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Abstract. Let �⋆��� be the set of all nontrivial left ideals of ring �. The Co-intersection 
graph of ideals of �, denoted by ����, is a simple undirected graph with the vertex set �⋆���, and two distinct vertices � and � are adjacent if and only if � � � 	 �. 
This paper derives a sufficient and necessary condition for ���� to be a complete graph. 
Among other results, we determine the domination number of ��
��. Further, the good 
and excellent decision numbers of ��
�� are studied in the paper. 

Keywords: Co-intersection graph, Domination number, Decision number. 

AMS Mathematics Subject Classification (2010): 05C25, 05C40, 05C45, 05C69 

1. Introduction 
The concept of associating a graph to a ring was initially proposed in [5]. He let all ring 
elements be vertices of the graph and was interested mainly in coloring. In [4], the zero-
divisor graph, whose vertices are nonzero zero-divisors, was introduced and investigated 
by Anderson and Livingston. Many papers have been written about how to assign a graph 
to a ring; for instance, see [1, 2, 3, 4, 11, 12]. Also, several authors have investigated the 
intersection and co-intersection graphs of algebraic structures such as groups, rings, and 
modules, see [2, 7, 9, 10]. The co-intersection graph of submodules is introduced in [9]. 
Further, some results on the Co-Intersection graphs of ideals of rings are presented in [14]. 
This is how the paper is structured: Section 2 introduces some definitions and 
preliminaries. We devote Section 3 to studying for completeness of the co-intersection 
graph. Also, we present some results about the domination number of co-intersection graph ���� in this section. Finally, the good decision number and the excellent decision number 
of ��
�� are studied in Section 4. 
 
2. Preliminaries 
The definitions of ring theory and graph theory are provided in this section. In addition, we 
introduce the Co-intersection graph of a ring and discuss some fundamental concepts 
related to rings and maximal left ideals. 
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In this paper, let � denote a ring. We mean from a nontrivial ideal of � is a nonzero 
proper left ideal of �. By �⋆���, we denote the set of all nontrivial left ideals of �. A ring 
� is said to be local if it has a unique maximal left ideal. The ring of � × � matrices over 
� is denoted by �����. The sets of all nonzero maximal left ideals of � and all nonzero 
minimal left ideals of � are denoted by ������ and ������, respectively. 

A graph � is an ordered pair � = ��, ��, that consists of a nonempty set � of 
vertices, and a set � ⊆ ���� of edges, where ���� is the set of all 2-element subsets of �. 
Two vertices �, � ∈ � are adjacent if �� ∈ � (for simplicity we use �� instead of subset 
{�, �}). The neighbourhood of a vertex � ∈ � is  ��� = {� ∈ �|�� ∈ �}, and the closed 
neighbourhood of � is  ��� =  ��� ∪ {�}. The degree of a vertex � in a graph � is the 
size of set  ���, which is denoted by #$%���. We denote by &��� the maximum degree 
of the vertices of �. A complete graph of order �, denoted by '�, is a graph in which any 
two distinct vertices are adjacent. A null graph is a graph containing no edges. In the graph 
theory, a dominating set for a graph � = ��, �� is a subset ( of � such that every vertex 
not in ( is adjacent to at least one member of (. The domination number)��� is the number 
of vertices in the smallest dominating set for �. If � = ��, �� is a finite graph, define 
*�+� = ∑ *-∈. ���, for a function *: � → {−1,1} and + ⊆ �. A function *: � → {−1,1} 
is called a good function of �, if *3 ���4 ≥ 1, for each � ∈ �. The good decision number 
of �, which is denoted by 6���, is the minimum value of *���, taken over all good function 
*. The function * is called an excellent function, if *� ���� ≥ 1 for each � ∈ �. The 
minimum value of *���, taken over all excellent function *, is called the excellent decision 

number of �, and denoted by 6���. 

Definition 2.1. The Co-intersection graph ���� of ring �, is an undirected simple graph 
whose the vertex set �3����4 = �⋆��� is a set of all nontrivial ideals of � and two distinct 
vertices �, � are adjacent if and only if � + � ≠ �. 

Remark 2.2. Let � = 
� be the integers modulo �. Suppose that 89 and 8� are two 
factors of �. So < 89 > +< 8� >=< �89, 8�� >, where �89, 8�� is the greatest 
common divisor of 89, 8�. 

