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Abstract. Let G be a graph. For a vertex u in G, its 1-degree is defined as the average of 
the degrees of all the vertices which are adjacent to u. The minimum 1-degree of a graph 
G is defined as the smallest 1-degree among all the 1-degrees of vertices in G. A graph G 
is triangle-free if no three vertices in G can form a complete graph of order three. In this 
short note, we present a minimum 1-degree condition for a triangle-free graph to be 
Hamiltonian. 
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1. Introduction 
We consider only finite undirected graphs without loops or multiple edges. Notation and 
terminology not defined here follow those in [1]. Let G = (V, E) be a graph with n vertices 
and e edges. For a vertex u in G, we use N(u) to denote all the vertices in G which are 
adjacent to u. The degree of a vertex u, denoted dG(u), is defined as |N(u)|. We use δG to 
denote the minimum degree of G. The distance between two vertices u and v, denoted dG(u, 
v), in G is defined as the number of edges in the shortest path joining u and v. For a vertex 
u in G, we define D(G, u, k) as {x : x ϵ V, dG(u, x) = k}, where k is a non-negative integer. 
The k-degree of u, denoted dG(u, k), in G is defined as ∑x ϵ D(G, u, k)d(x)/|D(G, u, k)|. The 
minimum k-degree, denoted δG(k), of G is defined as minu ϵ V dG(u, k). Obviously, dG(u) = 
dG(u, 0), δG = δG(0), and dG(u, 1) = ∑x ϵ N(u)d(x)/d(u) provided d(u) ≠ 0. A set of vertices in 
a graph G is independent if the vertices in the set are pairwise nonadjacent. The join of two 
disjoint graphs G1 and G2 is a graph formed from G1 and G2 by joining every vertex of G1 
to every vertex of G2. A graph G is triangle-free if no three vertices in G can form a 
complete graph of order three. A cycle C in a graph G is called a Hamiltonian cycle of G 
if C contains all the vertices of G. A graph G is called Hamiltonian if G has a Hamiltonian 
cycle.  

In this short note, we present the following theorem in which a minimum 1-degree         
condition for a triangle-free graph to be Hamiltonian is obtained. 
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Theorem 1.1. Let G be a 2-connected triangle-free graph with n ≥ 3 vertices and e edges. 
If δG(1) ≥ n/2, then G is Hamiltonian. 

2. A Lemma 
The following result which is Theorem 5 proved by Zhou in [2] plays a vital role in our 
proof of Theorem 1.1 in Section 3.  
         
Lemma 2.1. Let G = (V, E) be a triangle-free graph with n vertices and e > 0 edges. Then 
∑u ϵ V d2(u) ≤ ne and equality holds if and only if G is a complete bipartite graph. 
 
3. Proofs and remarks 
Proof of Theorem 1.1. Suppose G is a graph satisfying the conditions in Theorem 1.1.         
Then e > 0. Since δG(1) ≥ n/2, we, for each vertex u in G, have that ∑x ϵ N(u) d(x)/d(u) = dG(u, 
1) ≥  δG(1) ≥ n/2. Thus ∑x ϵ N(u) d(x) ≥ nd(u)/2. Therefore  

∑u ϵ V d2(u) = ∑u ϵ V∑x ϵ N(u) d(x) ≥ ∑u ϵ V (n d(u))/2 = (n ∑u ϵ V d(u))/2 = ne. 
 
Lemma 2.1 implies that ∑u ϵ V d2(u) = ne. So, we, by Lemma 2.1 again, have that G is a 
complete bipartite graph. Suppose G is Kr, s. Then δG(1) = min{s, t}. If s ≠ t, then δG(1) ≤ 
(n – 1)/2, a contradiction. Thus s = t and G is Hamiltonian.                            ∎                  
 
Remark 3.1. Let G be a complete bipartite graph of Kr, r + 1 with r ≥ 2. Obviously, G is a 2-
connected triangle-free graph with δG(1) ≥ (n – 1)/2. Note that G is not Hamiltonian. Thus 
the condition of δG(1) ≥ n/2 in Theorem 1.1 cannot be relaxed.  
 
Remark 3.2. Let Kr be a complete graph of order r and its vertex set is {y1, y2, ..., yr}, 
where r ≥ 2. Let H be a graph which is a join between Kr and a graph consisting of r 
independent vertices, where r ≥ 2. Define a graph G = (V, E) as follows. V:= V(H)∪{z} 
and E:= E(H)∪{zy1, zy2, ..., zyr}, where r ≥ 2 and z is a vertex which is not equal to any 
vertex in V(H). Obviously, G is a 2-connected graph with δG(1) ≥ n/2. Note that G is not 
Hamiltonian. Thus the condition that G is triangle-free in Theorem 1.1 cannot be dropped. 
 
4. Conclusion 
In this note, we present a sufficient condition based upon the minimum 1-degree for 
triangle-free graphs to be Hamiltonian. 
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