
Annals of Pure and Applied Mathematics
Vol. 2, No. 1, 2012, 74-85
ISSN: 2279-087X (P), 2279-0888(online)
Published on 18 December 2012
 www.researchmathsci.org

74

Annals of

Computation of a Minimum Average Distance Tree on
Permutation Graphs*

Biswanath Jana 1

 and Sukumar Mondal 2

1 Department of Applied Mathematics with Oceanology and Computer Programming,

Vidyasagar University, Midnapore - 721 102, India.
2 Department of Mathematics, Raja N. L. Khan Women's College, Gope Palace,

Paschim Medinipur - 721 102, India.
e-mail:sm5971@rediffmail.com; smnlkhan@gmail.com

Received 1 December 2012; accepted 17 December 2012

Abstract. The average distance ()Gµ of a finite graph = (,)G V E is the
average of the distances over all unordered pairs of vertices. A minimum average
distance spanning tree of G is a spanning tree of G with minimum average
distance. Such a tree is sometimes referred to as a minimum routing cost spanning
tree. In this paper, we present an efficient algorithm to compute a minimum average
distance spanning tree on permutation graphs in 2()O n time, where n is the
number of vertices of the graph.

Keywords: MAD tree, spanning tree, algorithms, complexity, permutation graphs.

AMS Mathematics Subject Classifications (2010): 05C85

1. Introduction
An undirected graph = (,)G V E with vertex set = {1, 2, , }V nK is said to be a
permutation graph iff there exists a permutation = { (1), (2), , ()}nπ π π πK on
{1, 2, , }nK such that for all , i j V∈ , (,)i j E∈ iff

1 1()(() ()) < 0,i j i jπ π− −− −

where for each i V∈ , 1()iπ − denotes the position of the number i in π [10]. We
assume that the graph is connected. Permutation graphs can be visualized as a class of
intersection graphs [10]. Pnueli et al. [14] showed that permutation graphs are exactly
those comparability graphs (transitively orientable graphs) whose complements are
also comparability graphs. If the permutation graph is given in the form of an adjacent
matrix or an adjacent list, we can construct the permutation representation (diagram)
in 2()O n time [10, 12]. Henceforth, we assume that a permutation representation is

Computation of a Minimum Average Distance Tree on Permutation Graphs

75

given for the input graph. We assume that the permutation is stored in the array
(), = 1, 2, , i i nπ K and the inverse permutation of π is stored in array

1(), = 1, 2, , i i nπ − K . The array 1()iπ − can be computed in ()O n time from
the array ()iπ . Figure 1 represents the permutation graph G and Figure 2 is the
corresponding matching diagram of the permutation graph G .
 Permutation graphs is a class of perfect graphs and can be used to solve many
real world problems like the problem of airline routes connection with various cities
such that all scheduled to be utilized at the same time of the day, the problem of
shifted intervals etc.

 Figure 1: A permutation graph G.

 Figure 2: Matching diagram of the permutation graph G of Figure 1.

 Breadth-first-search (BFS) is a strategy for searching in a graph when search is
limited to essential two operations: (a) visit and inspect a node of a graph; (b) gain
access to visit the nodes that neighbour the currently visited node. The BFS begins at a
root node and inspect all the neighbouring nodes. Then for each of those neighbour
nodes in turn, it inspects their neighbour nodes which were unvisited, and so on.
 BFS is a uniformed search method that aims to expand and examine all nodes of
a graph or combination of sequences by systematically searching through every
solution. In other words, it exhaustively searches the entire graph or sequence without
considering the goal until it finds it.
 Let G be a connected undirected graph, let v be a vertex of G and let T
be its spanning tree obtained by the BFS of G with the initial vertex v . An
appropriate rooted tree '() = (,)T v V E G⊆ let us call a Breadth-First-Search Tree
(BFS tree, shortly) with the root v , the edges of G that do not appear in BFS tree let
us call non-tree edges.
 In an un-weighted tree '= (,)T V E , where '| | = | | 1E V − , the eccentricity
e(v) of the vertex v is defined as the distance from v to the vertex farthest from

Biswanath Jana and Sukumar Mondal

76

v T∈ , i.e.,
 ()e v = max { (,)id v v , for all }iv T∈ ,

where (,)id v v is the number of the edges on the shortest path between v and iv .

