Annals of Pure and Applied Mathematics Vol. 2, No. 1, 2012, 40-44 ISSN: 2279-087X (P), 2279-0888(online) Published on 18 December 2012 www.researchmathsci.org

Annals of **Pure and Applied Mathematics**

Finitely Generated n-Ideals of a NearLattice

Mizanur Rahman¹ and A.S.A.Noor²

¹Department of Mathematics Satkhira City College, Satkhira, Bangladesh Email: <u>mizanscc967@gmail.com</u> ²Department of ECE East West University, Dhaka, Bangladesh Email: <u>noor@ewubd.edu</u>

Received 28 November 2012; accepted 15 December 2012

Abstract. By a near lattice we mean a meet semi lattice with the property that any two elements possessing a common upper bound, have a supremum. For a near lattice S, if n is neutral and upper then the set of all finitely generated n-ideals, $F_n(S)$ is a lattice and the set of all principal n-ideals, $P_n(S)$ is again a nearlattice. In this paper, we have proved that when n is an upper element of a distributive nearlattice S, then $F_n(S)$ is generalized Boolean if and only if $P_n(S)$ is semi Boolean. Moreover we have also shown that $F_n(S)$ is generalized Boolean if and only if the set of all prime n-idals P(S) is unordered by set inclusion, when n is an upper and S is distributive.

Keywords: Near lattice, Finitely generated n-ideal, Principal n-ideal, Semi Boolean near lattice, Prime n-ideal.

AMS Mathematics Subject Classifications (2010): 06A12, 06A99, 06B10.

1. Introduction

A *Nearlattice* S is a *meet semilattice* with the property that any two elements possessing a common upper bound, have a supremum. This property is known as the upper bound property. Nearlattice S is called a *distributive* nearlattice if for all $a,b,c \in S$, $a \land (b \lor c) = (a \land b) \lor (a \land c)$ provided $b \lor c$ exists. A near lattice S is called a *medial near lattice* if for all $x, y, z \in S$,

 $m(x, y, z) = (x \land y) \lor (y \land z) \lor (z \land x)$ exists.

Let n be a fixed element of S. A convex sub nearlattice containing n is called an n-*ideal*. An element $n \in S$ is called a *medial* element if $m(x, n, y) = (x \land y) \lor (x \land n) \lor (y \land n)$ exists for all x, $y \in S$. Element n is called an *upper* element if $x \lor n$ exists for all $x \in S$. Of course, every upper element is medial.

Finitely Generated n-Ideals of a NearLattice

An element n of a nearlattice S is called a *standard* element if for all t, x, $y \in S$, $t \wedge [(x \wedge y) \vee (x \wedge n)] = (t \wedge x \wedge y) \vee (t \wedge x \wedge n)$. Moreover, n is called a *neutral* element if (i) n is standard, and (ii) $n \wedge [(t \wedge x) \vee (t \wedge y)] = (n \wedge t \wedge x) \vee$ $(n \wedge t \wedge y)$ for all t, x, y \in S. The set of all n-ideals of S is denoted by $I_n(S)$, which is an algebraic lattice. An n-ideal generated by a finite numbers of elements a_1, a_2, \dots, a_m is called a *finitely generated* n-*ideal* and is denoted by $\langle a_1, a_2, ..., a_m \rangle_n$. The set of all finitely generated n-ideals is denoted by $F_n(S)$. By [1], we know that $F_n(S)$ is a lattice. The n-ideal generated by a single element x, is called a *principal* n-*ideal* and is denoted by $\langle x \rangle_n$. The set of all principal n ideals is denoted by $P_n(S)$. If n is medial and standard, then it is well known that $\langle x \rangle_n \cap \langle y \rangle_n = \langle m(x, n, y) \rangle_n$. Thus, when n is medial and standard, $P_n(S)$ is a meet semi lattice. We also know from [2] that when n is upper and medial, then $P_n(S)$ is also a nearlattice. When n is an upper element, $\langle x \rangle_n$ is the interval $[x \land n, x \lor n]$. If S is a lattice, then $\langle a_1, a_2, \dots, a_m \rangle_n = [a_1 \land a_2 \land \dots \land a_m \land n, a_m \land n]$ $a_1 \lor a_2 \lor \ldots \lor a_m \lor n$]. Thus the members of $F_n(S)$ are of the form [a, b], $a \le n \le b$. Moreover, $[a, b] \cap [c, d] = [a \lor c, b \land d]$ and $[a, b] \lor [c, d] = [a \land c, b \land d]$ $b \lor d$]. an n-ideal P is called a *prime* n-*ideal* if for all a, $b \in L$, $m(a, n, b) \in P$ implies either $a \in P$ or $b \in P$. For detailed literature on nearlattices and the description of nideals we refer the reader to consul [2,3,4,5].

