Annals of Pure and Applied Mathematics Vol. 2, No. 1, 2012, 10-17 ISSN: 2279-087X (P), 2279-0888(online) Published on 24 November 2012 www.researchmathsci.org

Annals of Pure and Applied <u>Mathematics</u>

On Semiprime n-Ideals in Lattices

M. Ayub Ali¹, R. M. Hafizur Rahman², A. S. A. Noor³ and M. M. Rahman⁴

 ¹Department of Mathematics, Jagannath University, Dhaka, Bangladesh. Email: <u>ayub_ju@yahoo.com</u>
²Department of Mathematics, Begum Rokeya University, Rangpur, Bangladesh. ³Department of ECE, East West University, Dhaka, Bangladesh. Email : <u>noor@ewubd.edu</u>
⁴Department of Mathematics, Satkhira City College, Satkhira, Bangladesh.

Received 1 November 2012; accepted 19 November 2012

Abstract. Yehuda Rav has given the concept of Semi-prime ideals in a general lattice by generalizing the notion of 0-distributive lattices. In this paper we introduce the concept of semi prime n-ideals in lattices when n is a neutral element. For a fixed element n in a lattice L, any convex sublattice containing n is called an n-ideal. Here we give several characterizations of semi prime n-ideals of lattices. We include a Prime Separation Theorem in a general lattice with respect to annihilator n-ideal containing a semi prime n-ideal.

Keywords. n-distributive lattice, Semi-prime n-ideal, Annihilator n-ideal, Maximal convex sublattice, Prime convex sublattice.

AMS Mathematics Subject Classifications (2010): 06A12, 06A99, 06B10

1. Introduction

In generalizing the notion of pseudo complemented lattice, J. C. Varlet [9] introduced the notion of 0-distributive lattices. Then [2] have given several characterizations of these lattices. On the other hand, [7] have studied them in meet semi lattices. A lattice L with 0 is called a 0-distributive lattice if for all $a,b,c \in L$ with $a \wedge b = 0 = a \wedge c$ imply $a \wedge (b \vee c) = 0$. Let L be a lattice and $n \in L$. Any convex sublattice of L containing n is called an n-ideal of L. An element $n \in L$ is called a standard element if for $a, b \in L$, $a \wedge (b \vee n) = (a \wedge b) \vee (a \wedge n)$, while n is called a neutral element if

(i) it is standard and

(ii) $n \wedge (a \vee b) = (n \wedge a) \vee (n \wedge b)$ for all $a, b \in L$.

On Semiprime n-Ideals in Lattices

Set of all *n*-ideals of a lattice *L* is denoted by $I_n(L)$ which is an algebraic lattice; where $\{n\}$ and *L* are the smallest and largest elements. For two *n*-ideals *I* and *J*, $I \cap J$ is the infimu q hm and

 $I \lor J = \{x \in L/i_1 \land j_1 \le x \le i_2 \lor j_2, \text{ for some } i_1, i_2 \in I \text{ and } j_1, j_2 \in J\}.$ The *n*-ideal generated by a finite numbers of elements $a_1, a_2, ..., a_m$ is called a finitely generated *n*-ideal denoted by $\langle a_1, a_2, ..., a_m \rangle_n$. Moreover, $\langle a_1, a_2, ..., a_m \rangle_n =$ $\{x \in L/a_1 \land a_2 \land ... \land a_m \land n \le x \le a_1 \lor a_2 \lor ... \lor a_m \lor n\}$ $= [a_1 \land a_2 \land ... \land a_m \land n, a_1 \lor a_2 \lor ... \lor a_m \lor n]$

Thus, every finitely generated *n*-ideal is an interval containing *n*. An *n*-ideal generated by a single element $a \in L$ is called a principal *n*-ideal denoted by $\langle a \rangle_n$ and $\langle a \rangle_n = [a \land n, a \lor n]$. Moreover $[a,b] \cap [c,d] = [a \lor c,b \land d]$ and $[a,b] \lor [c,d] = [a \land c,b \lor d]$. If *n* is a neutral element, then by [6], $\langle a \rangle_n \cap \langle b \rangle_n = \langle m(a,n,b) \rangle_n$, where $m(x,y,z) = (x \land y) \lor (x \land z) \lor (y \land z)$. For detailed literature on *n*-ideals we refer the reader to consult [5, 6].