 In a weighted tree '= (,)T V E , where '| | = | | 1E V − , the eccentricity
e(v) of the vertex v is defined as sum of the weights of the edges from v to the vertex
farthest from v T∈ , i.e.,

 ()e v = max { (,)id v v , for all }iv T∈ ,
where (,)id v v is the sum of the weights of the edges on the shortest path between v
and iv .
 A vertex with minimum eccentricity in the tree T is called a center of that tree
T, i.e., if () = m { (), f }e s in e v or all v V∈ , then s is the 1-center. It is clear that
every tree has either one or two centers.
 The eccentricity of a center in a tree is defined as the radius of the tree and is
denoted by ()Tρ , i.e., () = {m ()}.v TT in e vρ ∈
The diameter of a tree T is defined as the length of the longest path in T, i.e., the
maximum eccentricity is the diameter. A spanning tree with minimum diameter is
defined as minimum diameter spanning tree.
 The average distance ()Gµ of a finite permutation graph = (,)G V E is
the average over all unordered pairs of vertices of the distances,

{ , } ()

2() = (,),
(1) G

u v V G
G d u v

n n
µ

⊂− ∑

where (,)Gd u v denotes the distance between the vertices u and v , i.e., the length
of a shortest path joining the vertices u and v .
 The minimum average distance spanning tree (MAD tree, in short) of a
permutation graph G is a spanning tree of G with minimum average distance.

2. Survey of the related work
In general, the problem of finding a MAD tree is NP-hard [11]. A polynomial time
approximation scheme is due to [1]. Hence it is natural to ask for which restricted
graph classes a MAD tree can be found in polynomial time. In [5], an algorithm is
exhibited that computes a MAD tree of a given distance-hereditary graph in linear
time. In [8], it is shown that a MAD tree of a given outerplanar graph can be found in
polynomial time. Recently, Dahlhaus et al. [6], have design a linear time algorithm to
compute a MAD tree of an interval graph which runs in ()O n time when the left and
right boundaries of the intervals are ordered. In [2], Barefoot et al., have shown that if
T is a MAD tree of a given connected graph G , then there exists a vertex c in T
such that every path in T starting at c is induced in G . It remains an open problem
to decide whether there exists a polynomial time algorithm to find a MAD tree of a
vertex weighted interval graph. Olario et al. [13], have design optimal parallel
algorithms for problems modeled by a family of intervals on interval graphs to
compute a MAD tree. Also Mondal et al. [16], have design an optimal algorithms for

Computation of a Minimum Average Distance Tree on Permutation Graphs

77

computing the average distance on permutation graphs.

2.1. Applications of the problem
MAD trees, also referred to as minimum routing cost spanning trees, are of interest in
the design of communication networks [11]. One is interested in designing a tree
subnetwork of a given network, such that on average, one can reach every node from
every other node as fast as possible.
 In this paper, we have designed an 2()O n time algorithm to construct a MAD
tree for a given permutation graph G with n vertices.
 In the next section, i.e., Section 3 , we shall discuss about the construction of the
tree. In subsection 3.1, we discuss BFS tree on permutation graph. In subsection 3.2
, we discuss about the minimum diameter spanning tree. In subsection 3.3 , we
develop modified spanning tree of the tree T . In Section 4 , we present an algorithm
to get MAD tree of the permutation graph. The time complexity is also calculated in
this section.

3. Construction of the tree
3.1. Construction of BFS tree on permutation graph
It is well known that BFS is an important graph traversal technique and also BFS
constructs a BFS tree. In BFS, started with vertex v , we first scan all edges incident
on v and then move to an adjacent vertex w . At w we then scan all edges incident
to w and move to a vertex which is adjacent of w . This process is continued till all
the edges in the graph are scanned [9].

BFS tree can be constructed on general graphs in ()O n m+ time, where n
and m represent respectively the number of vertices and number of edges [17]. To
construct this BFS tree on a permutation graph we consider the matching diagram. We
first placed the line segment x on the zero level and all vertices adjacent to x on
the first level. Next we traverse the matching diagram step by step. In first step we
scan the untraversed line segment which are situated at the right side of line segments
x and in the second step we scan all untraversed line segments which are situated at
the left side of the line segment x . In each iteration, we scan numbers within an
interval on the top channel and scan permutation number within an interval on the
bottom channel alternately in an order. Recently Mondal et al. [15], have designed an
algorithm to construct a BFS tree *()T i with root as i on trapezoid graph in ()O n
time where n is the number of vertices and Barman et al. have designed another
algorithm to construct the BFS tree on a permutation graph with any vertex x as root
in ()O n time [3]. Figure 3 is the BFS tree constructed by the Algorithm PBFS [3].