Example 3.3. Suppose that � = <225. Then �⋆��� = {< 3 >, < 5 >, < 9 >, < 15 >, <
25 >, < 45 >, < 75 >} and the co-intersection graph ���� is as follow: 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The Co-intersection Graph ��<225�. 
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3. The Domination Number and Completeness 
In this section, we characterize the domination number of co-intersection graph ��
��, and 
we present some results for the domination number of ����; also, we study the total 
dominating set of ��
��. Further, we derive a sufficient and necessary condition for ���� 
to be a complete graph. Furthermore, we determine the values of � for which ��
�� is a 
complete graph. 
 
Proposition 3.1. Let � = @9AB@�AC ⋯ @EAF, where @G ’s are all distinct prime numbers, and 
also � = ��
��. Then the domination number )��� is two, if HG = 1 for all 1 ≤ � ≤ J; 
and otherwise )��� = 1. 
Proof: At first, suppose that HGB > 1, for some 1 ≤ �9 ≤ J. We show that the set {� =<@9@� ⋯ @E >} is a dominating set for �. As HGB > 1, then @9@� ⋯ @E 	 � and therefore � 
is an nontrivial ideal of 
�. Now assume that � =< 8 > is an nontrivial ideal of 
� 
different from �, where 8 is a factor of �. It is obvious that the greatest common divisor of 8 and @9@� ⋯ @E is grater than one. Then � � � =< �8, @9@� ⋯ @E� >	 
�. Hence � and � are adjacent and )��� = 1. 

Now suppose that HG = 1 for all 1 ≤ � ≤ J. Let �9 = @9@� ⋯ @EK9, �� =@�@L ⋯ @E, then �9 =< �9 > and �� =< �� > are two nontrivial ideals of 
�. Assume that � =< 8 > is an nontrivial ideal of 
� different from �9, ��, where 8 is a factor of �. At 
least one of the greatest common divisor, �8, �9� or �8, ��� is grater than one. Therefore 
there is an edge between � and one of the vertices �9, ��. Hence, {�9, ��} is a dominating set 
for � and )��� ≤ 2. On the other hand, because HG = 1 for all 1 ≤ � ≤ J, for each 
nontrivial ideal < 8 > of 
�, there is nontrivial ideal < �N >, such that < 8 > �< �N ><1 ≥ 
�. Then )��� > 1. Then )��� = 2.  
 
Proposition 3.2. Let � = �9 × ⋯ × �� and �G = ���G�. Then )3����4 = ∞ if )��G� =∞ for each 1 ≤ � ≤ �, otherwise )3����4 = 8��{)��G�|1 ≤ � ≤ �}. 
Proof: If )��G� = ∞ for each 1 ≤ � ≤ � then )3����4 = ∞. Suppose that )P = )3�GQ4 =8��{)��G�|1 ≤ � ≤ �} and (GQ = {�9, ⋯ , �RQ} is a dominating set for �GQ. Thus ( = {0 ×⋯ × �T × ⋯ × 0|�T ∈ (GQ , 1 ≤ U ≤ )P} is a dominating set for � and thus )3����4 ≤ )P. 
On the other hand, as �9 × ⋯ × � ⋯ × �� is a left ideal of �, for each left ideal � of �GQ, 
thus )3����4 ≥ )P. Therefore )3����4 = )P.  
 
Lemma 3.3. Let � be a ring with unity element 1 and � = ����. Then )��� ≤ |������| 
and the equality is hold if ������ ∩ ������ 	 ∅. 
Proof: ������ is a dominating set for �, as if � is a left ideal of �, then either � ∈ ������ 
or there is a maximal left ideal 8 contain � and thus � � 8 	 �. Also, if ������ ∩������ 	 ∅, then ,� is a null graph and thus )��� = |������|.  
 
Example 3.4. Let < be the ring of integers. ��� �
� = {< @ > |*XY @Y�8$ ��8Z$Y @} is 
a dominating set for ��
�. As, the number of prime numbers is infinite and < 8 > �<@ >= 
 for each prime number @ ∤ 8, 8 ∈ <, thus )�
� = |������| = ∞. This example 
shows that the converse of Lemma 3.3 is not true. 
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A dominating set ( in � is a total dominating set if ��(� has no isolated vertex. It 
is obvious that if ( is a total dominating set, then it is a dominating set and also |(| ≥ 2. 
In the next proposition, we show that ��<�� has a total dominating set of size 2 for each � = @9AB@�AC ⋯ @EAF where ∑ HGEG\9 ≥ 3. 
 
