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Abstract. Yehuda Rav has given the concept of Semi-prime ideals in a general 
lattice by generalizing the notion of  0-distributive lattices. In this paper we 
introduce the concept of semi prime n -ideals in lattices when n  is a neutral 
element. For a fixed element n  in a lattice L , any convex sublattice containing n  is 
called an n -ideal. Here we give several characterizations of semi prime n -ideals of 
lattices. We include a Prime Separation Theorem in a general lattice with respect to 
annihilator n -ideal containing a semi prime n -ideal.   
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1. Introduction 
In generalizing the notion of pseudo complemented lattice, J. C. Varlet [9] 
introduced the notion of 0-distributive lattices. Then [2] have given several 
characterizations of these lattices. On the other hand, [7] have studied them in meet 
semi lattices. A lattice L  with 0 is called a 0-distributive lattice if for all Lcba ∈,,  
with caba ∧==∧ 0  imply 0)( =∨∧ cba . Let L be a lattice and Ln∈ . Any 
convex sublattice of L  containing n is called an n -ideal of L . An element Ln∈  
is called a standard element if for ( ) ( ) ( )nabanbaLba ∧∨∧=∨∧∈ ,, , while n  
is called a neutral element if  
              (i) it is standard and 

 (ii) ( ) ( ) ( )bnanban ∧∨∧=∨∧  for all Lba ∈, . 
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 Set of all n -ideals of a lattice L  is denoted by ( )LI n  which is an algebraic lattice; 

where { }n and L are the smallest and largest elements. For two n -ideals I  and J , 
JI ∩  is the infimu q hm and 

{ }JjjandIiisomeforjixjiLxJI ∈∈∨≤≤∧∈=∨ 21212211 ,,,/ . The 
n -ideal generated by a finite numbers of elements maaa ,...,, 21  is called a finitely 

generated n -ideal denoted by nmaaa >< ,...,, 21 . Moreover, =>< nmaaa ,...,, 21  
{ }naaaxnaaaLx mm ∨∨∨∨≤≤∧∧∧∧∈ ....../ 2121  
[ ]naaanaaa mm ∨∨∨∨∧∧∧∧= ....,.... 2121  

Thus, every finitely generated n -ideal is an interval containing n . An n -
ideal generated by a single element La∈  is called a principal n -ideal denoted by 

na ><  and [ ]nanaa n ∨∧=>< , . Moreover [ ] [ ] [ ]dbcadcba ∧∨=∩ ,,,  and 

[ ] [ ] [ ]dbcadcba ∨∧=∨ ,,, . If n  is a neutral element, then by [6], 

nnn bnamba >=<><∩>< ),,( , where ( ) ( ) ( ) ( )zyzxyxzyxm ∧∨∧∨∧=,, . 
For detailed literature on n -ideals we refer the reader to consult [5, 6]. 

A proper convex  sublattice M  of a lattice L  is called a maximal convex 
sublattice if for any convex sublattice Q  with MQ ⊇ implies either MQ = or 

LQ = . A proper convex sublattice M  is called a prime convex sublattice if for any 
Mt ∈ , ( ) Mbtam ∈,, implies either Ma∈ or Mb∈ . Similarly, an n -ideal P  

of L  is called a prime n -ideal if  ( ) Pbnam ∈,,  implies either Pa∈  or Pb∈ . 
Equivalently, P  is prime if and only if Pba nn ⊆><∩>< implies either 

Pa n⊆>< or Pb n⊆>< . Moreover, by [9], we know that every prime convex 
sublattice P  of L  is either  an n - ideal or a filter.  

By [1] L  is called an n -distributive lattice if for all,  
}{nba nn =><∩>< and }{nca nn =><∩>< imply

}{][ ncba nnn =><∨><∩>< . Equivalently, L  is called n -distributive if 
banba ∨≤≤∧  and canca ∨≤≤∧  imply )()( cbancba ∧∨≤≤∨∧ . 