3.2. Computation of minimum diameter spanning tree
Let (1)T , ((1))T π be two BFS trees designed by Algorithm PBFS [3] of a
permutation graph G . Let T be the minimum height tree between (1)T and

((1))T π .
Let P be the main path (longest path) of T of the permutation graph G

Biswanath Jana and Sukumar Mondal

78

and it is denoted by * * * *
0 1 2 ku u u u→ → → →L , where (1)k n≤ − and *

0u is
either the vertex 1 or the vertex corresponding to (1)π of G . The vertices of the

path P , i.e., *
iu , = 0, 1, 2, 3, , i kK defined as internal nodes.

We have the following terms:
 The open neighbourhood of the vertex *

iu in the path P of G , denoted by
*()iN u and defined as * *() = { : (,) }i iN u u u u E∈ and the closed neighbourhood
* * *[] = { } ()i i iN u u N u∪ , where E is the edge set of the given permutation graph.

Next we define level of the vertex u as the distance of u from the root i
of the BFS tree ()T i and denote it by level(u), u V∈ and take the level of the root
i as 0 . The level of each vertex on BFS tree (), T i i V∈ can be assigned by the
BFS algorithm of Chen and Das[4].

The level of each vertex of the tree T can be computed in ()O n time.

 Figure 3: BFS tree T rooted at vertex 1 of the permutation graph shown in Figure 1.

 As per construction of BFS tree by the algorithm PBFS [3], we have the
important result in BFS tree T .
 In permutation diagram, two intersecting line segments of V-type or inverted
V-type defined as the scissors type line segments of permutation graphs. Figure 4
gives the illustration of scissors type line segments.

Lemma 1. Minimum number of scissors type line segments with maximum spread of
the permutation diagram cover the whole region.
Proof. Let {1, 2, , }nK be the set of numbers and { (1), (2), , ()}nπ π πK be
the permutation. To cover 1 to n , i.e., whole region, there are two types of scissors,
marked as dotted lines (V-type) and continued lines (inverted V-type), shown in the

Computation of a Minimum Average Distance Tree on Permutation Graphs

79

Figure 4 and Figure 5.
Firstly, if we select first dotted line segment 1(1, (1))π − on top line. Then

we consider such line segment 1(, ())i iπ − , which is maximum spread among all
adjacent to the corresponding first line segment 1 and we marked all the line segment
adjacent to 1. Next, we consider such line segment 1(, ())j jπ − which is maximum
spread among all unmarked line segment adjacent to i , continuing this process until
all the line segments are covered, i.e., marked. Let this path be of the type
top bottom top bottom→ → → →K .

Similar manner to be followed from the bottom line. Then we obtain the
another path of the form bottom top bottom top→ → → →K . In this way whole
region is covered by the both paths.

Next we consider minimum path between them which will be the shortest
path to covered all the line segments. Hence, the scissors type lines segment of the
permutation graph covered the whole region.

 Figure 4: An illustration.

Figure 5: Region covered by the projection of minimum number of line segments.

Lemma 2. [3] Two intersecting line segments of the permutation graph of the
matching diagram are assigned on the same level or adjacent levels.

Lemma 3. If , u v V∈ and | () () |> 1level u level v− in T , then there is no edge
between the vertices u and v in G .
Proof. If possible let | () () |> 1level u level v− but (,)u v E∈ , i.e., u and v are
directly connected. Since u and v are directly connected so by Lemma 2 either

() = ()level u level v or | () () |= 1level u level v− which is contradictory to the

Biswanath Jana and Sukumar Mondal

80

assumption that | () () |> 1level u level v− . Hence (,)u v E∈ , i.e., u and v are
not directly connected in G .

The time complexity of the algorithm PBFS is stated below.

Theorem 1. [3] The BFS tree rooted at any vertex x V∈ can be computed in

()O n time for a permutation graph containing n vertices.

 Obviously, this BFS is a spanning tree.
 Now, we shall prove that this spanning tree is also a minimum diameter spanning
tree.