Proposition 3.5. Let � = @9AB@�AC ⋯ @EAF, where @G ’s are all distinct prime numbers and ∑ HGEG\9 ≥ 3. Then ��
�� has a total dominating set of size 2. 
Proof: Let �9 = @9@� ⋯ @EK9, �� = @EK9@E for J ≥ 3, �9 = @9@�, �� = @� for J = 2 and �9 = @9, �� = @9� for J = 1. Then ( = {�9 =< �9 >, �� =< �� >} is a total dominating 
set for ��
��.  
In the following, we provide a necessary and sufficient conditions for complete graph ����. 
 
Proposition 3.6. Let � be a ring with unity element 1. Co-intersection graph ���� is 
complete if and only if � has a unique maximal left ideal. In other words, co-intersection 
graph ���� is complete if and only if � is a local ring (|������| = 1). 
Proof: Suppose that 8 is a unique maximal left ideal of �. 
Now assume that �9, �� are two arbitrary different proper left ideals of �. Then �9 ⊂ 8 and �� ⊂ 8; therefore �9 + �� ⊂ 8 ≠ �. Hence �9, �� are adjacent in ���� and ���� is a 
complete graph. 

Conversely, let ���� be a complete graph. Suppose that 8 is a maximal left ideal 
of �. The ideal 8 is a unique maximal left ideal of �. Otherwise, there are at least two 
maximal left ideals, and according to [14, Lemma 3.1], there are two non-adjacent vertices 
in ����, and then ���� is not a complete graph. Hence 8 is unique.  
 
Example 3.7. Ring 
 has more than one maximal ideal. Then ��
� is not complete. 
 
Example 3.8. Suppose that ̂ is a field, Then: 

• Let � = ^�_� be the polynomial ring over field ^. Then ���� is not complete. 
• Let � = ���^� be the ring of � × � matrices over field ̂ . Then ���� is not 

complete. 
According to the Hilbert basis theorem, ring � = ^�_� is a Noetherian ring, and < � >, <� + 1 > are two maximal ideal of �. Then ���� is not complete. 
As ̂  is a field, then � = `��^� is a left Noetherian ring, and 89 = a��GT��×�|1 ≤ �, U ≤ �, �GT ∈ ^, �G9 = 0b, 8� = a�ZGT��×�|1 ≤ �, U ≤ �, ZGT ∈ ^, ZG� = 0b 
are two maximal left ideal of �. Then ���� is not complete. 
 
4. The decision number of c�
d� 
The bad decision number and the nice decision number of ��
�� have been investigated. 
In this section, the good decision number and the excellent decision number of � = ��
�� 
are investigated for each �. 

At first, some lemma’s are presented in the following, and finally, the results are 
combined to a single theorem. 
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Lemma 4.1. Let � = @A, H ≥ 3, and also � = ��
��. Thus, 6��� = e2, for odd  α,3, for even  α, and 6��� = e2, for odd  α,1, for even  α. 
Proof: The proof is similar to  �14, i$88� 4.1� 
 
Lemma 4.2. Let J ≥ 3, � = @9@� ⋯ @E, where @G ’s are all distinct prime numbers, and � = ��
��. We have 6��� ∈ {0,2,4}, 6��� ∈ {0,2}. 
Proof: Define the function *: � → {−1,1} as: 

*�< � >� = j1, �* @9|�,1, � = @� … @E XY � = @�−1 Xlℎ$Yn�o$  

Assume that < � > is a nontrivial ideal of 
�, and � = @9pB@�pC ⋯ @EpF. Let q = {�|�G 	 0}. 
• If @9|�, then there are at least 2EK9 − 2 elements of  �< � >� with value 1 and at 

most 2EK9 − 3 elements of  �< � >� with value −1 under the function *. 
Therefore, *� �< � >�� ≥ 1 and *� �< � >�� ≥ 2 as *�< � >� = 1. 