Y. Rav [8] an ideal I  of a lattice  is called a semi prime ideal if for all 
Lzyx ∈,, , Iyx ∈∧   and  Izx ∈∧ imply Izyx ∈∨∧ )( . Thus, a lattice L  

with 0, is called   0-distributive if and only if (0]  is a semi prime ideal. Let n  be a 
neutral element of a lattice L . An n -ideal J of L  is called a semi prime n -ideal if 
for all Lcba ∈,, , Jba nn ⊆><∩><  and Jca nn ⊆><∩><  
imply Jcba nnn ⊆><∨><∩>< )( . In a distributive lattice every n -ideal is 
semi prime. Moreover, every prime n -ideal is semi prime. Lattice itself with an 
element n  is of course a semi prime n -ideal. It is easy to see that a lattice with the 
element n  is n -distributive if { n } is a semi prime n -ideal.  In the pentagonal 
lattice }0,,;,,,,0{ =∧=∧=∨=∨< cbcancbcabancba , n  is neutral. Here 
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{ n } and Ln =>< 0  are semi prime but not prime. Moreover, na >< , nc ><  are 
prime but nb ><  is not even semi prime. Again in 

==∧=∧=∧= 0;,,,,0{3 accbbancbaM  }naccbba =∨=∨=∨ , 
Ln =>< 0  is semi prime. But {n}, na >< , nb >< , nc ><  are not semi prime. 

Throughout the paper we will consider n  as a neutral element. 
 
Lemma 1. Intersection of any class of  prime (semi prime) n- ideals of a lattice is a 
semi-prime n- ideal.    
Proof: Suppose }:{ TkPk ∈  is a class of prime (semi prime) n -ideals of L . Let 

Lcba ∈,,  and }:{ TkPI k ∈= I . Clearly I  is an n -ideal. Let  
Iba nn ⊆><∩><  and Ica nn ⊆><∩>< . Then knn Pba ⊆><∩><   and 

knn Pca ⊆><∩><  for all kP . Since each kP  is prime (semi prime), so 

knnn Pcba ⊆><∨><∩>< )(  for all k .  
Hence Icba nnn ⊆><∨><∩>< )( , and so I  is semi-prime.  
   
Corollary 2. Intersection of two prime (semi prime) ideals is a  semi-prime n- ideal. 

 
 
Lemma 3.  Every convex sublattice disjoint from an n-ideal I  is contained in a 
maximal convex sub lattice disjoint from I . 
Proof: Let F  be a convex sub lattice  in L  disjoint  from I . Let F  be the set of all 
convex sub lattices containing F  and disjoint  from I . Then F is nonempty as 
∈F F . Let C  be a chain in F  and let ):( CXXM ∈= U . We claim that M  is a 

convex sub lattice. Let Myx ∈, . Then Xx∈  and Yy∈  for some CYX ∈, . 
Since C  is a chain, either YX ⊆ or XY ⊆ . Suppose YX ⊆ . So ., Yyx ∈  Then 

Yyxyx ∈∨∧ ,  and so Myxyx ∈∨∧ , . Thus M  is a sublattice. Now let 
ytx ≤≤  with Myx ∈, . Then Xyx ∈, for some CX ∈ . Thus, by convexity of 

X, Xt ∈ and so Mt ∈ . Therefore M  is convex.  Moreover, FM ⊇ . So M  is a 
maximum element of C . Then by Zorn’s Lemma, F  has a maximal element, say 

FQ ⊇ .      
 
Lemma 4. Every maximal convex sublattice disjoint to an n -ideal J  is either a 
maximal ideal or a maximal filter. 
Proof. Let F  be a maximal convex sublattice disjoint to J . Since )[]( FFF ∩= , 
so either ϕ=∩ JF ](  or ϕ=∩ JF )[ . If  not, let JFx ∩∈ ](  and JFy ∩∈ )[ . 
Then Jx∈ and 1fx ≤  for some Ff ∈1 and Jy∈  and 2fy ≥  for some Ff ∈2 . 
Now, 2122 fffxf ∨≤∨≤  implies by convexity that Ffx ∈∨ 2 . Also 

yxfxx ∨≤∨≤ 2  implies by convexity that Jfx ∈∨ 2 . It follows that 
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JFfx ∩∈∨ 2 , which is a contradiction. Therefore either ϕ=∩ JF ](  or 
ϕ=∩ JF )[ . Since F  is maximal so, either F =( F ] or F =[ F ). In other words, 

F  must be either an ideal or a filter.    
 
Lemma  5. Let I  be an n- ideal of a lattice L . A convex sublattice M  disjoint 
from I  is a maximal convex sublattice disjoint from I  if and only if for all Ma∉ , 
there exists Mb∈  such that Ibnam ∈),,( . 
Proof. Let M  be maximal and disjoint from I  and Ma∉ . Let Ibnam ∉),,(  for 
all Mb∈ .Consider  

1M ={ };)()(: MbnynbanbanyLy ∈∨≤∨∧≤∧∨≤∧∈ . It is easy to 
cheek that 1M  is a convex sublattice as n  is neutral. Also ϕ=∩ IM 1 . If not, let 

