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Abstract. A cactus graph is a connected graph in which every block is either an edge 
or a cycle. In this paper we give a brief idea how to design some optimal algorithms on 
cactus graphs in O(n) time, where n is the total number of vertices of the graph. The 
cactus graph has many applications in real life problems, specially in radio 
communication system. 
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1.  Introduction 
In graph theory, a cactus graph is a connected graph in which any two simple cycles 
have at most one vertex in common. Equivalently, every edge in such a graph belongs 
to at most one simple cycle. Equivalently, every block (maximal subgraph without a 
cutvertex) is an edge or cycle. 
       Let ),(= EVG  be a finite, connected, undirected simple graph of n  

vertices m  edges, where V  is the set of vertices and E  is the set of edges. A 
vertex u  is called a  cutvertex if removal of u  and all edges incident on u  
disconnect the graph. A connected graph without a cutvertex is called a  
non-separable graph. A  block of a graph is a maximal non-separable subgraph. A  
cycle is a connected graph (or subgraph) in which every vertex is of degree two. A 
block which is a cycle is called a  cycliced block. A  cactus graph is a connected 
graph in which every block is either an edge or a cycle. A  weighted graph G  is a 
graph in which every edge is associates with a weight. Without loss of generality we 
assume that all weights are positive. A  weighted cactus graph is a weighted, 
connected graph in which every block containing two vertices is an edge and three or 
more vertices is a cycle. 
       Cactus graph were first studied under the name of Husimi trees, bestowed on 
them by Frank Harary and George Eugene Unlenbeck in honour of previous work of 
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these graphs by Kodi Husimi. Cactus graph has many applications. These graphs can 
be used to model physical setting where a tree would be inappropriate. Examples of 
such setting arise in telecommunications when considering feeder for rural, suburban 
and light urban regions [33] and in material handling network when automated guided 
vehicles are used [34]. Moreover, ring and bus structures are often used in local area 
networks. The combination of local area network forms a cactus graph. 
        Because of various applications in real life situation and telecommunication 
problem, cactus graphs have extensive studied during last decade. Some well known 
problems like all-pair shortest path problem, domination problem, coloring and 
labeling problems, covering problems etc. are solved in polynomial time on cactus 
graphs efficiently. Lot of algorithms have been design to solve various graph theoretic 
problems, some of them are available in [48-59]. 

To solve some problems on cactus graphs, a tree is constructed, called BCT  

tree, which is described below.                                                                                              
  

 
Figure 1:  A weighted cactus graph G . 

 
2. Formation of the tree BCT   

In this thesis we use a method in which blocks and cutvertices of the graph G  are 
determined using DFS technique and there after form an intermediate graph G′   i.e., 

),(= EVG ′′′  where },,,{= 21 NBBBV K′ and ,=:),{(= jiBBE ji /′  ji,  

N,1,2,= K , iB  and jB  are adjacent blocks }. 

Now the tree BCT  is constructed from G′  as follows: 

We discard some suitable edges from G′  in such a way that the resultant graph 
becomes a tree. The procedure for such reduction is given below: 
Let us take any arbitrary vertex of G′ , containing at least two cutvertices of G , as 
root of the tree BCT  and mark it. All the adjacent vertices of this root are taken as 

children of level one and are marked. If there are edges between the vertices of this 
level, then those edges are discarded. Each vertices of level one is considered one by 
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one to find the vertices which are adjacent to them but unmarked. These vertices are 
taken as children of the corresponding vertices of level one and are placed at level 
two. These children at level two are marked and if there be any edge between them 
then they are discarded. This process is continued until all the vertices are marked. 
Thus the tree ),(= EVTBC ′′′  where },,,{= 21 NBBBV K′  and EE ′⊂′′  is 

obtained. 
       For convenience, we refer the vertices of BCT  as nodes. We note that each 

node of this tree is a block of the graph ),(= EVG . The parent of the node iB  in the 

tree BCT  will be denoted by  Parent( iB ). 