A proper convex sublattice M of a lattice L is called a maximal convex sublattice if for any convex sublattice Q with $Q \supseteq M$ implies either Q = M or Q = L. A proper convex sublattice M is called a prime convex sublattice if for any $t \in M$, $m(a,t,b) \in M$ implies either $a \in M$ or $b \in M$. Similarly, an n-ideal Pof L is called a prime n-ideal if $m(a,n,b) \in P$ implies either $a \in P$ or $b \in P$. Equivalently, P is prime if and only if $\langle a \rangle_n \cap \langle b \rangle_n \subseteq P$ implies either $\langle a \rangle_n \subseteq P$ or $\langle b \rangle_n \subseteq P$. Moreover, by [9], we know that every prime convex sublattice P of L is either an n- ideal or a filter.

By [1] *L* is called an *n* -distributive lattice if for all,

 $\langle a \rangle_n \cap \langle b \rangle_n = \{n\}$ and $\langle a \rangle_n \cap \langle c \rangle_n = \{n\}$ imply $\langle a \rangle_n \cap [\langle b \rangle_n \vee \langle c \rangle_n] = \{n\}$. Equivalently, *L* is called *n*-distributive if $a \wedge b \leq n \leq a \vee b$ and $a \wedge c \leq n \leq a \vee c$ imply $a \wedge (b \vee c) \leq n \leq a \vee (b \wedge c)$.

Y. Rav [8] an ideal I of a lattice is called a *semi prime ideal* if for all $x, y, z \in L, x \land y \in I$ and $x \land z \in I$ imply $x \land (y \lor z) \in I$. Thus, a lattice L with 0, is called *0-distributive* if and only if (0] is a semi prime ideal. Let n be a neutral element of a lattice L. An n-ideal J of L is called a semi prime n-ideal if for all $a, b, c \in L, \langle a \rangle_n \cap \langle b \rangle_n \subseteq J$ and $\langle a \rangle_n \cap \langle c \rangle_n \subseteq J$ imply $\langle a \rangle_n \cap (\langle b \rangle_n \lor \langle c \rangle_n) \subseteq J$. In a distributive lattice every n-ideal is semi prime. Moreover, every prime n-ideal is semi prime. Lattice itself with an element n is of course a semi prime n-ideal. It is easy to see that a lattice with the element n is n-distributive if $\{n\}$ is a semi prime n-ideal. In the pentagonal lattice $\{0, a, b, c, n; a < b, a \lor c = b \lor c = n, a \land c = b \land c = 0\}$, n is neutral. Here

M. Ayub Ali, R. M. Hafizur Rahman, A. S. A. Noor and M. R. Rahman

{n} and $\langle 0 \rangle_n = L$ are semi prime but not prime. Moreover, $\langle a \rangle_n, \langle c \rangle_n$ are prime but $\langle b \rangle_n$ is not even semi prime. Again in $M_3 = \{0, a, b, c, n; a \land b = b \land c = c \land a = 0 = a \lor b = b \lor c = c \lor a = n\},$ $\langle 0 \rangle_n = L$ is semi prime. But {n}, $\langle a \rangle_n, \langle b \rangle_n, \langle c \rangle_n$ are not semi prime. Throughout the paper we will consider n as a neutral element.

Lemma 1. Intersection of any class of prime (semi prime) n- ideals of a lattice is a semi-prime n- ideal.