Lemma 4. The spanning tree T is a minimum diameter spanning tree.
Proof. According to the construction the BFS tree, the main path of the tree T is the
longest path which is the diameter of T . The main path contains minimum number of
scissors type line segments (by lemma 1). But this diameter is minimum, because T
is the minimum heighted tree between (1)T and ((1))T π . Also, T is a spanning
tree. Hence T is a minimum diameter spanning tree.

 In next subsection, to compute the MAD tree of the permutation graph by
modifying the spanning tree T.

3.3. Modification of the spanning tree T
It is observed that T is not necessarily a MAD tree. So, modification of T is
necessary. We modify by following way:
 Firstly compute *()iN u G∈ for every internal nodes (vertices on the longest

path) *
iu T∈ . If there are any common adjacent vertices of two consecutive internal

nodes of P , i.e., * *
1() ()i iN u N u φ+∩ ≠ then by the following way we can shift

them.
i) In G , if any common adjacent vertex w of *

iu and *
1iu + exist, i.e.,

* *
1() ()i iN u N u φ+∩ ≠ then we calculate the number of vertices to the upper side (if

exist) and lower side of the internal node *
iu in T with *

iu as origin. Next calculate
their difference, say, 1d .

ii) Again, find the number of vertices to the upper part and lower part (if exist)
of the internal node *

1iu + in T with *
1iu + as origin (ignoring the vertex w). Next

calculate their difference, say, 2d .

iii) If 1 2 0d d− ≤ , then unaltered, i.e., w is finally adjacent of *
iu in T

and if 1 2 > 0d d− , then the adjacent vertex w of the node *
iu is shifted to the node

*
1iu + , i.e., w is finally adjacent of *

1iu + in T .

Computation of a Minimum Average Distance Tree on Permutation Graphs

81

 Similar idea is used for pair of any two consecutive internal nodes on the main
path P . Under these conditions we develop the spanning tree T and it is denoted by

'T . Figure 6 is the modified BFS tree 'T of the BFS tree T shown in Figure 3.

Lemma 5. If 'T is a BFS rooted tree, then the distance ' (,)
T

d u v between the

vertices u and v in T ′ is given by

'

(), if is a root,
(,) = () (), if * (internal node),

| () () | 1, if be any leaf.
T

level v u
d u v level v level u u u

level v level u u


 − =
 − +

Proof. In the tree 'T , with u as root there exists a unique shortest path

1 2 1pu z z z v−→ → → →L from u to any vertex v G∈ , with u as parent of

1z and iz as parent of 1iz + and so on for each = 1, 2, , 2i p −K and 1pz − as
parent of v . Since each vertex of this path is directly connected with the next one,
hence the length of this path is = ()p level v . Thus (,)d u v p≤ .

Next we are to show that (,) <d u v p . If possible, let (,) = <d u v q p .
Then there exist a path 1 2 1qu y y y v−→ → → →L from u to any vertex v G∈ .
As each vertex of this path is directly connected with the next one using Lemma 2,

1()level y is either 0 or 1 since () = 0level u . By same Lemma 2, 1()klevel y + is
either ()klevel y or () 1klevel y + or () 1klevel y − . Thus 2()level y is 0 or 1
or 2 , 3()level y is 0 or 1 or 2 or 3 and so on. Therefore ()level v is 0 or 1
or 2 or...or q . This is a contradiction since () =level v p and >p q . Hence

(,)d u v p≤ which implies that (,) =d u v p , i.e., (,) = ()d u v level v .
If *=u u , i.e., the internal node, then as per rule of construction of BFS, there is a
shortest path ' '

1 2u z z v→ → →L . Here '
1z is at next level of *u , '

2z is at the next

level of '
1z and so on upto v . So d(u*, z1

’)= 1 =(i+1) – i, d(u*, z2
�) = d(u*, z1

�) +
d(z1

�, z2
�) = 1 + 1 = 2 = (i + 2) – i. If d(u*, zk

�) = k = (i + k) – i, then
* ' * ' ' '

1 1(,) = (,) (,) = 1= (1)k k k kd u z d u z d z z k i k i+ ++ + + + − .
When u is any leaf, then there is a path from u to v via the parent of u . If

() =level u i , then (()) = 1level parent u i − and ()parent u is an internal node (as
per construction of BFS rooted as 1 or (1)π).
Therefore

(,) = (, ()) ((),) =1 () (())d u v d u parent u d parent u v level v level parent u+ + − .