 
3.  Different Problems on Cactus Graphs and its Solutions  
3.1.  Computation of All-Pairs Shortest Paths on Weighted Cactus Graphs 
Let ),(= EVG  be a finite, connected, undirected, simple graph of n  vertices and 

m  edges, where V  is the set of vertices and E  is the set of edges. A  path of a 
graph G  is an alternating sequence of distinct vertices and edges which begins and 
ends with vertices in G . The  length of a path is the sum of the weights of the edges 
in the path. A path from vertex u  to v  is a  shortest path if there is no other path 
from u  to v  with lower length. The  distance ),( vud  between vertices u  and 

v  is the length of shortest path between u  and v  in G . 
    For any general graph with n  vertices, solution to the all-pair shortest path 

problem takes )( 3nO  time [1]. A lot of work have been done in improving this 
running time using randomization and probabilistic methods for general as well as 
special kinds of graphs. Ahuja et.al. [2] have given a faster sequential using Radix 

heap and Fibonacci heap for single source shortest path problem in )( logCnmO +  

time for a network with n  vertices and m  edges and non-negative integers are costs 
bounded by C . In [47], Seidal has given an ))(( lognnMO  time sequential 
algorithm for all-pair shortest path problem for an undirected and unweighted 
arbitrary graph with n  vertices, where )(nM  is the time (best value of )(nM  is 

)( 2.376nO  necessary to multiply two nn×  matrices of small integers. 
    Alon et. al. [3] have reported a sub-cubic algorithm for computing APSP on 

directed graph with edge length which require )( γMnO time, where )/2(3= ωγ + , 

3<ω  and M  is the largest edge length. Galil and Margalit [16] have improved the 

dependence of M  and have also given an )( 1)/2 lognnMO ωω+  algorithm for 
undirected graph. Ravi et. al. [42] have given a sequential algorithm to solve all-pair 

shortest path (APSP)on interval graph in )( 2nO time. Pal and Bhattacharjee in [41] 

have given an )( 2nO  time algorithm for finding the distance between all pair of 
vertices on interval graphs. 
    In this problem, we select a specified vertex x  and find a block which contains 
x . We construct a tree BCT  taking this block as root. After constructing the tree we 
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first compute the distance between x  and all other vertices in this root. Then we 
compute the distance from x  to vertices (other than x ) of the blocks corresponding 
to the nodes in level one as follows. Let iB  be a node at level one. Then ie  is its 

entry point. We compute the distances of every vertex v  of iB  from ie  and adding 

),( iexd  with these distances we obtain the distance and so shortest path of the 

vertices of the block iB  from x . Similarly, we compute the distance from x  to 

other vertices of the blocks at level one. For the nodes,  i.e., blocks of the remaining 
levels, the distance from x  can be computed by the same process. 
    In general, let us consider a block jB  at level ‘i ’ and assume that the distance 

between x  and all vertices of the blocks at level ‘1−i ’ have been calculated. The 
entry point of jB  is je . Then ),( jexd  is known as je  belongs to a block at level 

‘ 1−i ’. We now compute ),( ved j  for all jBv ∈ . Then 

),(),(=),( uedexduxd jj +  for all jBu ∈ . This determine the distance between 

x  and any vertex of any block at level ‘i ’. 
This procedure takes )(nO  time. Thus to compute all-pair shortest path on 

weighted cactus graphs, )( 2nO  time is required. 
 

3.2.  Finding a Minimum Dominating Set 
   Let ),(= EVG  be a finite, connected, undirected, simple graph of n  vertices 

and m  edges, where V  is the set of vertices and E  is the set of edges. A subset 
D  of V  is said to  dominate V  if every vertex in DV −  is adjacent to at least 
one vertex in D . In this case D  is called a  dominating set of the graph G . The set 
D  is called a  minimum dominating set if the cardinality of D  is minimum among 
all dominating sets of the graph G . 
   The problem of determining a minimum cardinality dominating set has been 
discussed in [11], and has obvious application in the optimum location of facilities in 
a network. When restricted to interval graphs, the minimum dominating set problem 
along with several related variants, becomes polynomial time solvable [6, 7]. Kratsch 

et al. [32] first presented polynomial time algorithm which takes )( 6nO  time for 
domination problems on cocomparability graphs. These algorithms are valid for the 
cardinality case only. In [43], we get a fast algorithm for domination problems on 
permutation graphs which takes )( nmO +  time. 