We start with the following result given in [6, Corollary 1.4.5].

Lemma 1. Let n be an upper and neutral element of S. Then any finitely generated n-ideal contained in a principal n-ideal is principal.

A nearlattice S with 0 is sectionally complemented if the interval [0, x] is complemented for each $x \in S$.

Of course, every relatively complemented nearlattice S with 0 is sectionally complemented.

A nearlatice (lattice) S with 0 is called semi Boolean(Generalized Boolean) if it is distributive and the interval [0, x] is complemented for each $x \in S$.

An element $n \in S$ is called a *central element* if it is upper, neutral and complemented in each interval containing it.

Following result is due to [3].

Theorem 2. For a neutral element n of a nearlattice S, n is central if and only if n is upper and $P_n(S) \cong (n]^d \times [n]$.

Following results are easy consequences of the above theorem.

Corollary 3. Let S be a nearlattice and $n \in S$ be a central element. Then $P_n(S)$ is sectionally complemented if and only if the intervals [a, n] and [n, b] are *complemented for each* $a, b \in S(a \le n \le b)$.

Mizanur Rahman and A.S.A.Noor

We know that if n is medial in distributive nearlattice S, then $I_n(S)$ is also distributive and hence $P_n(S)$ (if it is nearlattice) is also distributive.

Corollary 4. If n is central element of a distributive nearlattice S, then $P_n(S)$ is semiBoolean if and only if the intervals [a, n] and [n, b] are complemented for each a, $b \in S(a \le n \le b)$.

Now we prove the following result when n is only an upper element rather than a central element .Thus it is an improvement of the above results.

Theorem 5. Let n be an upper element of a distributive nearlattice S. Then the following conditions are equivalent.
(i) P_n(S) is semi Boolean.
(ii) [a, n] and [n, b] are complemented for all a< n< b.

Proof: (i) \Rightarrow (ii). Suppose $P_n(S)$ is semi Boolean and let $a \le y \le n$. Therefore, $\{n\} \subseteq \langle y \rangle_n \subseteq \langle a \rangle_n$ which implies $\{n\} \subseteq [y, n] \subseteq [a, n]$. Let $\langle t \rangle_n$ be the relative complement of $\langle y \rangle_n$ in $[\{n\}, \langle a \rangle_n]$. Then $t \le n$. Also, $\langle t \rangle_n \cap \langle y \rangle_n = \{n\}$ and $\langle t \rangle_n \lor \langle y \rangle_n = \langle a \rangle_n$. Now $\langle t \rangle_n \cap \langle y \rangle_n = \{n\}$ implies $[t, n] \land [y, n] = \{n\}$ and so $[t \lor y, n] = \{n\}$ implies $t \lor y = n$. Also, $\langle t \rangle_n \lor \langle y \rangle_n = \langle a \rangle_n$ implies $[t, n] \land [y, n] = \{n\}$ and so $[t \lor y, n] = [a, n]$ and so $[t \land y, n] = [a, n]$. Thus $t \land y = a$. Hence, [a, n] is complemented. Similarly we can prove dually that [n, b] is also complemented.

(ii) \Rightarrow (i). Suppose [a, n] and [n, b] are complemented for all a< n< b. Consider {n} $\subseteq \langle p \rangle_n \subseteq \langle q \rangle_n$. Then $q \land n \leq p \land n \leq n \leq p \lor n \leq q \lor n$. Since [n, $q \lor n$] is complemented, so there exists $s \in [n, q \lor n]$, such that $(p \lor n) \land s = n$ and $p \lor n \lor s = q \lor n$. Again as $[q \land n, n]$ is complemented, so there exists $r \in [q \land n, n]$ such that $r \land p \land n = q \lor n$ and $r \lor (p \land n) = n$. Then [r, s] $\cap \langle p \rangle_n = \{n\}$ and [r, s] $\lor \langle p \rangle_n = \langle q \rangle_n$.