Proof: Suppose $\{P_k : k \in T\}$ is a class of prime (semi prime) *n*-ideals of *L*. Let $a, b, c \in L$ and $I = \bigcap\{P_k : k \in T\}$. Clearly *I* is an *n*-ideal. Let $\langle a \rangle_n \cap \langle b \rangle_n \subseteq I$ and $\langle a \rangle_n \cap \langle c \rangle_n \subseteq I$. Then $\langle a \rangle_n \cap \langle b \rangle_n \subseteq P_k$ and $\langle a \rangle_n \cap \langle c \rangle_n \subseteq P_k$ for all P_k . Since each P_k is prime (semi prime), so $\langle a \rangle_n \cap \langle c \rangle_n \cup \langle c \rangle_n \cap \langle c \rangle_n \subseteq P_k$ for all k.

Hence $\langle a \rangle_n \cap (\langle b \rangle_n \lor \langle c \rangle_n) \subseteq I$, and so *I* is semi-prime.

Corollary 2. *Intersection of two prime (semi prime) ideals is a semi-prime n- ideal.*

Lemma 3. Every convex sublattice disjoint from an n-ideal I is contained in a maximal convex sub lattice disjoint from I.

Proof: Let *F* be a convex sub lattice in *L* disjoint from *I*. Let F be the set of all convex sub lattices containing *F* and disjoint from *I*. Then F is nonempty as $F \in F$. Let *C* be a chain in F and let $M = \bigcup(X : X \in C)$. We claim that *M* is a convex sub lattice. Let $x, y \in M$. Then $x \in X$ and $y \in Y$ for some $X, Y \in C$. Since *C* is a chain, either $X \subseteq Y$ or $Y \subseteq X$. Suppose $X \subseteq Y$. So $x, y \in Y$. Then $x \land y, x \lor y \in Y$ and so $x \land y, x \lor y \in M$. Thus *M* is a sublattice. Now let $x \le t \le y$ with $x, y \in M$. Then $x, y \in X$ for some $X \in C$. Thus, by convexity of *X*, $t \in X$ and so $t \in M$. Therefore *M* is convex. Moreover, $M \supseteq F$. So *M* is a maximum element of *C*. Then by Zorn's Lemma, F has a maximal element, say $Q \supseteq F$.

Lemma 4. Every maximal convex sublattice disjoint to an n-ideal J is either a maximal ideal or a maximal filter.

Proof. Let *F* be a maximal convex sublattice disjoint to *J*. Since $F = (F] \cap [F)$, so either $(F] \cap J = \varphi$ or $[F) \cap J = \varphi$. If not, let $x \in (F] \cap J$ and $y \in [F) \cap J$. Then $x \in J$ and $x \leq f_1$ for some $f_1 \in F$ and $y \in J$ and $y \geq f_2$ for some $f_2 \in F$. Now, $f_2 \leq x \lor f_2 \leq f_1 \lor f_2$ implies by convexity that $x \lor f_2 \in F$. Also $x \leq x \lor f_2 \leq x \lor y$ implies by convexity that $x \lor f_2 \in J$. It follows that $x \lor f_2 \in F \cap J$, which is a contradiction. Therefore either $(F] \cap J = \varphi$ or $[F) \cap J = \varphi$. Since F is maximal so, either F = (F] or F = [F]. In other words, F must be either an ideal or a filter.

Lemma 5. Let I be an n- ideal of a lattice L. A convex sublattice M disjoint from I is a maximal convex sublattice disjoint from I if and only if for all $a \notin M$, there exists $b \in M$ such that $m(a, n, b) \in I$.

Proof. Let *M* be maximal and disjoint from *I* and $a \notin M$. Let $m(a, n, b) \notin I$ for all $b \in M$. Consider

 $M_1 = \{y \in L : y \land n \le (a \lor b) \land n \le (a \land b) \lor n \le y \lor n; b \in M\}.$ It is easy to cheek that M_1 is a convex sublattice as n is neutral. Also $M_1 \cap I = \varphi$. If not, let $x \in M_1 \cap I$. Then $x \land n \le (a \lor b) \land n \le (a \land b) \lor n \le x \lor n$ for some $b \in M$ and $x \in I$.

