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1. Introduction 
     Computational thinking (CT) is a new problem solving method named for its 
extensive use of computer science techniques. It synthesizes critical thinking and 
existing knowledge and applies them to solve complex real world technological 
problems. Actually, the relationship between CT and critical thinking, the two 
modes of thinking in solving problems, has not been yet clearly established. In a 
recent paper [13] we have attempted to shed some light into this relationship. 
     According to Liu and Wang [6] CT is a hybrid of the following modes of 
thinking:  
     Abstract thinking, which is essential in computer science and technology in 
order to understand the main body of a computer problem. Informally, this kind 
of thinking can be thought as the mapping from a ground representation to a new 
but simpler representation.  
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     Logical thinking, the process in which one uses reasoning consistency to come 
to a conclusion.  Some computer problems or computer states (situations) 
involving logical thinking always call for mathematics structure, for relationships 
between some hypotheses and given statements, and for a sequence of reasoning 
that makes the conclusion more reasonable.   
     Modelling thinking,  which refers to the translation of objects or phenomena 
from the real world into mathematical equations (mathematical models) or 
computer relations (simulation models).  It is choosing an appropriate 
representation for modelling the relevant aspects of a problem to make it 
tractable.   
     Constructive thinking,  a well-defined computational procedure that takes 
some value, or set of values as input and produces some value, or set of values as 
output.   
     One could claim that modelling thinking constitutes the essence of CT, since it 
synthesises all the other components of CT (abstract, logical and constructive 
thinking) for the solution of the corresponding problem. In fact, it is well known 
(e.g. [8]; paragraph 1.4) that the main stages of the modelling process involve:   

• Analysis of the given problem, i.e. understanding of its statement and 
recognizing limitations, restrictions and requirements of the real system 
(critical thinking).  

• Construction of the model (abstract thinking).  
• Solution of the model, achieved by proper logical manipulation (logical 

thinking).  
• Validation (control) of the model, usually achieved by reproducing 

through it the behaviour of the real system under the conditions existing 
before the solution of the model (empirical results, special cases etc).    

• Implementation of the final results to the real system, i.e. ‘translation’ of 
the solution obtained in terms of the model to the ‘language’ of the real 
situation in order to reach the required practical conclusions  needed for 
the solution of the given real problem (constructive thinking).  

     The most important type of model in use is the symbolic or mathematical 
model. In formulating this type one assumes that all relevant variables are 
quantifiable. These variables are then related by the appropriate mathematical 
relations (functions, equations, inequalities, etc) to describe the behaviour of the 
system and the solution of the model is achieved by proper mathematical 
manipulation.  In this case the stage of the construction of the model is usually 
called mathematization and presupposes the formulation of the real situation in 
so that it is ready for mathematical treatment (for more details see [3] and its 
references). 
     This paper aims at using principles of fuzzy logic to develop a mathematical 
model representing the CT process and at obtaining a fuzzy measure of students’ 
CT skills. The text is organized as follows: In sections 2 and 3 we develop our 
fuzzy model and in section 4 we present two classroom experiments performed 
recently at the Graduate Technological Educational Institute (TEI) of Patras, 
Greece illustrating the use of our results in practice. Finally, section 5 is devoted 
to discussion and conclusions about our study. 
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2. The fuzzy model 
     The stages of the modelling process presented above are helpful in 
understanding the modellers’ ‘ideal behaviour’, in which they proceed from real 
world problems through a model to acceptable solutions and report on them. 
However, things in real situations are usually not happening like that. For 
example, recent research, ([1], [2], etc), reports that students in school take 
individual modelling routes when tackling mathematical modelling problems, 
associated with their individual learning styles. The human cognition utilizes in 
general concepts that are inherently graded and therefore fuzzy. On the other 
hand, from the teacher’s point of view there usually exists vagueness about the 
degree of students’ success in each of the stages of the modelling process. All 
these gave us the impulsion to introduce principles of fuzzy sets theory in order 
to describe in a more effective way the process of modelling in particular and of 
CT in general. For general facts on fuzzy sets we refer freely to the book [4]. 
     For the development of our fuzzy model we consider a group of n modellers, 
n≥2, working (each one individually) on the same modelling problem. In order 
to make our model technically simpler, we can, without loss of the generality, 
reduce the stages of the modelling process to the following three: 

• S1 :  Analysis/Construction of the model. 
• S2 : Solution of the model. 
• S3 : Validation of the model/Implementation to the real system. 

