Annals of Pure and Applied Mathematics Vol. 28, No. 2, 2023, 83-84 ISSN: 2279-087X (P), 2279-0888(online) Published on 31 December 2023 www.researchmathsci.org DOI: http://dx.doi.org/10.22457/apam.v28n2a07924

Annals of Pure and Applied <u>Mathematics</u>

Brief Communication The Minimum 1-Degree and Hamiltonicity of Triangle-Free Graphs

Rao Li

Department of Computer Science, Engineering, and Mathematics University of South Carolina Aiken, Aiken, SC 29801, USA. E-mail: raol@usca.edu

Received 3 December 2023; accepted 29 December 2023

Abstract. Let G be a graph. For a vertex u in G, its 1-degree is defined as the average of the degrees of all the vertices which are adjacent to u. The minimum 1-degree of a graph G is defined as the smallest 1-degree among all the 1-degrees of vertices in G. A graph G is triangle-free if no three vertices in G can form a complete graph of order three. In this short note, we present a minimum 1-degree condition for a triangle-free graph to be Hamiltonian.

Keywords: The minimum 1-degree, Hamiltonian graph, triangle-free graph

AMS Mathematics Subject Classification (2010): 05C45

1. Introduction

We consider only finite undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [1]. Let G = (V, E) be a graph with n vertices and e edges. For a vertex u in G, we use N(u) to denote all the vertices in G which are adjacent to u. The degree of a vertex u, denoted $d_G(u)$, is defined as |N(u)|. We use δ_G to denote the minimum degree of G. The distance between two vertices u and v, denoted $d_G(u, u)$ v), in G is defined as the number of edges in the shortest path joining u and v. For a vertex u in G, we define D(G, u, k) as $\{x : x \in V, d_G(u, x) = k\}$, where k is a non-negative integer. The k-degree of u, denoted $d_G(u, k)$, in G is defined as $\sum_{x \in D(G, u, k)} d(x)/|D(G, u, k)|$. The minimum k-degree, denoted $\delta_G(k)$, of G is defined as $\min_{u \in V} d_G(u, k)$. Obviously, $d_G(u) =$ $d_G(u, 0), \delta_G = \delta_G(0)$, and $d_G(u, 1) = \sum_{x \in N(u)} d(x)/d(u)$ provided $d(u) \neq 0$. A set of vertices in a graph G is independent if the vertices in the set are pairwise nonadjacent. The join of two disjoint graphs G_1 and G_2 is a graph formed from G_1 and G_2 by joining every vertex of G_1 to every vertex of G₂. A graph G is triangle-free if no three vertices in G can form a complete graph of order three. A cycle C in a graph G is called a Hamiltonian cycle of G if C contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian cvcle.

In this short note, we present the following theorem in which a minimum 1-degree condition for a triangle-free graph to be Hamiltonian is obtained.

Rao Li

Theorem 1.1. Let G be a 2-connected triangle-free graph with $n \ge 3$ vertices and e edges. If $\delta_G(1) \ge n/2$, then G is Hamiltonian.

2. A Lemma

The following result which is Theorem 5 proved by Zhou in [2] plays a vital role in our proof of Theorem 1.1 in Section 3.

Lemma 2.1. Let G = (V, E) be a triangle-free graph with n vertices and e > 0 edges. Then $\sum_{u \in V} d^2(u) \le ne$ and equality holds if and only if G is a complete bipartite graph.

3. Proofs and remarks

Proof of Theorem 1.1. Suppose G is a graph satisfying the conditions in Theorem 1.1. Then e > 0. Since $\delta_G(1) \ge n/2$, we, for each vertex u in G, have that $\sum_{x \in N(u)} d(x)/d(u) = d_G(u, 1) \ge \delta_G(1) \ge n/2$. Thus $\sum_{x \in N(u)} d(x) \ge nd(u)/2$. Therefore

 $\sum_{u \in V} d^2(u) = \sum_{u \in V} \sum_{x \in N(u)} d(x) \ge \sum_{u \in V} (n \ d(u))/2 = (n \sum_{u \in V} d(u))/2 = ne.$

Lemma 2.1 implies that $\sum_{u \in V} d^2(u) = ne$. So, we, by Lemma 2.1 again, have that G is a complete bipartite graph. Suppose G is $K_{r,s}$. Then $\delta_G(1) = \min\{s, t\}$. If $s \neq t$, then $\delta_G(1) \leq (n-1)/2$, a contradiction. Thus s = t and G is Hamiltonian.

Remark 3.1. Let G be a complete bipartite graph of $K_{r,r+1}$ with $r \ge 2$. Obviously, G is a 2-connected triangle-free graph with $\delta_G(1) \ge (n-1)/2$. Note that G is not Hamiltonian. Thus the condition of $\delta_G(1) \ge n/2$ in Theorem 1.1 cannot be relaxed.

Remark 3.2. Let K_r be a complete graph of order r and its vertex set is $\{y_1, y_2, ..., y_r\}$, where $r \ge 2$. Let H be a graph which is a join between K_r and a graph consisting of r independent vertices, where $r \ge 2$. Define a graph G = (V, E) as follows. $V := V(H) \cup \{z\}$ and $E := E(H) \cup \{zy_1, zy_2, ..., zy_r\}$, where $r \ge 2$ and z is a vertex which is not equal to any vertex in V(H). Obviously, G is a 2-connected graph with $\delta_G(1) \ge n/2$. Note that G is not Hamiltonian. Thus the condition that G is triangle-free in Theorem 1.1 cannot be dropped.

4. Conclusion

In this note, we present a sufficient condition based upon the minimum 1-degree for triangle-free graphs to be Hamiltonian.

Acknowledgements. The author would like to thank the referee for reviewing the manuscript.

Conflict of interest. The author declares that he has no conflict of interest.

Author's Contributions: It is a single-author paper. The author did all the work alone.

REFERENCES

- 1. J.A. Bondy and U.S.R. Murty, *Graph Theory with Applications*, Macmillan, London and Elsevier, New York (1976).
- 2. B. Zhou, Zagreb Indices, MATCH Commun Math Comput Chem. 52 (2004) 113-118.