Thus, $x \wedge n \leq (a \vee b) \wedge n \leq (a \wedge b) \vee (a \wedge n) \vee (b \wedge n) \leq (a \wedge b) \vee n \leq x \vee n$ implies $m(a,n,b) \in I$ which gives a contradiction. Now for $b \in M$ $b \wedge n \leq (a \vee b) \wedge n \leq (a \wedge b) \vee n \leq b \vee n$ implies $b \in M_1$ and so $M \subseteq M_1$. Also $a \wedge n \leq (a \vee b) \wedge n \leq (a \wedge b) \vee n \leq a \vee n$ implies $a \in M_1$ but $a \notin M$. Hence $M \subset M_1$. Thus we have a contradiction to the maximality of M. Hence there exists some $b \in M$ such that $m(a,n,b) \in I$

Conversely, Suppose the given condition holds. If M is not maximal disjoint from I, then by Lemma 3, there exists a maximal convex sublattice $N \supset M$ and disjoint with I. For any $a \in N - M$, there exists $b \in M$ such that $m(a,n,b) \in I$. Now, $a,b \in N$ implies $a \wedge b, a \vee b \in N$. By Lemma 4, N is either an ideal or a filter. Hence $(a \wedge b) \vee n \in N$ or $(a \vee b) \wedge n \in N$ but not both. For otherwise, $n \in N$ would give a contradiction to $I \cap N = \varphi$. Now any of the above causes will imply $m(a,n,b) \in N$ and so $m(a,n,b) \in I \cap N$ which is again a contradiction. Therefore M must be a maximal convex sublattice disjoint with I.

Let *L* be a lattice with neutral element *n*. For $A \subseteq L$, We define $A^{\perp_n} = \{x \in L : m(x, n, a) = n \text{ for all } a \in A\}$. A^{\perp_n} is always a convex subset containing *n* but it is not necessarily an *n*-ideal.

Theorem 6. Let *L* be an *n*-distributive lattice. Then for $A \subseteq L$, $A^{\perp_n} = \{x \in L : m(x, n, a) = n \text{ for all } a \in A\}$ is a semi-prime *n*-ideal.

Proof. By [1,Theorem 6] we already know that A^{\perp_n} is an *n*-ideal. This is also equivalent to the condition $I_n(L)$ is pseudo complemented.

M. Ayub Ali, R. M. Hafizur Rahman, A. S. A. Noor and M. R. Rahman

Now let $\langle x \rangle_n \cap \langle y \rangle_n \subseteq A^{\perp_n}$ and $\langle x \rangle_n \cap \langle z \rangle_n \subseteq A^{\perp_n}$. Then for all $a \in A$. This implies $\langle x \rangle_n \cap \langle y \rangle_n \cap \langle a \rangle_n = \{n\} = \langle x \rangle_n \cap \langle z \rangle_n \cap \langle a \rangle_n$ $\langle y \rangle_n \subseteq (\langle x \rangle_n \cap \langle a \rangle_n)^*, \langle z \rangle_n \subseteq (\langle x \rangle_n \cap \langle a \rangle_n)^*$ and so $\langle y \rangle_n \vee \langle z \rangle_n \subseteq (\langle x \rangle_n \cap \langle a \rangle_n)^*$ and this implies $\langle x \rangle_n \cap \langle a \rangle_n \cap (\langle y \rangle_n \vee \langle z \rangle_n) = \{n\}$ for all $a \in L$. Hence $\langle x \rangle_n \cap (\langle y \rangle_n \vee \langle z \rangle_n) \subseteq A^{\perp_n}$ and so A^{\perp_n} is a semi prime *n*-ideal.