     In fact, the analysis of the given problem is an introductory stage of the 
modelling process that can be naturally seen as being a sub step of the 
construction of the model. Further, the stage of implementation of the final 
results to the real system is an expected action following the validation of the 
model, which means that the joined stage of Validation/Implementation can be 
actually considered as the final stage of the modelling process. 
     Denote by a, b, c, d, and e the linguistic labels of very low, low, intermediate, 
high and very high success respectively of a system’s entity in each of the Si’s.  
Set  

U = {a, b, c, d, e}     

     We are going to attach to each stage Si of the modelling process, i=1,2,3 , a 
fuzzy subset, Ai of U. For this, if nia, nib, nic, nid and nie denote the number of 
modellers that faced very low, low, intermediate,  high and very high success at 
stage Si respectively, i=1,2,3, we define the membership function mAi  for each x 
in U, as follows: 
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     In fact, if one wanted to apply ‘probabilistic’ standards in measuring the 
degree of success of the modellers at each stage of the process, then he/she 

should use the relative frequencies ixn
n

. Nevertheless, such an action would be 

highly questionable, since the nix‘s are obtained with respect to the linguist labels 
of U, which are fuzzy expressions by themselves. Therefore the application of a 
fuzzy approach by using membership degrees instead of probabilities seems to 
be more suitable for this case. But, as it is well known, the membership function 
needed for such purposes is usually defined empirically in terms of logical 
or/and statistical data. In our case the above definition of 

iAm seems to be 
compatible with the common logic.    
     Then the fuzzy subset Ai  of U corresponding to Si   has the form: 

Ai = {(x, mAi(x)):  x∈U}, i=1, 2, 3. 

      In order to represent all possible profiles (overall states) of the system’s 
entities during the corresponding process we consider a fuzzy relation, say R, in 
U3 of the form: 

R= {(s, mR(s)): s=(x, y, z) ∈U3}. 

      For determining properly the membership function mR we give the following 
definition:  
A profile  s=(x, y, z), with x, y, z in U, is said to be well ordered if x corresponds 
to a degree of success equal or greater than y and y corresponds to a degree of 
success equal or greater than z.  
For example, (c, c, a) is a well ordered profile, while (b, a, c) is not.  
     We define now the membership degree of a profile s to be 

mR(s) = m
1A (x)m

2A (y)m
3A (z)   

if s is well ordered, and 0 otherwise.  
     In fact, if for example the profile (b, a, c) possessed a nonzero membership 
degree, how it could be possible for a modeller, who has failed in solving the 
model, to perform satisfactorily at the validation of it?  
     Next, for reasons of brevity, we shall write ms instead of mR(s). Then the 
probability ps of the profile s is defined in a way analogous to crisp data, i.e. by 
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     We define also the possibility rs of s to be 
rs=

}max{ s

s

m
m   , 

where max{ms} denotes the maximal value of ms , for all s in U3. In other words 
the possibility of s expresses the “relative membership degree” of s with respect 
to max{ms}. 
     Assume further that one wants to study the combined results of behaviour of k 
different groups of a system’s entities, k≥2, during the same process. For this, 
we introduce the fuzzy variables A1(t), A2(t) and A3(t) with t=1, 2,…, k. The 
values of these variables represent fuzzy subsets of U corresponding to the stages 
of the modelling process for each of the k groups; e.g. A1(2) represents the fuzzy 
subset of U corresponding to the stage of Analysis/construction of the model for 
the second group (t=2). It becomes evident that, in order to measure the degree 
of evidence of the combined results of the k groups, it is necessary to define the 
probability p(s) and the possibility r(s) of each profile s with respect to the 
membership degrees of s for all groups. Therefore we introduce the pseudo-
frequencies  