That is [r, s] is relative complement of $\langle p \rangle_n$ in $[\{n\}, \langle q \rangle_n]$. But by lemma 1, we know that any finitely generated n-ideal contained in a principal n-ideal is principal. Hence $[r, s] \in P_n(S)$ and $P_n(S)$ is semi Boolean.

Theorem 6. Let S be a distributive nearlattice with an upper element n. Then the following conditions are equivalent.

- (i) $F_n(S)$ is generalized Boolean.
- (ii) $P_n(S)$ is semi Boolean.
- (iii) [a, n] and [n, b] are complemented for all a < n < b.

Proof: By theorem 5, it is sufficient to show (i) \Leftrightarrow (ii)

Finitely Generated n-Ideals of a NearLattice

(i) \Rightarrow (ii) is obvious by lemma 1. Conversely, let (ii) holds. Suppose {n} $\subseteq \langle x_1, x_2, ..., x_p \rangle_n \subseteq \langle y_1, y_2, ..., y_s \rangle_n$. That is, {n} $\subseteq \langle x_1, x_2, ..., x_p \rangle_n \cap \langle y_1 \rangle_n \subseteq \langle y_1 \rangle_n$, which implies {n} $\subseteq (\langle x_1 \rangle_n \vee \langle x_2 \rangle_n \vee ... \vee \langle x_p \rangle_n) \cap \langle y_1 \rangle_n \subseteq \langle y_1 \rangle_n$ and so {n} $\subseteq [(\langle x_1 \rangle_n \cap \langle y_1 \rangle_n) \vee ... \vee (\langle x_p \rangle_n \cap \langle y_1 \rangle_n) \subseteq \langle y_1 \rangle_n$. Thus, {n} $\subseteq \langle m(x_1, n, y_1 \rangle_n \vee ... \vee \langle m(x_p, n, y_1 \rangle_n \subseteq \langle y_1 \rangle_n$. By lemma 1, $\langle m(x_1, n, y_1 \rangle_n \vee ... \vee \langle m(x_p, n, y_1 \rangle_n \text{ and let } \langle r_1 \rangle_n$ be a complement of $\langle t_1 \rangle_n$ such that $\langle r_1 \rangle_n \vee \langle t_1 \rangle_n = \langle y_1 \rangle_n$ and $\langle r_1 \rangle_n \cap \langle t_1 \rangle_n = \{n\}$. So we can get, $\langle t_i \rangle_n$; i = 1,2,...,s and the complement $\langle r_i \rangle_n$; i = 1,2,...,s of $\langle t_i \rangle_n$ such that $\langle r_1, r_2, ..., r_s \rangle_n \vee \langle x_1, x_2, ..., x_p \rangle_n = \langle y_1, y_2, ..., y_s \rangle_n$ and $\langle r_1, r_2, ..., r_s \rangle_n \cap \langle x_1, x_2, ..., x_p \rangle_n$

= $\{n\} \lor \{n\} \lor \dots \lor \{n\} = \{n\}$. Therefore, $F_n(S)$ is generalized Boolean.

Following results are due to [5]. These will be needed for further development of the thesis.

Lemma 7. If S_1 is a subnearlattice of a distributive nearlattice S and P_1 is a prime ideal(filter) in S_1 , then there exists a prime ideal P in S such that $P_1 = P \cap S_1$.

In lattice theory, it is well known that a distributive lattice L with 0 and 1 is Boolean if and only if its set of prime ideals is unordered by set inclusion. Following result due to [5] have generalized this result for distributive nearlattices with 0.

Theorem 8. If S is a distributive nearlattice with 0, then S is semiBoolean if and only if its set of prime ideals (filters) is unordered by set inclusion.

We conclude the paper by the generalization of above result for n-ideals.

Theorem 9. Let S be a distributive nearlattice $n \in S$ be an upper element. Then the following conditions are equivalent.

(i) $F_n(S)$ is generalized Boolean.

(ii) The set of prime n-ideals P(S) of S is unordered by set inclusion.