Let $A \subseteq L$ and J be an n-ideal of L. We define $A^{\perp^{n_{J}}} = \{x \in L : m(x, n, a) \in J \text{ for all } a \in A\}$. This is clearly a convex subset containing J. In presence of distributivity, this is an n- ideal. $A^{\perp^{n_{J}}}$ is called an n-annihilator of A relative to J. We denote $I_{J}(L)$, the set of all n-ideals containing J. Of course, $I_{J}(L)$ is a bounded lattice with J and L as the smallest and the largest elements. If $A \in I_{J}(L)$, and $A^{\perp^{n_{J}}}$ is an n- ideal, then $A^{\perp^{n_{J}}}$ is called an annihilator n- ideal and it is the pseudo complement of A in $I_{J}(L)$.

Following Theorem gives some nice characterizations semi prime n-ideals which is also a generalization of [3, Theorem 7].

Theorem 7. Let L be a lattice and J be an n-ideal of L. The following conditions are equivalent.

(i) J is semi prime.

(ii) $\{a\}^{\perp^{n_{J}}} = \{x \in L : x \land a \in J\}$ is a semi prime *n*- ideal containing J.

(iii) $A^{\perp^{n_{J}}} = \{x \in L : x \land a \in J \text{ for all } a \in A\}$ is a semi prime n-ideal containing J.

(iv) $I_J(L)$ is pseudo complemented

(v) $I_{I}(L)$ is a 0-distributive lattice.

(vi) Every maximal convex sublattice disjoint from J is prime.

Proof: (i) \Rightarrow (ii). $\{a\}^{\perp^{n_{J}}}$ is clearly a convex subset containing J. Now let $x, y \in \{a\}^{\perp^{n_{J}}}$. Then $\langle x \rangle_{n} \cap \langle a \rangle_{n} \subseteq J$ and $\langle y \rangle_{n} \cap \langle a \rangle_{n} \subseteq J$. Since J is semi prime, so $\langle a \rangle_{n} \wedge (\langle x \rangle_{n} \vee \langle y \rangle_{n}) \in J$. Now $\langle x \wedge y \rangle_{n} \cap \langle a \rangle_{n} \subseteq J \langle x \wedge y \rangle_{n} \subseteq \langle x \rangle_{n} \vee \langle y \rangle_{n} = [x \wedge y \wedge n, x \vee y \vee n]$. Also $\langle x \vee y \rangle_{n} \subseteq \langle x \rangle_{n} \vee \langle y \rangle_{n}$. Thus and $\langle x \vee y \rangle_{n} \cap \langle a \rangle_{n} \subseteq J$. Therefore $x \wedge y, x \vee y \in \{a\}^{\perp^{n_{J}}}$. This implies $\{a\}^{\perp^{n_{J}}}$ is an n- ideal containing J.

On Semiprime n-Ideals in Lattices

Now let $\langle x \rangle_n \cap \langle y \rangle_n \subseteq \{a\}^{\perp^{n_J}}$ and $\langle x \rangle_n \cap \langle z \rangle_n \subseteq \{a\}^{\perp^{n_J}}$. Then $\langle x \rangle_n \cap \langle y \rangle_n \cap \langle a \rangle_n \subseteq J$ and $\langle x \rangle_n \cap \langle z \rangle_n \cap \langle a \rangle_n \subseteq J$. Thus, $(\langle x \rangle_n \cap \langle a \rangle_n) \cap \langle y \rangle_n \subseteq J$ and $(\langle x \rangle_n \cap \langle a \rangle_n) \cap \langle z \rangle_n \subseteq J$. Then $(\langle x \rangle_n \cap \langle a \rangle_n) \cap (\langle y \rangle_n \vee \langle z \rangle_n) \subseteq J$, as J is semi prime. This implies $\langle x \rangle_n \cap \langle y \rangle_n \vee \langle z \rangle_n) \subseteq \{a\}^{\perp^{n_J}}$ and so $\{a\}^{\perp^{n_J}}$ is semi prime.

(ii) \Rightarrow (iii). This is trivial by Lemma 1, as $A^{\perp^{n_{J}}} = \bigcap(\{a\}^{\perp^{n_{J}}}; a \in A)$.