    In this problem we construct a tree BCT  using the blocks and cutvertices and 

applying the Euler Tour we obtain a sequence of nodes. Consider the nodes of that 
sequence one by one and find the dominating vertices from each node. 
    Hence we form an algorithm which describes a traversing from leaf node to the 
root. If there exist any subtree on the way of traversing then we traverse all the 
branches of the subtree from leaf to root except its root and meet the root when all the 
branches are traversed. For any leaf node and for an interior node we apply different 
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method and obtain the dominating sets for each node. 
   This process takes )(nO  time for computing minimum dominating set on cactus 

graph G . 
 

3.3.  Finding a Minimum 2-Neighbourhood Covering set 
    The k-neighbourhood-covering (k -NC) problem is a variant of the domination 
problem. A vertex x  k -dominates another vertex y  if kyxd ≤),( . A vertex z  

is k -NC of an edge ),( yx  if kzxd ≤),(  and kzyd ≤),(  ei. , the vertex z  k
-dominates both x  and y . Conversely if kzxd ≤),(  and kzyd ≤),(  then the 

edge ),( yx  is said to be k -neighbourhood covered by the vertex z . A set of 

vertices VC ⊆  is a k -NC set if every edge in E  is k -NC by some vertices in C
. The k -NC number ),( kGρ  of G  is the minimum cardinality of all k -NC sets. 

     For 1=k , Lehel et al. [35] have presented a linear time algorithm for computing 
,1)(Gρ  for an interval graph G . Chang et al. [12] and Hwang et al. [22], have 

presented linear time algorithms for computing ,1)(Gρ  for a strongly chordal graph 
provided that strong elimination ordering is known. Hwang et al. [22] also proved that 

NCk −  problem is NP-complete for chordal graphs. Mondal et al. [38] have 
presented a linear time algorithm for computing 2-NC problem for an interval graph. 
Also a linear time algorithm for trapezoid graph has presented by Ghosh et al. [17]. 
     In this Problem we construct a tree BCT  using blocks and cutvertices of G . 

Thereafter applying Euler tour on that tree we obtain a sequence of nodes. There are 
two types of nodes, some are leaf nodes and some are interior nodes. Depending upon 
the number of vertices of cycles and paths we determine the number of covering 
vertices from each node as well as the graph G . 
   Thus the algorithm which finds the 2-neighbourhood covering (2-NC) set of the 
graph G  in )(nO  time. The algorithm also takes )(nO  space. 

 
3.4.  Finding a Maximum Weight 2-Colour Set on Weighted Cactus Graphs 
The graph colouring problem (GCP) plays a central role in graph theory and it has 
direct applications in real life problems [5], and is related to many other problems 
such as timetabling [13, 37], frequency assignment [19] etc. A k-colouring 
(assignment) of an undirected graph ),(= EVG , where V is the set of nV |=|  

vertices and VVE ×⊆  the set of edges, is a mapping },{1,2,: kV K→α  that 

assigns a positive integer from },{1,2, kK  (representing the colours) to each vertex. 
We say that a colouring is feasible if the end nodes of every edge in E have assigned 
different colours,  i.e., for all ,),( Evu ∈  )()( vu αα ≠ . We call conflict the 
situation when two nodes between which an edge exists have the same colour 
associated to them. We say that a colouring is infeasible if at least one conflict occurs. 
Alternatively to the formulation as an assignment problem, the GCP can also be 
represented as a partitioning problem, in which a feasible k-colouring corresponds to a 



  Some Algorithms on Cactus Graphs 
 

119 

 

partition of the set of nodes into k sets kCCC ,,, 21 K  such that no edge exists 

between two nodes from the same colour class. 
    The graph colouring problem is NP-complete. Hence, we need to use approximate 
algorithmic methods to obtain solutions close to the absolute minimum in a 
reasonable execution time. 
    The maximum weight k-colourable Subgraph (MWKC) problem is related to the 
following problem. The input to this problem consist of an integer number k  and an 
undirected graph ),(= EVG , where each vertex v  has a non-negative weight vw . 