• If @9 ∤ �, then there are at least 2EK9 − 2EK|r|K9 elements of  �< � >� with value 1 and at most 2EK9 − 2EK|r|K9 − 2 elements of  �< � >� with value −1 under 
the function *. So, *� �< � >�� ≥ 2 and *� �< � >�� ≥ 1. 

Hence, * is a good (and excellent) function and *��� = 4, thus 6���, 6��� ≤ 4. 
Similarly, it can be proved that the function 

%�< � >� = j1, �* @9|� ,1, �* � = @� … @E−1 Xlℎ$Yn�o$.  , 
is an excellent function and hence 6��� ≤ 2. 
Now let �P = @� ⋯ @E. we have  �< �P >� = ����\{< �P >, < @9 >}. If * is a good 
function, then *� < �P >� ≥ 2, because of | �< �P >�| is even. Also, *� �< �P >�� is 
at most equal to 1 for an excellent function *. Thus, *3����4 ≥ 0 for any good or excellent 

function *. Further, 6���, 6��� are both even, as |����| is even. Hence, 6��� ∈{0,2,4}, 6��� ∈ {0,2}.  
In the next two lemma’s we show that 63��<��4 = 3, 63��<��4 = 1, when J ≥2, � = @9AB@�AC ⋯ @EAF, and HG’s are all even numbers. 

 
Lemma 4.3. Let J ≥ 2, � = @9AB@�AC ⋯ @EAF, where @G ’s are all distinct prime numbers, HG’s 

are all even numbers, and � = ��
��. Then, 6��� ≤ 3, and 6��� ≤ 1. 
Proof: Let 8G = At�  for each 1 ≤ � ≤ J. Define the function *: � → {−1,1} as: *�< � >�

=
⎩⎨
⎧1, �* @9pB … @Gptx�  ��#  @Gy9NtzBx�   ��#  @Gy9ptzB� ∤ � *XY oX8$ 0 ≤ � ≤ J − 11, �* �9 = 2  ��#   � = @9�,1, �* �9 	 2 ��#  � = @9@� … @E ,−1 Xlℎ$Yn�o$

 

Suppose that � > is a nontrivial ideal of 
�, and � = @9pB@�pC ⋯ @EpF. Let q = {�|�G 	 0}, 
and l = 8��{� ∨ �G 	 0}. 
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Case 1. If @9 ∤ �, then *�< � >� = −1, further, if H9 = 2, then 

_ = | 8G } 3HT + 14E
T\Gy9

E
G\~ + | 8G � } 3HT + 14 − 1T∈r,T�G � } 3HT + 14T∉r,T�G

~K9
G\9  

elements of  �< � >� have value 1 under the function *, and 

� = | 8G } 3HT + 14E
T\Gy9

E
G\~ − } 3HT + 14T∉r,T�~

+ | 8G � } 3HT + 14 − 1T∈r,T�G � } 3HT + 14T∉r,T�G
~K9
G\9  

elements of  �< � >� have value −1 under the function *. Because of, *�< � >� = −1, 
thus _ elements of  �< � >� have value 1, and � − 1 elements of  �< � >� have value −1. If H9 ≠ 2, then _ + 1 elements of  �< � >� have value 1, and � − 2 elements of  �< � >� have value −1. Thus, 

*3 �< � >�4 =
⎩⎪⎨
⎪⎧_ − � + 1 = | } 3�T + 14 + 1,T∉r,T�~

E
G\~ �* �9 = 2,

_ − � + 3 = | } 3�T + 14 + 3,T∉r,T�~
E
G\~ �* �9 ≠ 2. 

Consequently, f(N(< a >)) ≥ 2 and f(N[< a >]) ≥ 1. Hence, * is both a good function and 
a excellent function. 
Case 2. �* @9|�, lℎ$� l = 1. �* *�< � >� = 1, lℎ$� *3 �< � >�4 = _ − �� − 1� =∑ ∏ 3�T � 14 � 1 ≥ 2, ��# *� �< � >�� ≥ 3. �**�< � >� = −1,T∉r,T�~EG\9  then *3 �<� >�4 = _ � 1 − �� − 2� = ∑ ∏ 3�T � 14 � 3 ≥ 4,T∉r,T�~EG\9  and *� �< � >�� ≥ 3 .  
By the definition of the function f  
 