(iii) \Rightarrow (iv). Since for any $A^{\perp^{n_{J}}}$ is an *n*-ideal, it is the pseudo complement of *A* in $I_{J}(L)$, so $I_{J}(L)$ is pseudo complemented.

 $(iv) \Rightarrow (v)$. This is trivial as every pseudo complemented lattice is 0-distributive.

 $(v) \Rightarrow (vi)$. Let $I_{I}(L)$ be 0-distributive. Suppose F is a maximal convex sublattice disjoint from J. Suppose $x, y \notin F$. Then by Lemma 5, there exist $a \in F$, $b \in F$ such $m(x,n,a) \in J, m(v,n,b) \in J$. that Thus $\langle x \rangle_n \cap \langle a \rangle_n \subseteq J, \langle y \rangle_n \cap \langle b \rangle_n \subseteq J$ and so $\langle x \rangle_n \cap \langle a \rangle_n \cap \langle b \rangle_n \subseteq J, \langle y \rangle_n \cap \langle b \rangle_n \cap \langle a \rangle_n \subseteq J.$ Thus, $\langle x \rangle_n \cap \langle m(a,n,b) \rangle_n \subseteq J, \langle y \rangle_n \cap \langle m(a,n,b) \rangle_n \subseteq J$. Since $I_1(L)$ is 0-distributive, so, $\langle m(a,n,b) \rangle_n \cap (\langle x \rangle_n \lor \langle y \rangle_n) \subseteq J$. By a routine calculation, we have $[(a \lor b \lor (x \land y)) \land n, (a \land b \land (x \lor y)) \lor n] \subset J$. This implies $(a \lor b \lor (x \land y)) \land n \in J$ and $(a \land b \land (x \lor y)) \lor n \in J$. By Lemma 4, F is either an ideal or a filter. Suppose F is filter. If $x \lor y \in F$, Then $(a \land b \land (x \lor y)) \lor n \subseteq F \cap J$, which is a contradiction. Thus, $x \lor y \notin F$. Similarly by considering F as an ideal, if $x \wedge y \in F$, we have $(a \lor b \lor (x \land y)) \land n \subseteq F \cap J$, which also gives a contradiction. Thus $x \wedge y \notin F$. Therefore, F must be prime.

 $\begin{array}{ll} (\mathrm{vi}) \Longrightarrow (\mathrm{i}). \ \mathrm{Let} \ a, b, c \in L \ \text{with} \ < a >_n \cap < b >_n \subseteq J , \ < a >_n \cap < c >_n \subseteq J . \\ \mathrm{Then} \\ [(a \lor b) \land n, (a \land b) \lor n] \subseteq J \ \text{and} \ [(a \lor c) \land n, (a \land c) \lor n] \subseteq J . \\ \mathrm{Thus} \ (a \lor b) \land n, (a \land b) \lor n \in J \ \text{and} \ (a \lor c) \land n, (a \land c) \lor n \in J . \\ \mathrm{Now} \ < a >_n \cap (< b >_n \cap < c >_n) = [a \land n, a \lor n] \cap [b \land c \land n, b \lor c \lor n] \\ = [(a \lor (b \land c)) \land n, (a \land (b \lor c)) \lor n] . \quad \mathrm{If} \ < a >_n \cap (< b >_n \cap < c >_n) \Box J , \\ \mathrm{then} \ \mathrm{either} \ (a \lor (b \land c)) \land n \notin J \ \mathrm{or} \ (a \land (b \lor c)) \lor n \notin J . \\ \mathrm{Without} \ \mathrm{loss} \ \mathrm{of} \ \mathrm{generality}, \ \mathrm{suppose} \ (a \land (b \lor c)) \lor n \notin J . \\ \mathrm{Let} \ F = [(a \land (b \lor c)) \lor n) . \\ \mathrm{Then} \ \mathrm{Thus} \ \mathrm{Th$

