{i=2}^k (\alpha_i + 1) \prod_{i \notin A, i \neq 1} (\alpha_i + 1)$ elements in N(<a>) with value 1 and X 2 elements in N(<a>) with value -1 under f. Hence, f(N(<a>)) = 2, and f(N[<a>]) = 1.
- If $a_1 \neq 0, a_s = 0$. At first suppose that $f(\langle a \rangle) = 1$ thus $a \neq p_1$. There are $\prod_{i=2}^{k} (\alpha_i + 1) 2$ elements in $N(\langle a \rangle)$ with value 1 and $\prod_{i=2}^{k} (\alpha_i + 1) 2$ elements in $N(\langle a \rangle)$ with value 1 and $\prod_{i=2}^{k} (a_i + 1) \prod_{i\notin A} (a_i + 1)$ elements in $N(\langle a \rangle)$ with value -1 under f. Therefore, $f(N(\langle a \rangle)) = \prod_{i\notin A} (a_i + 1) 2 \geq 1$ and $f(N[\langle a \rangle]) \geq 2$ as $a_s \geq 2$. Now suppose that $f(\langle a \rangle) = -1$ thus $a = p_1$. Similarly, $f(N(\langle a \rangle)) = \prod_{i\neq 1} (a_i + 1) 2 \geq 3 * 2 2 = 4$ and $f(N[\langle a \rangle]) \geq 3$, and if $k = 2, \alpha_s \geq 3$ then, $f(N(\langle a \rangle)) \geq 4 2 = 2, f(N[\langle a \rangle]) \geq 1$.
- If $a_1, a_s \neq 0$. Thus, $f(\langle a \rangle) = 1$ and there are $\prod_{i=2}^k (\alpha_i + 1) 1$ elements in $N(\langle a \rangle)$ with value 1 and $\prod_{i=2}^k (\alpha_i + 1) \prod_{i \notin A} (\alpha_i + 1) 1$ elements in $N(\langle a \rangle)$ with value -1 under f. Hence, $f(N(\langle a \rangle)) = \prod_{i \notin A} (a_i + 1) \geq 1$, and $f(N[\langle a \rangle]) \geq 2$.
- If $a_1 = 0$, $a_s \neq 0$. Similar to the previous items discussed so far, if $f(\langle a \rangle) = 1$, then $f(N(\langle a \rangle)) \ge 2$, and $f(N[\langle a \rangle]) \ge 3$, and if $f(\langle a \rangle) = -1$, then $f(N(\langle a \rangle)) \ge 4$, and $f(N[\langle a \rangle]) \ge 3$.

Therefore, *f* is a good function over *G*, also, *f* is an excellent function if $k \neq 2$ or $\alpha_s \geq 3$. Further, it is easy to check that $\overline{\lambda(\Omega(\mathbb{Z}_{p1p_2^2}))} = 2$. Hence, $\lambda(G) \leq 2$ and $\overline{\lambda(G)} \leq 2$ as, f(V) = 2.

Lemma 4.6. Let $k \ge 2$, α_1 be an odd number, $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, and also $G = \Omega(\mathbb{Z}_n)$. If there exist an $1 \le s \le k$ such that $\alpha_s > 1$ then, $\lambda(G) = \overline{\lambda(G)} = 2$.

Proof: Suppose that *f* is an excellent function and $a = p_1 \cdots p_k$. We have $N[\langle a \rangle] = V(G)$ and thus $|N[\langle a \rangle]|$ is an even number and then, $f(N[\langle a \rangle]) \ge 2$, as *f* is an excellent function. Hence, $\overline{\lambda(G)} = 2$ according to the Lemma 4.5.

Further, similar to the proof of Lemma 4.4, it can be shown that $\lambda(G) = 2$.

Finally, the following theorem can immediately be concluded from the above discussions.

Theorem 4.7. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$, where p_i 's are all distinct prime numbers, and also $G = \Omega(\mathbb{Z}_n)$. If $n \neq p, p^2, pq$ then,

$$\lambda(G) = \begin{cases} 0 \text{ or } 2 \text{ or } 4 & \text{if } a_i = 1 \text{ for } 1 \leq i \leq k \\ 3 & \text{if } a_i \text{ is an even number for all } 1 \leq i \leq k \\ 2 & \text{otherwise} \end{cases}$$

Further, if $n \neq p$ *then,*

$$\overline{\lambda(G)} = \begin{cases} 0 \text{ or } 2 & \text{ if } a_i = 1 \text{ for } 1 \leq i \leq k \\ 1 & \text{ if } a_i \text{ is an even number for all } 1 \leq i \leq k \\ 2 & \text{ otherwise} \end{cases}$$

Acknowledgements. We are very much thankful to the reviewers for their careful reading of our manuscript and suggestions for improvement of the paper.

Conflicts of Interest: The authors declare that there is no conflict of interest.

Author's Contributions: All authors contributed equally.

REFERENCES

- 1. S.Akbari and S.Khojasteh, Commutative rings whose cozero-divisor graphs are unicyclic or of bounded degree, *Comm. Algebra*, 42 (2014) 1594-1605.
- 2. S.Akbari, R.Nikadish and M.J.Nikmehr, Some results on the intersection graphs of ideals of rings, *Journal of Algebra and its Applications*, (2013) 12(4) 1250200(13 pages).
- 3. D.F.Anderson and A.Badawi, The total graph of a commutative ring, *J. Algebra*, 320 (2008) 2706-2719.
- 4. D.F.Anderson and P.S.Livingston, The zero-divisor graph of a commutative ring, *J. Algebra*, 217 (1999) 434-447.
- 5. I.Beck, Coloring of commutative rings, J. Algebra, 116 (1988) 208-226.
- 6. J.A.Bondy and U.S.R.Murty, *Graph Theory, Graduate Texts in Mathematics*, 244, Springer, New York, 2008.
- 7. B.Csákány and G.Poll'ak, The graph of subgroups of a finite group, *Czechoslovak Math. J.*, 19 (1969) 241-247.
- 8. K.R.Goodearl and R.B.Warfield, *An Introduction to Noncommutative Notherian Rings*, Cambridge University Press, Cambridge, 2004.
- 9. L.A.Mahdavi and Y.Talebi, Co-intersection graph of submodules of a module, *Algebra and Discrete Mathematics*, 21(1), (2016). 128-143.
- 10. L.A.Mahdavi and Y.Talebi, Properties of Co-intersection graph of submodules of a module, *Journal of Prime Research in Mathematics*, 13 (2017) 16-29.
- 11. S.P.Redmond, On zero-divisor graphs of small finite commutative rings, *Discrete Math.*, 307 (2007) 1155-1166.
- 12. H.Wang, Graphs associated to co-maximal ideals of commutative rings, *J. Algebra*, 320(7) (2008) 2917–2933.
- 13. C.Wang, The negative decision number in graphs, Australasian Journal of Combinatorics, 41 (2008) 263-272.
- 14. S.J.Hoseini and Y.Talebi, A Study on Co-intersection Graphs of Rings, to appear in *Italian J. of Pure and App. Math.*