f(s) =∑
=

k

t
s tm

1

)(  

and we define the probability and possibility of a profile s  by p(s) = 
3

( )
( )

s U

f s
f s

∈
∑

   

and r(s) =
)}(max{

)(
sf

sf   respectively, where max{f(s)} denotes the maximal  

pseudo-frequency.  
     Obviously the same method could be applied when one wants to study the 
combined results of behaviour of a group during k different modelling situations.  
     The above model gives, through the calculation of probabilities and 
possibilities of all modellers’ possible profiles, a quantitative view of their 
realistic performance in all stages of the modelling process. 
  
3. Measuring model building and CT capacities 
     There are natural and human-designed real systems. In contrast to the former, 
which may not have an apparent objective, the latter are made with purposes that 
are achieved by the delivery of outputs. Their parts must be related, i.e. they 
must be designed to work as a coherent entity. The most important part of a 
human-designed system’s study is probably the assessment, through the model 
representing it, of its performance. In fact, this could help the system’s designer 
to make all the necessary modifications/improvements to the system’s structure 
in order to increase its effectiveness. 
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     The amount of information obtained by an action can be measured by the 
reduction of uncertainty resulting from this action.  Accordingly a system’s 
uncertainty is connected to its capacity in obtaining relevant information. 
Therefore a measure of uncertainty could be adopted as a measure of a system’s 
effectiveness in solving related problems. Based on this fact, we have used 
uncertainty measures in assessing the effectiveness of several systems in 
Education, Artificial Intelligence and Management [11].      
    In this paper and in terms of the fuzzy model developed above we shall 
introduce another approach for measuring model building capacities (and hence 
CT capacities as well), known as the ‘centroid method’. According to this 
method the centre of mass of the graph of the membership function involved 
provides an alternative measure of the system’s performance. The 
application of the ‘centroid method’ in practice is simple and evident and, in 
contrast to the measures of uncertainty, needs no complicated calculations in its 
final step. 
     For this, given a fuzzy subset A = {(x, m(x)): x∈U} of the universal set U of 
the discourse with membership function m: U →[0, 1], we correspond to each 
x∈U an interval of values from a prefixed numerical distribution, which actually 
means that we replace U with a set of real intervals. Then, we construct the graph 
F of the membership function y=m(x).There is a commonly used in fuzzy logic 
approach to measure performance with the pair of numbers (xc, yc) as the 
coordinates of the centre of mass, say Fc, of the graph F, which we can calculate 
using the following well-known [9] formulas:  

,F F
c c

F F

xdxdy ydxdy
x y

dxdy dxdy
= =
∫∫ ∫∫

∫∫ ∫∫
(1) 

     Concerning the modelling process, when a student obtains a mark, say y, we 
characterize his/her performance as very low (a) if y ∈  [0, 1) , as low (b) if y ∈  
[1, 2), as intermediate (c) if y∈  [2, 3), as high (d) if  y ∈  [3, 4) and as very high 
(e) if  y ∈  [4,5] respectively. Therefore in this case the graph F of the 
corresponding fuzzy subset of U is the bar graph of Figure 3. 
     It is easy to check that, if the bar graph consists of n rectangles (in Figure 3 
we have n=5), the formulas (1) can be reduced to the following formulas: 
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Figure 3:  Bar graphical data representation 
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     From the above argument, where Fi, i=1,2,…,n , denote the n rectangles of 
the bar graph, it becomes evident that the transition from (1) to (2) is obtained 
under the assumption that all the intervals have length equal to 1 and that the first 
of them is the interval [0, 1]. 
     In our case (n=5) formulas (2) are transformed into the following form: 
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     Normalizing our fuzzy data by dividing each m(x), x∈U, with the sum of all 
membership degrees we can assume without loss of the generality that 
y1+y2+y3+y4+y5 = 1. Therefore we can write: 

( )

( )
1 2 3 4 5

2 2 2 2 2
1 2 3 4 5

1 3 5 7 9 ,
2
1
2

c

c

x y y y y y

y y y y y y

= + + + +

= + + + +
(4) 

with  yi = 
∑
∈Ux

i

xm
xm

)(
)(

, where x 1 = a, x2 =b, x3= c, x4 = d and x5 = e. 