M. Ayub Ali, R. M. Hafizur Rahman, A. S. A. Noor and M. R. Rahman

 $F \cap J = \phi$. If not, let $y \in F \cap J$. Then $y \ge (a \land (b \lor c)) \lor n$, $y \in J$. Thus $n \le (a \land (b \lor c)) \lor n \le y$ implies $(a \land (b \lor c)) \lor n \in J$, which is a contradiction. Then by Lemma 3, there exists a maximal filter $F \supseteq [a \land (b \lor c))$ and disjoint from J. But a convex sublattice containing a filter is itself a filter. By (vi), M is a prime filter. Now $a \lor n \in M$ and $b \lor c \lor n \in M$. Since M is a prime filter and $n \notin M$, so $a \in M$ and $b \circ c \in M$. Thus either $a \land b \in M$ or $a \land c \in M$. Hence $(a \land b) \lor n \in M \cap J$ or $(a \land c) \lor n \in M \cap J$ which is again a contradiction. Therefore, $\langle a \rangle_n \cap (\langle b \rangle_n \cap \langle c \rangle_n) \subseteq J$ and so J is a semi prime n-ideal.

Corollary 8: In a lattice L, every convex sublattice disjoint to a semi-prime n-ideal J is contained in a prime convex sublttice.

Proof: This immediately follows from Lemma 3 and Theorem 7.

Theorem 9: If *J* is a semi-prime *n*-ideal of a lattice *L* and $J \neq A = \bigcap \{J_{\lambda} : J_{\lambda} \text{ is an n-ideal containing } J\}$, Then $A^{\perp^{n_{J}}} = \{x \in L : \{x\}^{\perp^{n_{J}}} \neq J\}$.

Proof: Let $x \in A^{\perp^{n_{J}}}$. Then $m(x,n,a) \in J$ for all $a \in A$. So $a \in \{x\}^{\perp^{n_{J}}}$ for all $a \in A$. Then $A \subseteq \{x\}^{\perp^{n_{J}}}$ and so $\{x\}^{\perp^{n_{J}}} \neq J$. Conversely, let $x \in L$ such that $\{x\}^{\perp^{n_{J}}} \neq J$. Since J is semi-prime, so $\{x\}^{\perp^{n_{J}}}$ is an n- ideal containing J. Then $A \subseteq \{x\}^{\perp^{n_{J}}}$, and so $A^{\perp^{n_{J}}} \supseteq \{x\}^{\perp^{n_{J} \perp^{n_{J}}}}$. This implies $x \in A^{\perp^{n_{J}}}$, which completes the proof.

In [2] a series of characterizations of n-distributive lattices are provided. Here we give some results on semi prime n-ideals related to their results.

We conclude the paper with the following characterizations of semi-prime n- ideals with the help of annihilator n-ideals. This is also a generalization of Prime Separation Theorem for n-ideals.

Theorem 10: Let J be an n-ideal in a lattice L. J is semi- prime if and only if for all convex sublattice F disjoint to $\{x\}^{\perp^{n_{J}}}$, there is a prime convex sublattice containing F disjoint to $\{x\}^{\perp^{n_{J}}}$.

Proof: Using Zorn's Lemma we can easily find a maximal convex sublattice Q containing F and disjoint to $\{x\}^{\perp^{n_j}}$. Then either Q is an ideal or a filter. Without loss of generality, suppose Q is a filter. We claim that $x \in Q$. If not, then $Q \lor [x) \supset Q$. By maximality of Q, $(Q \lor [x)) \cap \{x\}^{\perp^{n_j}} \neq \varphi$. If $(Q \lor [x)) \cap \{x\}^{\perp^{n_j}} \neq \varphi$ then $t \ge q \land x$ for some $q \in Q$ and $m(t, n, x) \in J$. Thus $m(t, n, x) \lor n = (t \land x) \lor n \in J$ as $n \in J$. Then $n \le (q \land x) \lor n \le (t \land x) \lor n$

On Semiprime n-Ideals in Lattices

implies $(q \wedge x) \lor n \in J \Rightarrow m(q \lor n, n, x) \in J$. Thus $q \lor n \in \{x\}^{\perp^{n_{j}}}$. Therefore, $x \in Q$ gives a contradiction to the fact that $Q \cap \{x\}^{\perp^{n_{j}}} = \varphi$.