IMx ∩∈ 1 . Then nxnbanbanx ∨≤∨∧≤∧∨≤∧ )()(  for some Mb∈  
and Ix∈ . 
 Thus, nxnbanbnabanbanx ∨≤∨∧≤∧∨∧∨∧≤∧∨≤∧ )()()()()(  
implies Ibnam ∈),,( which gives a contradiction. Now for Mb∈  

nbnbanbanb ∨≤∨∧≤∧∨≤∧ )()(  implies 1Mb∈  and so 1MM ⊆ . Also 
nanbanbana ∨≤∨∧≤∧∨≤∧ )()(  implies 1Ma∈  but Ma∉ . Hence 

1MM ⊂ . Thus we have a contradiction to the maximality of M . Hence there 
exists some Mb∈  such that Ibnam ∈),,(  
               Conversely, Suppose the given condition holds. If M  is not maximal 
disjoint from I , then by Lemma 3, there exists a maximal convex sublattice 

MN ⊃  and disjoint with I . For any MNa −∈ , there exists Mb∈  such that 
Ibnam ∈),,( . Now, Nba ∈,  implies Nbaba ∈∨∧ , . By Lemma 4, N  is 

either an ideal or a filter. Hence Nnba ∈∨∧ )(  or    Nnba ∈∧∨ )(  but not 
both. For otherwise, Nn∈  would give a contradiction to       ϕ=∩ NI . Now any 
of the above causes will imply Nbnam ∈),,( and so NIbnam ∩∈),,(   which is 
again a contradiction. Therefore M  must be a maximal convex sublattice disjoint 
with I .     
  
            Let L  be a lattice with neutral element n . For LA ⊆ , We define 

{ AaallfornanxmLxA n ∈=∈=⊥ ),,(: }. nA⊥  is always a convex subset 
containing n   but it is not necessarily an n - ideal. 
 
Theorem 6.  Let  L  be an n-distributive lattice. Then for LA ⊆ , 

{ AaallfornanxmLxA n ∈=∈=⊥ ),,(: } is a semi-prime n- ideal. 
Proof. By [1,Theorem 6] we already know that nA⊥  is an n -ideal. This is also 
equivalent to the condition )(LI n  is pseudo complemented. 
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Now let nAyx nn
⊥⊆><∩><  and nAzx nn

⊥⊆><∩>< . Then  for all 
Aa∈ . 

This implies nnnnnn azxnayx ><∩><∩>=<=><∩><∩>< }{   
*)()*,( nnnnnn axzaxy ><∩><⊆><><∩><⊆><  and so 

*)( nnnn axzy ><∩><⊆><∨><  and this implies 
}{)( nzyax nnnn =><∨><∩><∩><  for all La∈ . Hence 

nAzyx nnn
⊥⊆><∨><∩>< )(  and so nA⊥  is a semi prime n -ideal.    

 
Let LA ⊆  and J  be an  n -ideal of L . We define 

}),,(:{ AaallforJanxmLxA J
n

∈∈∈=⊥ . This is clearly a convex subset 

containing J . In presence of distributivity, this is an n - ideal. J
n

A⊥  is called an n - 
annihilator of A  relative to J . We denote )(LI J , the set of all n -ideals containing 
J . Of course, )(LI J  is a bounded lattice with J  and L  as the smallest and the 

largest elements. If )(LIA J∈ , and J
n

A⊥  is an n - ideal, then J
n

A⊥  is called an 
annihilator n - ideal and it is the pseudo complement of  A  in )(LI J .  
          Following Theorem gives some nice characterizations semi prime n -ideals 
which is also a generalization of  [3, Theorem 7].  
 
Theorem 7. Let L  be a lattice  and J   be an n-ideal of L . The following 
conditions are equivalent. 
(i) J  is semi prime. 
(ii) }:{}{ JaxLxa J

n

∈∧∈=⊥  is a semi prime n- ideal containing J . 

(iii) J
n

A⊥ }:{ AaallforJaxLx ∈∈∧∈=  is a semi prime n-ideal containing  
J . 
(iv) )(LI J  is pseudo complemented  
(v) )(LI J  is a 0 –distributive lattice. 
(vi)  Every maximal convex sublattice disjoint from J  is prime.  

Proof: (i)⇒ (ii). J
n

a ⊥}{  is clearly a convex subset containing J . Now let 
J

n

ayx ⊥∈ }{, .  Then Jax nn ⊆><∩><  and Jay nn ⊆><∩>< . Since J  is 
semi prime, so Jyxa nnn ∈><∨><∧>< )( . Now  

Jayx nn ⊆><∩>∧< ],[ nyxnyxyxyx nnn ∨∨∧∧=><∨>⊆<>∧< . 
Also nnn yxyx ><∨>⊆<>∨< .  Thus   and Jayx nn ⊆><∩>∨< .  