     But 0≤ (y1-y2)2=y1
2+y2

2-2y1y2 , therefore y1
2+y2

2 ≥2y1y2  ,with the equality 
holding if, and only if, y1=y2.   
     In the same way one finds that y1

2+y3
2 ≥2y1y3, and so on. Hence it is easy to 

check that  (y1+y2+y3+y4+y5)2 ≤  5(y1
2+y2

2+y3
2+y4

2+y5
2), with the equality 

holding if, and only if y1=y2=y3=y4=y5.  
     But y1+y2+y3+y4+y5 =1,  therefore 1 ≤  5(y1

2+y2
2+y3

2+y4
2+y5

2)  (5), with the 
equality holding if, and only if  y1=y2=y3=y4=y5=

5
1  . 

     Then the first of formulas (4) gives that xc = 
2
5 .  Further, combining the 

inequality (5) with the second of formulas (4) one finds that 1≤10yc, or yc ≥  
10
1

  
Therefore the unique minimum for yc corresponds to the centre of mass Fm 

(
2
5 ,

10
1 ). 

     The ideal case is when y1=y2=y3=y4=0 and y5=1. Then from formulas (3) we 
get that xc = 

2
9  and yc = 

2
1 .Therefore the centre of mass in this case is the point 

Fi (
2
9 , 

2
1 ). 

     On the other hand the worst case is when y1=1 and y2=y3=y4= y5=0. Then for 
formulas (3) we find that the centre of mass is the point Fw (

2
1 , 

2
1 ). Therefore the 

“area” where the centre of mass Fc   lies is represented by the triangle Fw Fm Fi of 
Figure 4.Then from elementary geometric considerations it follows that for two 
groups of a system’s objects with the same xc ≥2,5 the group having the centre 
of mass which is situated closer to Fi   is the group with the higher yc; and for two 
groups with the same xc <2.5 the group having the centre of mass which is 
situated farther to Fw is the group with the lower yc. Based on the above 
considerations it is logical to formulate our criterion for comparing the groups’ 
performances in the following form: 
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Figure 4.  Graphical representation of the “area” of the centre of mass 

• Among two or more groups the group with the biggest xc   performs 
better. 

• If two or more groups have the same xc ≥ 2.5, then the group with the 
higher yc performs better. 

• If two or more groups have the same xc < 2.5, then the group with the 
lower yc   performs better. 

Notice that Subbotin et al., based on our fuzzy model for the process of learning 
[10], have applied the “centroid” method on comparing students’ mathematical 
learning abilities [7]. More recently we have applied together with I. Subbotin 
the above method in assessing students’ Analogical Reasoning skills [12]. 

 
5. Classroom Experiments 
     The role that the rational use of the new technologies could play for the 
development of students’ PS abilities is very important indeed. In fact, the 
animation of figures and mathematical representations, provided by suitable 
computer software packages, videos, etc, increases the students’ imagination and 
helps them in finding solutions easier of the corresponding problems. The role of 
mathematical theory after this is not to convince, but to explain.  
     Exploratory investigations have demonstrated how exposure to CT enhances 
the way students approach problems ([5], [13], [14], etc). In our will to explore 
further the effect of the use of computers as a tool in solving mathematical 
problems we performed during the academic year 2011-12 the following 
classroom experiments: 
In the first experiment the subjects were 65 students of the School of 
Technological Applications (prospective engineers) of the Graduate 
Technological Educational Institute (TEI) of Patras , Greece attending the course 
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“Higher Mathematics I” 1 of their first term of studies. The students, who had no 
programming experience, where divided in two groups of 35 and 30 students 
respectively. In the second (control) group the lectures were performed in the 
classical way on the board, followed by a number of exercises and examples 
connecting mathematics with real world applications and problems. The students 
participated in solving these problems.  