< � 1 = | 8G } 3HT � 14E
T\Gy9

E
G\9

� 1 

vertices of � have value 1, and < − 2 elements of  �< � >� have value −1. Hence, 6���, 6��� ≤ 3. 
Similarly, it can be concluded that the function %�< � >�

= �1, �*  @9pB … @Gptx�  ��#  @Gy9NtzBx� ��#  @Gy9ptzB ∤ � *XY oX8$ 0 ≤ � ≤ J − 1,−1, Xlℎ$Yn�o$  

is an excellent function over ���� and hence, 6��� ≤ 1 
 
Lemma 4.4. Let J ≥ 2, � = @9AB@�AC ⋯ @EAF, HG’s are all even numbers, and � = ��
��. 
Then, 6��� = 3, and 6��� = 1. 
Proof: Assume that * is a good function over ����. If there is < � >∈ � of maximum 
degree &��� = � − 1, such that *�< � >� = 1, then *3����4 ≥ 3, because of | �< � >�| = |����{< � >}| is an even number. For J = 2 more than of half of all 
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vertices are of maximum degree &��� = � − 1 thus, there exist a < � >∈ � of maximum 
degree &��� = � − 1, such that *�< � >� = 1. Hence, 6��� ≥ 3 for J = 2. 
So suppose that J ≥ 3 and *�< � >� = −1 for each < � >∈ � of maximum 
degree &��� = � − 1. Suppose that H9 ≤ H� ≤ ⋯ ≤ HE, and let �9 = @9, �� = @�, �L =@L ⋯ @E. There are at least 

AB ∏ �Aty9�Ft�C�  elements of  �< �9 >� with value 1 under the 

function *. As, *�< � >� = −1 for each < � >∈ � of maximum degree &��� = � − 1, 
thus the number of vertices in { �< �9 >� ∪  �< �� >� ∪  �< �L >�} with value 1 is at 
least 

_ = H9 ∏ �HG + 1�EG\�2 + H� ∏ �HG + 1�EG\9G��2 + 3∏ �HG + 1�EG\9 − 14�H9 + 1��H� + 1�2
−H9H� }�HG + 1�E

G\L − �H� + 1� } HG
E

G\9G��
− �H9 + 1� } HG

E
G\� + 3 } HG

E
G\9 .  

With some manipulation we get _ ≥ ∏ �Aty9�Ft�B y9� = |����|yL� , and hence *3����4 ≥ 3. 

Consequently, 6��� ≥ 3. 
Now suppose that * is an excellent function and � = @9 ⋯ @E. We have  �< � >� = ���� 
and thus | �< � >�| is an odd number and then, *� �< � >�� ≥ 1, as * is an excellent 
function. 

On the other side 6��� ≤ 3 and 6��� ≤ 1 from Lemma 4.3. Therefore 6��� = 3 and 6��� = 1 
 
Lemma 4.5. Let J ≥ 2, H9 be an odd number, � = @9AB@�AC ⋯ @EAF, and also � = ��<��. If 

there exist an 1 ≤ o ≤ J such that H� > 1 then, 6��� ≤ 2 and 6��� ≤ 2. 

Proof: Let 8 = ABy9� . Define the function *: � → {−1,1} as: 

*�< � >� = �1, �* �9 = 1 ��# ��@9|�  ��#  �9 ≠ @9� XY � = @�  XY � = �@9�1, �* �9 ≠ 1 ��# �@9N|�  XY   �9 = @9 … @E�,−1, Xlℎ$Yn�o$  

Suppose that < � > is a nontrivial ideal of 
�, and � = @9pB@�pC ⋯ @EpF. Let q = {�|�G ≠ 0}. 
Case 1. H9 ≠ 1: 

• If �9 = 0, thus *�< � >� = −1. There are 

_ = 8 �}�HG + 1�E
G\� − } �HG + 1�G∉r,G�9 � 

  elements in  �< � >� with value 1 under *. Also, There are _ − 2 elements in  �< � >�, with value −1 under *. Hence *3 �< � >�4 = 2, and *� ���� = 1. 
• If �9 ≠ 0: 

If *�< � >� = −1, then there are < = 8 ∏ �HG + 1�EG\�  elements in  �< � >� 
with value 1 and 
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� = �8 − 1� }�HG + 1�E
G\� − 2 + } −E

G\� }�HG + 1�G∉r  

  elements in  �< � >�, with value −1 under *. Hence, *3 �< � >�4 = 2 +∏ ��G + 1� ≥ 3G∉r , and *� ���� ≥ 2. 
If *�< � >� = 1, then there are < − 1 elements in  �< � >� with value 1 and � + 1 elements in  �< � >�, with value −1 under *. Hence, *3 �< � >�4 =∏ ��G + 1� ≥ 1G∉r , and *� ���� ≥ 2. 