Therefore J
n

ayxyx ⊥∈∨∧ }{, . This implies J
n

a ⊥}{  is an n - ideal containing J . 
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Now let { } J
n

ayx nn
⊥⊆><∩><  and { } J

n

azx nn
⊥⊆><∩>< . Then 

Jayx nnn ⊆><∩><∩><  and Jazx nnn ⊆><∩><∩>< .  Thus, 
Jyax nnn ⊆><∩><∩>< )(  and Jzax nnn ⊆><∩><∩>< )( . Then 

Jzyax nnnn ⊆><∨><∩><∩>< )()( ,  as J  is semi prime . This implies 

{ } J
n

azyx nnn
⊥⊆><∨><∩>< )(   and so J

n

a ⊥}{  is semi prime.  
 
(ii)⇒ (iii). This is trivial by Lemma 1, as );}({ AaaA J

n
J

n

∈= ⊥⊥ I .   

(iii)⇒ (iv). Since for any J
n

A⊥  is an n - ideal, it is the pseudo complement of A  in 
)(LI J , so )(LI J  is pseudo complemented.  

 
(iv)⇒ (v).  This is trivial as every pseudo complemented lattice is 0-distributive. 
 
(v)⇒ (vi).  Let )(LI J be 0-distributive. Suppose F  is a maximal convex 
sublattice  disjoint from J . Suppose Fyx ∉, . Then by Lemma 5, there exist 

Fa∈ , Fb∈ such that JbnymJanxm ∈∈ ),,(,),,( . Thus 
Jax nn ⊆><∩>< , Jby nn ⊆><∩><  and so 

Jbax nnn ⊆><∩><∩>< , Jaby nnn ⊆><∩><∩>< . Thus, 
Jbnamx nn ⊆><∩>< ),,( , Jbnamy nn ⊆><∩>< ),,( . Since  )(LI J  is 

0-distributive, so, Jyxbnam nnn ⊆><∨><∩>< )(),,( . By a routine 
calculation, we have Jnyxbanyxba ⊆∨∨∧∧∧∧∨∨ ]))((,))([( . This 
implies Jnyxba ∈∧∧∨∨ ))((  and Jnyxba ∈∨∨∧∧ ))(( . By Lemma 4, 
F  is either an ideal or a filter. Suppose F  is filter. If Fyx ∈∨ , Then 

JFnyxba ∩⊆∨∨∧∧ ))(( , which is a contradiction. Thus, Fyx ∉∨ . 
Similarly by considering F  as an ideal, if Fyx ∈∧ , we 
have JFnyxba ∩⊆∧∧∨∨ ))(( , which also gives a contradiction. 
Thus Fyx ∉∧ . Therefore, F  must be prime. 
  
 (vi)⇒ (i). Let Lcba ∈,,  with Jba nn ⊆><∩>< , Jca nn ⊆><∩>< . 
Then  

Jnbanba ⊆∨∧∧∨ ])(,)[(  and Jncanca ⊆∨∧∧∨ ])(,)[( . Thus 
Jnbanba ∈∨∧∧∨ )(,)(  and Jncanca ∈∨∧∧∨ )(,)( . Now 

=><∩><∩>< )( nnn cba ],[],[ ncbncbnana ∨∨∧∧∩∨∧
]))((,))([( ncbancba ∨∨∧∧∧∨= . If )( nnn cba ><∩><∩>< � J , 

then either Jncba ∉∧∧∨ ))((  or Jncba ∉∨∨∧ ))(( . Without loss of 
generality, suppose Jncba ∉∨∨∧ ))(( . Let )))([( ncbaF ∨∨∧= . Then 
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φ=∩ JF . If not, let JFy ∩∈ . Then ncbay ∨∨∧≥ ))(( , Jy∈ . Thus 
yncban ≤∨∨∧≤ ))((  implies Jncba ∈∨∨∧ ))(( , which is a 

contradiction. Then by Lemma 3, there exists a maximal filter ))([ cbaF ∨∧⊇  
and disjoint from J . But a convex sublattice containing a filter is itself a filter. By 
(vi), M  is a prime filter. Now  Mna ∈∨ and Mncb ∈∨∨ . Since M  is a 
prime filter and Mn∉ , so Ma∈  and Mcorb ∈ . Thus either Mba ∈∧  or 

Mca ∈∧ . Hence JMnba ∩∈∨∧ )(  or JMnca ∩∈∨∧ )(  which is 
again a contradiction. Therefore, Jcba nnn ⊆><∩><∩>< )(  and so J  is a 
semi prime n -ideal.      
 