     The difference for the first (experimental) group was that part (about the 1
3

) of 

the lectures and the exercises were performed in a computer laboratory. There the 
instructor used the suitable technological tools (computers, video projections, 
etc) to present the corresponding mathematical topics in a more “live” and 
attractive manner to students’, while the students themselves, divided in small 
groups, used the existing ready mathematical software to solve the problems with 
the help of computers. Notice that all students (of both groups) were learning in a 
parallel course (Computer Science I) among the other basics about computers 
and the use of one of the well known mathematical software packages. 
     At the end of the term all students passed the final written examination of the 
mathematics course for the assessment of their progress. The examination 
involved a number of general theoretical questions and exercises covering all the 
topics taught and three simplified real world problems (see Appendix) requiring 
mathematical modeling techniques for their solution (time allowed was three 
hours). We marked the students’ papers separately for the questions and exercises 
and separately for the problems. 
     In assessing the general performance of the two groups we applied the GPA 
method2 commonly used in the USA and other countries. According to the marks 
obtained no significant differences were found for the two groups concerning the 
part of theoretical questions and exercises. On the contrary, the performance of 
the experimental group was found to be significantly better in solving the 
problems (GPA1 ≈  2.49, GPA2 = 2). 
      In our will to analyze deeper the results of the above experiment we applied 
our fuzzy model developed in the previous two sections. In fact, examining 
students’ papers of the experimental group we found that 15, 12 and 8 students 
had intermediate, high and very high success respectively at stage S1 of 
analysis/mathematization. Therefore we have n1a=n1b=0, n1c=15, n1d=12 and 

                                            
1 The course involves Differential and Integral Calculus in one variable, Elementary 
Differential Equations and Linear Algebra. 

2  Te Great Point Average (GPA) is a weighted average of the students’ performance. For 
this, each student’s paper is marked with A (90-100%), B (80-90%), C(80-70%), D (60-
70%), or F (< 60%). Then, if n is the total number of students and 

FDCBA nnnnn ,,,,  denote 

the numbers of students getting the marks A, B, C, D, F respectively, GPA = 

n
nnnnn ABCDF .43.2.1.0 ++++  .     
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n1e=8. Thus, by the definition of the corresponding membership function given in 
section 3, S1 is represented by a fuzzy subset of U of the form:  

A1 = {(a,0),(b,0),(c, 0.5),(d, 0.25),(e,0..25). 

    In the same way we represented the stages S2 and S3 as fuzzy sets in U   by  

A2 = {(a,0),(b,0),(c, 0.5),(d, 0.25),(e,0)} and  

A3 = {(a, 0.25),(b, 0.25),(c, 0.25),(d,0),(e,0)} respectively. 

Next we calculated the membership degrees of the 53 (ordered samples 
with replacement of 3 objects taken from 5) in total possible students’ profiles as 
it is described in section 3 (see column of ms(1) in Table 1). For example, for the 
profile s=(c, c, a) one finds that   
ms = m

1A (c). m
2A (c). m

3A (a) = 0.5 x 0 .5 x 0.25 = 0.06225. 
Further, from the values of the column of ms(1) it turns out that the 

maximal membership degree of students’ profiles is 0.06225. Therefore the 
possibility of each s in U3 is given by 

 rs= 0.06225
sm . 

   Working as above we found for the control group that  

A1={(a, 0),(b, 0.25),(c, 0.5),(d, 0.25),(e, 0)}, 

A2={(a, 0.25),(b, 0.25),(c, 0.5),(d, 0),(e, 0)} 

A3={(a, 0.25),(b, 0.25),(c, 0.25),(d, 0),(e, 0)} 

and we calculated the membership degrees ms(2) and the possibilities rs(2) of its 
students (see the corresponding columns in Table 1).  
      Next, in order to obtain a quantitative view of the combined results of the 
two groups’ performance, we calculated the pseudo-frequencies f(s) of all 
modellers’ profiles and the corresponding possibilities r(s) (see the last two 
columns of Table 1)  
    Finally, on comparing the two groups performance let us denote by Aij the 
fuzzy subset of U attached to the stage Sj , j=1,2,3 , of the modelling process 
with respect to the student group i,  i=1,2. 
      At the first stage of analysis/mathematization we have  