Case 2. H9 = 1: 
• If �9 = �� = 0. There are _ = ∏ �HG + 1�EG\� − ∏ �HG + 1�G∉r,G�9  elements in  �< � >� with value 1 and _ − 2 elements in  �< � >� with value −1 under *. 

Hence, *3 �< � >�4 = 2, and *� �< � >�� = 1. 
• If �9 ≠ 0, �� = 0. At first suppose that *�< � >� = 1 thus � ≠ @9. There are ∏ �HG + 1�EG\� − 2 elements in  �< � >� with value 1 and ∏ �HG + 1�EG\� − 2 

elements in  �< � >� with value 1 and ∏ ��G + 1� − ∏ ��G + 1�G∉rEG\�  elements 
in  �< � >� with value -1 under *. Therefore, *3 �< � >�4 = ∏ ��G + 1� −G∉r2 ≥ 1 and *� �< � >�� ≥ 2 as �� ≥ 2 . 
Now suppose that *�< � >� = −1 thus � = @9. Similarly, *3 �< � >�4 =∏ ��G + 1� − 2 ≥ 1G�9 . Furthermore, if J ≥ 3 then, *3 �< � >�4 = ∏ ��G +G�91� − 2 ≥ 3 ∗ 2 − 2 = 4 and *� �< � >�� ≥ 3, and if J = 2, H� ≥ 3 then, *3 �< � >�4 ≥ 4 − 2 = 2, *� �< � >�� ≥ 1. 

• If �9, �� ≠ 0. Thus, *�< � >� = 1 and there are ∏ �HG + 1�EG\� − 1 elements in  �< � >� with value 1 and ∏ �HG + 1�EG\� − ∏ �HG + 1�G∉r − 1 elements in  �<� >� with value −1 under *. Hence, *3 �< � >�4 =  ∏ ��G + 1� ≥ 1G∉r , and *� �< � >�� ≥ 2. 
• If �9 = 0, �� ≠ 0. Similar to the previous items discussed so far, if *�< � >� = 1, 

then *� �< � >�� ≥ 2, and *� �< � >�� ≥ 3, and if *�< � >� = −1, then *� �< � >�� ≥ 4�, and *� �< � >�� ≥ 3. 
Therefore, * is a good function over �, also, * is an excellent function if J ≠ 2 or H� ≥ 3. 

Further, it is easy to check that 6�Ω�
�9�CC�� = 2. Hence, 6��� ≤ 2 and 6��� ≤ 2 as, *��� = 2.  
 
Lemma 4.6. Let J ≥ 2, H9 be an odd number, � = @9AB@�AC ⋯ @EAF, and also � = ��
��. If 

there exist an 1 ≤ o ≤ J such that H� > 1 then, 6��� = 6��� = 2. 
Proof: Suppose that * is an excellent function and � = @9 ⋯ @E. We have  �< � >� =���� and thus | �< � >�| is an even number and then, *� �< � >�� ≥ 2, as * is an 

excellent function. Hence, 6��� = 2 according to the Lemma 4.5. 
Further, similar to the proof of Lemma 4.4, it can be shown that 6��� = 2.  
Finally, the following theorem can immediately be concluded from the above discussions. 
 
Theorem 4.7. Let � = @9AB@�AC ⋯ @EAF, where @G ’s are all distinct prime numbers, and also � = ��
��. If � 	 @, @�, @� then,  
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6��� = j0 XY 2 XY 4 �* �G = 1 *XY 1 ≤ � ≤ J3 �* �G  �o �� $�$� ��8Z$Y *XY ��� 1 ≤ � ≤ J2 Xlℎ$Yn�o$  

 
Further, if � ≠ @ then, 

6��������� = j0 XY 2 �* �G = 1 *XY 1 ≤ � ≤ J1 �* �G �o �� $�$� ��8Z$Y *XY ��� 1 ≤ � ≤ J2 Xlℎ$Yn�o$  
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