Proof: (i) \Leftrightarrow (ii). Suppose $F_n(S)$ is generalized Boolean. Then by theorem 5 and theorem 6, the interval [x, n] and [n, y] are complemented for each x, $y \in S$ with $x \leq n \leq y$. If P(S) is not unordered, suppose there are prime n-ideals P,Q with $P \subset Q$. Let $b \in Q$ -P. Now, as Q is prime, there exists $a \in S$ such that $a \notin Q$. Then either $a \land n \notin Q$ or $a \lor n \notin Q$ (here $a \lor n$ exists an n is upper). For, otherwise $a \in Q$ by convexity.

Suppose $a \lor n \notin Q$, Since $[n, a \lor n]$ is complemented and $n \le (a \land b) \lor n \le a \lor n$, so there exists $t \in [n, a \lor n]$ such that $t \land [(a \land b) \lor n] = n$ and $t \lor [(a \land b) \lor n] = a \lor n$.

Since $t \land [(a \land b) \lor n] = m(t, n, (a \land b) \lor n) = n$, thus $t \land [(a \land b) \lor n] = m(t, n, (a \land b) \lor n) \in P$. Since P is prime, so either $t \in P$ or $(a \land b) \lor n \in P$. Now $n \le (a \land b) \lor n \le b \lor n$ implies $(a \land b) \lor n \in Q$. If $t \in P$, then $t \in Q$ and so $a \lor n = t \lor [(a \land b) \lor n] \in Q$, which gives a contradiction.

If $(a \land b) \lor n \in P$, then $(a \land b) \lor n = m(a \lor n, n, b) \in P$ implies $b \in P$ which is again a contradiction. Therefore, $a \lor n \in Q$.

Now if $a \land n \notin Q$, then $a \land b \land n \notin Q$ as $n \in Q$ and Q is convex. Since $b \land n$ has relative complement in $[a \land b \land n, n]$. Proceeding as above, again we arrive at a contradiction .Thus $a \land n \in Q$. Since both $a \land n$ and $a \lor n$ belong Q, so by convexity $a \in Q$. This gives a contradiction. Therefore the set of prime n-deals P(S) is unordered.

(ii) \Rightarrow (i). Suppose that P(S) is unordered. Consider any interval [n, b] in S. Let P₁, Q₁ be two prime ideals of [n, b]. Then by lemma 7, there exist prime ideals P and Q of S such that P₁ = P \cap [n, b] and Q₁ = Q \cap [n, b].

Since P and Q contains n, so by [6, lemma 2.1.3], they are prime n-deals. Since P(S) is unordered, so P and Q are incomparable. This follows that P_1 and Q_1 are also incomparable.

If not, let $P_1 \subset Q_1$. Then for any $z \in P$, $(z \lor n) \land b \in [n, b]$ and $n \le (z \lor n) \land b \le z \lor n$ implies, $(z \lor n) \land b \in P_1 \subset Q_1$. Thus $(z \lor n) \land b \in Q$. But $b \notin Q$ as Q_1 is prime in [n, b]. Therefore, $z \lor n \in Q$ as Q is a prime ideal of S and so $z \in Q$. Hence $P \subset Q$, which is a contradiction .Therefore, by [1, Th.22, p-46], [n, b] is complemented.

Again, consider the interval [a, n]. Since the prime filters are the complements of prime ideals, so considering two prime filters of [a, n] and using the same argument as above we see that [a, n] is also complemented. Hence by theorem 5, P(S) is semi Boolean and by theorem 6, $F_n(S)$ is generalized Boolean.

REFERENCES

- 1. G. Gratzer, *Lattice Theory*, first concepts and distributive lattices, Freeman, San Francisco, 1971.
- 2. A.S.A.Noor and W.H.Cornish, Around a neutral element of a near lattice, *Comment. Math. Univ. Carolinae.*, 28(2) (1987) 199-210.
- 3. A.S.A.Noor and G.Hossain, Princpal n-ideals of a nearlattice, *Rajshahi* University, Stud. (part-B), J. Sci., 25(1997) 187-191.
- 4. A.S.A.Noor and Shiuly Akhtar, n-ideals of a distributive medial nearlattice, *Ganit (J. Bangladesh Math. Soc.)*, 24 (2005) 35-41.
- 5. A.S.A.Noor and M.B.Rahman, Seperation properties on nearlattices, *The Rajshahi University Studies (Part-B)*, 22 (1994) 181-188.
- 6. M.Rahman, *On finitely generated n-ideals of a near lattice*, Ph.D Thesis, Rajshahi University, 2006.