A11 = {(a, 0),(b, 0),(c, 0.5),(d, 0.25),(e, 0.25) 

A21= {(a, 0),(b, 0.25),(c, 0.5),(d , 0.25),(e, 0)} 

and respectively 

xc11 = 
2
1 (5 x 0.5 + 7 x 0.25 + 9 x 0.25) = 3.25 
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xc21 = 
2
1 (3 x 0.25 + 5 x 0.5 + 7 x 0.25) = 2.25  

      By our criterion obtained in section 4 the first (experimental) group demonstrates 
better    performance. 

Table 1:  Profiles with non zero membership degrees 
A1 A2 A3 ms(1) rs(1) ms(2) rs(2) f(s) r(s) 
b b b 0 0 0.016 0.258 0.016 0.129 
b b a 0 0 0.016 0.258 0.016 0.129 
b a a 0 0 0.016 0.258 0.016 0.129 
c c c 0.062 1 0.062 1 0.124 1 
c c a 0.062 1 0.062 1 0.124 1 
c c b 0 0 0.031 0.5 0.031 0.25 
c a a 0 0 0.031 0.5 0.031 0.25 
c b a 0 0 0.031 0.5 0.031 0.25 
c b b 0 0 0.031 0.5 0.031 0.25 
d d a 0.016 0.258 0 0 0.016 0.129 
d d b 0.016 0.258 0 0 0.016 0.129 
d d c 0.016 0.258 0 0 0.016 0.129 
d a a 0 0 0.016 0.258 0.016 0.129 
d b a 0 0 0.016 0.258 0.016 0.129 
d b b 0 0 0.016 0.258 0.016 0.129 
d c a 0.031 0.5 0.031 0.5 0.062 0.5 
d c b 0.031 0.5 0.031 0.5 0.062 0.5 
d c c 0.031 0.5 0.031 0.5 0.062 0.5 
e c a 0.031 0.5 0 0 0.031 0.25 
e c b 0.031 0.5 0 0 0.031 0.25 
e c c 0.031 0.5 0 0 0.031 0.25 
e d a 0.016 0.258 0 0 0.016 0.129 
e d b 0.016 0.258 0 0 0.016 0.129 
e d c 0.016 0.258 0 0 0.016 0.129 

 (The outcomes of the above Table were obtained with accuracy up to the third 
decimal point) 

    At the second stage of solution we have:  

A12 = {(a, 0),(b, 0),(c, 0.5),(d, 0.25),(e, 0)}, 

A22={(a, 0.25),(b, 0.25),(c, 0.5),(d, 0),(e, 0)}. 

      Normalizing the membership degrees in the first of the above fuzzy subsets 
of U (0.5 : 0,.75 ≈  0.67 and 0.25 : 0.75 ≈  0.33) we get  

A12 = {(a, 0),(b, 0),(c, 0.67),(d, 0.33),(e, 0)}, 

A22={(a, 0.25),(b, 0.25),(c, 0.5),(d, 0),(e, 0)} 

and respectively 
xc12 = 

2
1 (5 x 0.67 + 7 x 0.33) = 2.83 

xc22 = 
2
1 (0.25 + 3 x 0.25 + 5 x 0.25) = 1.125  
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         By our criterion, the first group again demonstrates a significantly better 
performance. 
         Finally, at the third stage of validation/implementation we have 

A13= A23 = {(a, 0.25),(b, 0.25),(c, 0.25),(d, 0),(e, 0)}, 

which obviously means that at this stage the performances of both groups are  
identical.  
    Based on our calculations we can conclude that the experimental group 
demonstrated a significantly better performance at the stages of 
analysis/mathematization and of solution, but performed identically with the 
control group at the stage of validation/implementation.  
     At the same chronological period the same experiment was performed under 
similar conditions with two groups of students of the School of Management and 
Economics of the TEI of Patras (50 students in each group). In this case the 
performance of the control group was found to be slightly better for the first part 
of the examination (questions and exercises), but the performance of the 
experimental group was found again to be better for the second part (problems). 
     In concluding, the results of our experiments give a strong indication that the 
use of computers as a tool for PS enhances the students’ abilities in solving real 
world mathematical problems by using CT. 
 