Biswanath Jana and Sukumar Mondal

82

 Figure 6: Modified BFS tree T�of the tree T shown in Figure 3.

4. Algorithm and its complexity
In this section, we present an efficient algorithm to construct MAD tree for a given
permutation graph. Also, the correctness of the algorithm and its time complexity are
presented here.

Algorithm PMAD-TREE
Input: A permutation graph = (,)G V E with its permutation representation

 , (); = 1, 2, , i i i nπ K .
Output: MAD tree 'T and average distance ()Tµ ′ .
Step 1: Compute the minimum diameter spanning tree T //Section 3.2 //

 and calculate * *() = (,), = 1 o (1).level u d u u u r π

Step 2: Compute *()iN u G∈ for all *
iu T∈ , and k = height of the tree T =

 highest level.
Step 3: //Modification of the tree T //

 Compute common vertices, if any, of two consecutive internal nodes *
iu

 and *
1, = 0, 1, 2, , 1iu i k+ −K of the main path P may be shifted as

 leaves to the node *
1iu + under following conditions otherwise remains

 unaltered.
 Step 3.1: For = 0i to 1k − do

 If * *
1() () =i iN u N u φ+∩ then go to Step 3.1,

 If * *
1() ()i iN u N u φ+∩ ≠ and let * *

1() ()i iw N u N u +∈ ∩ then,
Step 3.1.1: Calculate the number of vertices to the upper part and lower part
 of the internal node *

iu in T with *
iu as origin. Next

 calculate their difference, 1d .

Computation of a Minimum Average Distance Tree on Permutation Graphs

83

Step 3.1.2: Calculate the number of vertices to the upper part and lower part
 of the internal node *

1iu + with it as origin (ignoring the vertex
 w). Next calculate their difference, 2d .
Step 3.1.3: If 1 2 0d d− ≤ , then unaltered and if 1 2 > 0d d− , then the

 adjacent vertex w of the internal node *
iu is shifted to the

 internal node *
1iu + .

 Step 3.2: Set 'T as modified spanning tree of T on permutation graph G .

Step 4: Calculate '

(), if is a root,
(,) = () (), if * (internal node),

| () () | 1, if be any leaf.
T

level v u
d u v level v level u u u

level v level u u


 − =
 − +

and '
' '{ , } ()

2() = (,)
(1) u v V T T

T d u v
n n

µ
⊂− ∑ .

end PMAD-TREE.

4.1. Illustration of the algorithm
In Figure 3, which is the spanning tree of the permutation graph G , * =1iu and

*
1 = 7iu + are two consecutive nodes. 2 and 4 are the common adjacent of the

vertices * =1iu and *
1 = 7iu + , i.e., {2, 4}w∈ . Taking the vertex 1 as origin, the

number of vertices to the upper side of 1 is 0 and the number of vertices to the
lower side of 1 is 7 . Hence their difference is 1 = 7 0 = 7d − .
Again taking the vertex 7 as origin, the number of vertices to the upper side of 7 is
3 (ignoring the vertices 2 and 4) and the number of vertices to the lower side of
7 is 6 when the vertices 2 and 4 are adjacent with the vertex 7 . Hence their
difference is 2 = 6 3 = 3d − . Therefore 1 2<d d . So, the vertices 2 and 4 are

shifted to the node 7 . Then we have the modified spanning tree 'T (Figure 6).
Next calculate the average distance 1()Gµ corresponding to the tree T .

Again calculate average distance 2 ()Gµ corresponding to the tree 'T . Here

1() = 224/66 = 3.39Gµ (approx.) and 2 () = 216/66 = 3.27Gµ (approx.).

Clearly, 1 2() > ()G Gµ µ . Hence 'T is the minimum average distance tree of
permutation graph G .

Theorem 2. The tree formed by Algorithm PMAD-TREE is the MAD tree.
Proof. Initially, we have constructed the BFS tree T . By nature and method of
construction of BFS tree it gives minimum diameter (Lemma 4), i.e., there exist a
shortest path by which every other vertices are directly connected with any internal
nodes. So, this BFS tree gives the guarantee that there is no other shortest path to

Biswanath Jana and Sukumar Mondal

84

connect all other vertices directly with the internal nodes. Again, since the leaves in
level difference two or more in BFS, are not adjacent so they may be connected via
their parent vertex, i.e., internal nodes (Lemma 2 and Lemma 3). So to get minimum
average distance one leaf may be shifted to immediate level, i.e., adjacent to just next
internal node. Therefore sum of the distances among all pair vertices through the main
path is minimum (Lemma 5). Again by Step 3 , we check the distances among leaves
of the tree. The condition of shifting the leaves to other, if necessary, implies sum of
the distances among the leaves, after modification, is minimum. Hence, sum of the
distances among the vertices in tree is minimum. Therefore, the tree formed by
Algorithm PMAD-TREE is a MAD tree.