Corollary 8: In a lattice L , every convex sublattice disjoint to a semi-prime n- ideal 
J  is contained in a  prime convex sublttice. 
Proof: This immediately follows from Lemma 3 and Theorem 7.     
 
Theorem 9: If J  is a semi-prime n -ideal of a lattice L  and λλ JJAJ :{I=≠  is 

an n-ideal containing }J , Then JxLxA J
n

J
n

≠∈= ⊥⊥ }{:{ } . 

Proof: Let  J
n

Ax ⊥∈ . Then Janxm ∈),,(  for all Aa∈ . So J
n

xa ⊥∈ }{  for all 

Aa∈ . Then J
n

xA ⊥⊆ }{   and so Jx J
n

≠⊥}{ . Conversely, let Lx∈  such that 

Jx J
n

≠⊥}{ . Since J  is semi-prime, so J
n

x ⊥}{  is an n - ideal containing J .  Then 
J

n

xA ⊥⊆ }{ , and so J
n

J
n

J
n

xA ⊥⊥⊥ ⊇ }{ . This implies J
n

Ax ⊥∈ , which completes the 
proof.   

In [2] a series of characterizations of n -distributive lattices are provided. 
Here we give some results on semi prime n -ideals related to their results. 

We conclude the paper with the following characterizations of semi-prime 
n - ideals with the help of annihilator n -ideals. This is also a generalization of 
Prime Separation Theorem for n -ideals.  
 
Theorem 10: Let J  be an n-ideal in a lattice L . J  is semi- prime if and only if for 
all convex sublattice F  disjoint to J

n

x ⊥}{ , there is a prime convex sublattice 

containing F disjoint to J
n

x ⊥}{ . 
Proof: Using Zorn’s Lemma we can easily find a maximal convex sublattice Q  

containing F  and disjoint to J
n

x ⊥}{ . Then either Q  is an ideal or a filter. Without 
loss of generality, suppose Q  is a filter. We claim that Qx∈ . If not, then 

QxQ ⊃∨ )[ . By maximality of Q , ϕ≠∩∨ ⊥ j
n

xxQ }{))[( . If  

ϕ≠∩∨ ⊥ j
n

xxQ }{))[( then xqt ∧≥  for some Qq∈  and Jxntm ∈),,( . Thus 
Jnxtnxntm ∈∨∧=∨ )(),,( as Jn∈ . Then nxtnxqn ∨∧≤∨∧≤ )()(  
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implies JxnnqmJnxq ∈∨⇒∈∨∧ ),,()( . Thus J
n

xnq ⊥∈∨ }{ .  Therefore, 

Qx∈  gives a contradiction to the fact that ϕ=∩ ⊥ j
n

xQ }{ . 

             Now let Qz∉ . Then ϕ≠∩∨ ⊥ J
n

xzQ }{))[( . Suppose 
J

n

xzQy ⊥∩∨∈ }{))[(  then zqy ∧≥ 1  for Qq ∈1  and Jxnym ∈),,( . Then 
Jnxy ∈∨∧ )(  and so nxynxzq ∨∧≤∨∧∧ )()( 1  implies 

Jnxzq ∈∨∧∧ )( 1 . This implies Jnxzqnzm ∈∨∧∧ ))(,,( 1 . Thus by 
Lemma 5, Q  is a maximal filter disjoint to J . Hence by Theorem 7, Q  is prime. 
           Conversely, let Jyx nn ∈><∩>< , Jzx nn ∈><∩>< . Suppose 

)( nnn zyx ><∩><∩>< � J .  
Then ]))((,))([( nzyxnzyx ∨∨∧∧∧∨ � J  This implies either 

Jnzyx ∉∧∧∨ ))((  or Jnzyx ∉∨∨∧ ))(( . Suppose     

Jnzyx ∉∨∨∧ ))(( .  Then ϕ=∩∨∨ ⊥ J
n

xnzy }{)[ . For otherwise 
J

n

xnzyt ⊥∩∨∨∈ }{)[  implies nzyt ∨∨≥  and Jxntm ∈),,( . Then 
Jnxtnxntm ∈∨∧=∨ )(),,( . Then nxtnzyxn ∨∧≤∨∨∧≤ )())((  

implies Jnzyx ∈∨∨∧ ))((  gives a contradiction. Similarly 
Jnzyx ∉∧∧∨ ))((  would imply another contradiction. Therefore, 

Jzyx nnn ⊆><∩><∩>< )(  and so J  is semi prime.     
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