5. Discussion and Conclusions 
     The following conclusions can be drawn from the discussion performed in 
this paper: 

• Modelling thinking constitutes the essence of CT, since it synthesises all 
the other components of CT (abstract, logical and constructive thinking) 
for the solution of the corresponding problem. 

• In this paper we developed a fuzzy model for the CT process by 
representing the main stages of the modelling process as fuzzy subsets of 
a set of linguistic labels characterizing the modellers’ performance in 
each of these stages. We also applied the ‘centroid’ method in obtaining 
a measure of the individuals’ CT skills. 

• Two classroom experiments were presented illustrating the use of our 
fuzzy model in practice. The results of these experiments give a strong 
indication that the use of computers as a tool for problem solving 
enhances the students’ abilities in solving real world problems involving 
mathematical modelling. This is also crossed by us and by other 
researchers in earlier papers. 

     The implication of these findings is very important to education. However, we 
must underline a big danger hiding behind this reality. Indeed, people today using 
the convenient small calculators can make quickly and accurately all kinds of 
numerical operations. Further, the existence of a variety of suitable software 
mathematical packages gives the possibility of solving automatically all kinds of 
equations, to make any kind of algebraic operations, to calculate limits, 
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derivatives, integrals, etc, and even more to obtain all the existing alternative 
proofs of the basic mathematical theorems and in some cases to produce new 
ones. Based on the above facts a number of scientists, mainly among the 
specialists of Computer Science, have already reached to the conclusion that 
teachers will not be needed in future for the development of students’ knowledge 
base and learning skills, since everything could be done by the computers 
(possibly at home). “The use of horses is not necessary, from the time that cars 
were invented”, argue some of them. 
     But, this is actually an illusion! In fact, the acquisition of information is 
valuable for the learner, but the most important thing is to learn how to think 
rationally and creatively. The latter is impossible to be succeeded through the 
help of computers only, because computers have been created by humans and, 
although they dramatically exceed in speed and memory, they will never reach, at 
least according to the standard logic, the quality of human thinking. On the other 
hand, the practice of students with numerical, algebraic and analytic calculations, 
with the solution of problems and the rediscovery of proofs of the known 
mathematical theorems, must be continued for ever; otherwise they will 
gradually loose the sense of numbers and symbols, the sense of space and time, 
and they will become unable to create new knowledge and technology.    
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Appendix 
The problems given for solution to students in our classroom experiments: 
Problem 1:  We want to construct a channel to run water by folding the two 
edges of an orthogonal metallic leaf having sides of length 20cm and 32 cm, in 
such a way that they will be perpendicular to the other parts of the leaf. 
Assuming that the flow of the water is constant, how we can run the maximum 
possible quantity of the water? 
Remark: The correct solution is obtained by folding the edges of the longer side 
of the leaf. Some students solved the problem by folding the edges of the other 
side and failed to realize (validation of the model) that their solution was wrong. 
Problem 2: Let us correspond to each letter the number showing its order into 
the alphabet (A=1, B=2, C=3 etc). Let us correspond also to each word 
consisting of 4 letters a 2X2 matrix in the obvious way; e.g. the matrix  









513

1519
 corresponds to the word SOME. Using the matrix E= 








711
58

 as an 

encoding matrix how you could send the message LATE in the form of a 
camouflaged matrix to a receiver knowing the above process and how he (she) 
could decode your message? 
Problem 3: The population of a country is increased proportionally. If the 
population is doubled in 50 years, in how many years it will be tripled?   

 