Next we describe the time complexity of the algorithm.

Theorem 3. The MAD tree of a permutation graphs G with n vertices, by
Algorithm PMAD-TREE, can be computed in 2()O n time.
Proof. Step 1 takes ()O n time (Theorem 1). Step 2, i.e., computation of open
neighbourhood of all internal nodes on the main path and add with corresponding
nodes can be computed in 2()O n time. Each Step 3.1.1 and Step 3.1.2 takes ()O n
time. Also Step 3.1.3 runs in (1)O time. But Step 3.1 runs 1k − times, so total time

complexity of Step 3.1 is 2()O n , where k is of ()O n . Again Step 3.2, i.e.,
modification of the tree can be computed in 2()O n time. The last step, i.e., Step 4 in
worst case, can be computed in 2()O n time. Hence, overall time complexity of our
proposed algorithm is 2()O n time with n vertices of permutation graphs.

REFERENCES

1. Bang Ye We, Lancia, G., Bafna, V., Chao, K. M., Ravi, R. and Chuang Yi Tang,

A polynomial time approximation scheme for minimum routing cost spanning
trees, SIAM Journal on Computing, 29 (1999) 761 - 778.

2. Barefoot, C. A., Entringer, R. C. and Szekely, L. A., Extremal values of distances
in trees, Discrete Applied Mathematics, 80 (1997) 37 - 56.

3. Barman, S., Mondal, S. And Pal, M., An efficient algorithm to find next-to
shortest path on permutation grphs, Communicated.

4. Chen, C. C. Y. and Das, S. K., Breath-first traversal of trees and integer sorting in
parallel, Information Processing Letters, 41 (1992) 39 - 49.

5. Dahlhaus, E., Dankelmann, P., Goddard, W. and Swart, H. C., MAD trees and
distance-hereditary graphs, Discrete Applied Mathematics, 131 (2003) 151 - 167.

6. Dahlhaus, E., Dankelmann, P. and Ravi, R., A linear time algorithm to compute a
MAD tree of an interval graph, Information Processing Letters, 89 (2004) 255 -
259.

7. Dankelmann, P., Computing the average distance of an interval graph,
Information Processing Letters, 48 (1993) 311 - 314.

8. Dankelmann, P., Slater, P., Average distance in outerplanar graphs, Preprint.

Computation of a Minimum Average Distance Tree on Permutation Graphs

85

9. Deo, N., Graph theory with applications to engineering and computer science
(Prentice Hall of India Private Limited, New Delhi, 1990).

10. Golumbic, M. C., Algorithmic graph theory and perfect graphs, Academic Press,
New York, 2004.

11. Johnson, D. S.,Lenstra, J. K. and Rinnooy-Kan, A. H. G., The complexity of the
network design problem, Networks, 8 (1978) 279 - 285.

12. Muller, J. H. and Spinrad, J., Incremental modular decomposition, J. ACM, 36
(1989) 1 - 19.

13. Olariu, S., Schwing, J. and Zhang, J., Optimal parallel algorithms for problems
modeled by a family of intervals, IEEE Transactions on parallel and Distributed
Systems, 3 (1992) 364 - 374.

14. Pnueli, A., Lempel. A. and Even, S., Transitive orientation of graphs and
identification of permutation graphs, Canad. J. Math., 23 (1971) 160 - 175.

15. Mondal, S., Pal, M. and Pal, T. K., An optimal algorithm for solving all-pairs
shortest paths on trapezoid graphs, Intern. J. Comput. Engg. Sci. 3 (2002)
103-116.

16. Mondal, S., Pal, M. and Pal, T. K., An optimal algorithm to solve the all-pairs
shortest paths problem on permutation graphs, Journal of Mathematics Modelling
and Algorithms, 2 (2003) 57 - 65.

17. Tarjan, R. E., Depth first search and linear graph algorithm, SIAM J. Comput., 2
(1972) 146-160.