The goal is to pick a subset VV ⊆′ , such that there exists a colouring c  of ][VG ′  

with k  colours, and among all such subsets, the value v
Vv

w∑
′∈

, vw  is maximum. 

This problem is NP-hard for general graph even for split graph [20]. 
    The maximum weight k-colouring problem is same as the maximum weight 
k-independent set (MWKIS) problem. The maximum k-independent set problem on 
G  is to determine k  disjoint independent sets kSSS ,,, 21 K  in G  such that 

kSSS KUU 21  is maximum. The MWKIS problem is NP-complete for general 

graphs [20]. 
     Many work on colouring problem has been done previously. Local search in 
large neighbour and iterated local search for GCP are described in [9, 4]. The 
maximum weight 2-colouring problem or the maximum weight 2-independent set 
(MW2IS) problem, which is a special case of the (MWKIS) problem, is also 
NP-complete for general graphs and it applications have been studied in the last 
decade [23, 24, 36]. In [23], Hsiao et.al. have solved the two-track assignment 
problem by solving the M2IS problem on circular arc graph. In [36], Lou et. al. have 
solved the maximum 2-chain problem on a given point set, which is the same as the 
MW2IS problem on permutation graph. 
    In this problem we find odd and even blocks and form block-cutvertex graph G ′′  
using the odd blocks only from the graph G. Next represent G ′′  in terms of edge 
weight(weight of the cutvertex) and vertex weight(weight of the minimum weight 
vertex) and form a tree BQT . The method of finding maximum weight 2-coloured set 

is to delete such a vertex from each odd block so that minimum weight is dicarded. 
Also in this problem we find minimum weight feedback vertex set. Here we select 
minimum weight vertices or cutvertex from both even and odd blocks. 
    Thus the algorithm which finds the 2-coloured set as well as the minimum 
feedback vertex of the graph G  takes )(nO  time. The algorithm also takes )(nO  
space. 
 
3.5.  Finding a Maximum Independent Set and Maximum 2-Independent Set 
Let ),(= EVG  be a finite, connected, undirected, simple graph of n  vertices and 

m  edges, where V  is the set of vertices and E  is the set of edges. A subset of the 
vertices of a graph ),(= EVG  is an independent set if no two vertices in this subset 
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are adjacent. The maximum independent set (MIS) problem on G  is to determine a 
maximum size independent set on G . The MIS problem is NP-complete for general 
graphs [18], but it can be solved in polynomial time for many special graphs [28]. 
    The maximum k-independent set (MKIS) problem on G  is to determine k  

disjoint independent sets kSSS ,,, 21 K  in G  such that kSSS KUU 21  is 

maximum. The MKIS problem is NP-complete for general graphs [20]. 
    The maximum 2-independent set (M2IS) problem, which is a special case of the 
MKIS problem, is also NP-complete for general graphs and it applications have been 
studied in the last decade [23, 36]. In [23], Hsiao et. al. have solved the two-track 
assignment problem by solving the M2IS problem on circular arc graph. In [36], Lou 
et. al. have solved the maximum 2-chain problem on a given point set, which is the 
same as the M2IS problem on permutation graph. 
    In this problem, MKIS problem is considered on a non-weighted cactus graph for 

1=k  and 2=k . 
    In this problem a tree BCT  is constructed using blocks and cutvertices of the 

graph G . There after apply Euler Tour to find a sequence of nodes to consider one by 
one from leaf to root node. For leaf nodes and interior nodes separate techniques are 
used to find vertices for independent set. For the 2-independent set problem one 
vertex from each odd cycle is removed so that alternate vertices from cycles and paths 
of the graph G  form 2-independent set. 
    Thus the algorithms for the above two problems take )(nO  time. 