Now let $z \notin Q$. Then $(Q \lor [z)) \cap \{x\}^{\perp^{n_{J}}} \neq \varphi$. Suppose $y \in (Q \lor [z)) \cap \{x\}^{\perp^{n_{J}}}$ then $y \ge q_1 \land z$ for $q_1 \in Q$ and $m(y, n, x) \in J$. Then $(y \land x) \lor n \in J$ and so $(q_1 \land z \land x) \lor n \le (y \land x) \lor n$ implies $(q_1 \land z \land x) \lor n \in J$. This implies $m(z, n, (q_1 \land z \land x) \lor n) \in J$. Thus by Lemma 5, Q is a maximal filter disjoint to J. Hence by Theorem 7, Q is prime.

Conversely, let $\langle x \rangle_n \cap \langle y \rangle_n \in J$, $\langle x \rangle_n \cap \langle z \rangle_n \in J$. Suppose $\langle x \rangle_n \cap (\langle y \rangle_n \cap \langle z \rangle_n) \Box J$. Then $[(y \rangle \langle (y \rangle_n \cap \langle z \rangle_n) \cup \langle y \rangle_n \cap \langle z \rangle_n)] \Box J$.

Then $[(x \lor (y \land z)) \land n, (x \land (y \lor z)) \lor n] \Box J$ This implies either $(x \lor (y \land z)) \land n \notin J$ or $(x \land (y \lor z)) \lor n \notin J$. Suppose $(x \land (y \lor z)) \lor n \notin J$. Then $[y \lor z \lor n) \cap \{x\}^{\perp^{n_{J}}} = \varphi$. For otherwise $t \in [y \lor z \lor n) \cap \{x\}^{\perp^{n_{J}}}$ implies $t \ge y \lor z \lor n$ and $m(t, n, x) \in J$. Then $m(t, n, x) \lor n = (t \land x) \lor n \in J$. Then $n \le (x \land (y \lor z)) \lor n \le (t \land x) \lor n$ implies $(x \land (y \lor z)) \lor n \in J$ gives a contradiction. Similarly $(x \lor (y \land z)) \land n \notin J$ would imply another contradiction. Therefore, $< x >_n \cap (< y >_n \cap < z >_n) \subseteq J$ and so J is semi-prime.

REFERENCES

- 1. M. Ayub Ali, A. S. A. Noor and Sompa Rani Podder, *n-distributive lattice*, to appear in *Journal of Physical Sciences*, 16 (2012).
- P. Balasubramani and P. V. Venkatanarasimhan, Characterizations of the 0-Distributive Lattices, Indian J. Pure Appl. Math., 32(3) (2001) 315-324.
- 3. R. M. Hafizur Rahaman, M. Ayub Ali And A. S. A. nor, On Semiprime Ideals of lattice, to appear in *Institute of Mechanics of Continua and Mathematical Sciences*.
- 4. R. M. Hafizur Rahman, *A Study on Convex Sublattices of a lattice*. Ph. D Thesis, Rajhsahi University, 2002.
- 5. M. A. Latif and A. S. A. Noor, A generalization of Stone's representation theorem, *The Rajshahi University Studies (Part B)* 31(2003) 83-87.
- A. S. A. Noor and M. A. Latif, Finitely generated n-ideals of a lattice, SEA Bull. Math., 22 (1998) 72-79.
- Y. S. Powar and N. K. Thakare, 0-Distributive semilattices, *Canad. Math. Bull.* 21(4) (1978) 469-475.
- 8. Y. Rav, Semi prime ideals in general lattices, *Journal of Pure and Applied Algebra*, 56 (1989) 105-118.
- 9. J. C. Varlet, A generalization of the notion of pseudo-complementedness, *Bull. Soc. Sci. Liege*, 37(1968) 149-158.