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Abstract. Let G be a graph. For a vertex u in G, its 1-deggedefined as the average of
the degrees of all the vertices which are adjattent The minimum 1-degree of a graph
G is defined as the smallest 1-degree among all-thegrees of vertices in G. A graph G
is triangle-free if no three vertices in G can faancomplete graph of order three. In this
short note, we present a minimum 1-degree condifiiona triangle-free graph to be

Hamiltonian.
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1. Introduction
We consider only finite undirected graphs withaggds or multiple edges. Notation and
terminology not defined here follow those in [1¢tlG = (V, E) be a graph with n vertices
and e edges. For a vertex u in G, we use N(u) notdeall the vertices in G which are
adjacent to u. The degree of a vertex u, denatéa) dis defined as |[N(u)|. We udeto
denote the minimum degree of G. The distance betiwee vertices u and v, denotegl(d,
V), in G is defined as the number of edges in twetest path joining u and v. For a vertex
uin G, we define D(G, u, k) as {x : XV, ds(u, X) = k}, where k is a non-negative integer.
The k-degree of u, denoted(d, k), in G is defined aSx« o, u, KA(X)/|D(G, u, K)|. The
minimum k-degree, denoted(k), of G is defined as miny ds(u, k). Obviously, d(u) =
ds(u, 0),6¢ =6¢(0), and d(u, 1) = xenwd(X)/d(u) provided d(u¥ 0. A set of vertices in
a graph G is independent if the vertices in thesepairwise nonadjacent. The join of two
disjoint graphs Gand G is a graph formed from {&nd G by joining every vertex of G
to every vertex of @ A graph G is triangle-free if no three verticesG can form a
complete graph of order three. A cycle C in a grépis called a Hamiltonian cycle of G
if C contains all the vertices of G. A graph Gadled Hamiltonian if G has a Hamiltonian
cycle.

In this short note, we present the following theoia which a minimum 1-degree
condition for a triangle-free graph to be Hamileimis obtained.
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Theorem 1.1.Let G be a 2-connected triangle-free graph withdwertices and e edges.
If 8c(1)> n/2, then G is Hamiltonian.

2. AlLemma
The following result which is Theorem 5 proved byoz in [2] plays a vital role in our
proof of Theorem 1.1 in Section 3.

Lemma 2.1.Let G = (V, E) be a triangle-free graph with n iee$ and e > 0 edges. Then
Yuev d¥(u) < ne and equality holds if and only if G is a conleipartite graph.

3. Proofs and remarks
Proof of Theorem 1.1.Suppose G is a graph satisfying the conditionshacofem 1.1.
Then e > 0. Sincés(1)> n/2, we, for each vertex uin G, have thatnw d(x)/d(u) = &(u,
1)> 6¢(1) = n/2. Thus) xe nw) d(X) > nd(u)/2. Therefore

Suevdi(U) =FuevIxenw d(¥) = Yuev (0 d(U))/2 = (Muev d(u))/2 = ne.

Lemma 2.1 implies tha,.v d?(u) = ne. So, we, by Lemma 2.1 again, have that & i
complete bipartite graph. Suppose G is:K'hends(1) = min{s, t}. If s#t, thendg(1) <
(n —1)/2, a contradiction. Thus s =t and G is littamian. ]

Remark 3.1.Let G be a complete bipartite graph of, K, with r> 2. Obviously, G is a 2-
connected triangle-free graph wii(1) > (n — 1)/2. Note that G is not Hamiltonian. Thus
the condition obg(1) > n/2 in Theorem 1.1 cannot be relaxed.

Remark 3.2. Let K: be a complete graph of order r and its verteXxss@fs, v, ..., ¥},
where r> 2. Let H be a graph which is a join betweenaid a graph consisting of r
independent vertices, where2. Define a graph G = (V, E) as follows. V:= V(#{}}

and E:= E(HY{zy1, z,, ..., zy}, where r> 2 and z is a vertex which is not equal to any
vertex in V(H). Obviously, G is a 2-connected grayth dc(1)> n/2. Note that G is not
Hamiltonian. Thus the condition that G is trian§iee in Theorem 1.1 cannot be dropped.

4. Conclusion
In this note, we present a sufficient conditiondshsipon the minimum 1-degree for
triangle-free graphs to be Hamiltonian.
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