 
3.6.  Finding Maximum and Minimum Height Spanning Trees  
Let ),(= EVG  be a finite, connected, undirected, simple graph of n  vertices and 

m  edges, where V  is the set of vertices and E  is the set of edges. A tree is a 
connected graph without any circuits. A tree T  is said to be a spanning tree of a 
connected graph G  if T  is a subgraph of G  and T  contains all vertices of G . 
The  longest distance ),( vuld  and  distance ),( vud  between two vertices u  

and v  are the length ),( vulp  and ),( vuρ  in G  if such paths exist. 

Note that 0=),( uuld , ),(=),( uvldvuld  and ),(),(),( vwldwuldvuld +≤ . 

Also 0=),( uud , ),(=),( uvdvud  and ),(),(),( vwdwudvud +≤ . 

   The  elongation of a vertex u  in a graph G  is the longest distance from vertex 
u  to a vertex furthest from u   i.e., }:),({=)( Vvvuldmaxuel ∈ . Vertex v  is 

said to be a  furthest vertex of u  if )(=),( uelvuld . 

   The  eccentricity of a vertex u  in a graph G  is the longest distance from the 
vertex u  to a vertex furthest from u  i.e, }:),({=)( Vvvudmaxue ∈ . 

   In a tree, a vertex v  is said to be at  level l  if v  is at a distance l  from the 
root. The  height of a tree is the maximum level which is occurred in the tree. 
   A graph may have more than one spanning tree. The height of a spanning tree T  
of a graph G  is denoted by ),( GTH . A  maximum height spanning tree is a 
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spanning tree whose height is maximum among all spanning trees of a graph. The 
height of the maximum height spanning tree of a graph G  is denoted by 

}:)({=)( VuuelmaxGHmax ∈ . 

    Suppose v  be the vertex for which )(GHmax  is attained and v′  its furthest 

vertex, then the longest path  i.e., ),( vvlp ′  is called as  maximum height path 

),( vv ′  and denoted by ),( vvMHP ′ . 
    A  minimum height spanning tree is a spanning tree whose height is minimum 
among all spanning tree of a graph. The height of the minimum height spanning tree 
of a graph G  is denoted by }:)({=)( VuueminGHmin ∈ . The vertex  x for which 

)(=)( xeGHmin  is called the  center of G . 

   Some related works are discussed here: In [44], a spanning tree of maximal weight 
and bounded radius is determined from a complete non-oriented graph ),(= EVG  

with vertex set V  and edge set E  with edge weight in )( 2nO  time, n  is the total 

number of vertices in G . In [39], the minimum spanning tree problem is considered 
for a graph with n  vertices and m  edges. They introduced randomized search 
heuristics to find minimum spanning tree in polynomial time with out employing 
global techniques of greedy algorithms. In [26], the authors find a spanning tree T  
that minimizes ),(= ),( jidMaxD TEjiT ∈  where ),( jidT  is the distance between i  

and j  in a graph ),(= EVG . The minimum restricted diameter spanning tree 

problem is to find spanning tree T  such that the restricted diameter is minimized. It 
is solved in )log( nO  time. In [27], the minimum diameter spanning tree problem on 
graphs with non-negative edge lengths is determined which is equivalent for finding 
shortest paths tree from absolute 1-center problem of the general graph is solvable in 

)log( 2 nnmnO +  time [34]. 
   In this Problem, we find the maximum height spanning tree by finding the 
elongation and the longest path ),( vuMHP . Then deleting one edge from each cycle 

which is not consider during the calculation of elongation and ),( vuMHP  the 
maximum height of the spanning tree is obtained whose height is equal to 

),( vuMHP . Also we find the minimum height spanning tree by finding the 

eccentricity and the radius of the graph G  and deleting one edge from each cycle so 
that the radius is the minimum height of the spanning tree. 

These algorithms find the maximum height spanning tree and minimum 
height spanning tree in )(nO  time.  

 
3.7.  L(2,1)-labelling of cactus graphs 
The (2,1)L -labelling of a graph G  is an abstraction of assigning integer 
frequencies to radio transmitters such that the transmitters that are one unit of distance 
apart receive frequencies that differ by at least two, and transmitters that are two units 
of distance apart receive frequencies that differ by at least one. The span of an (2,1)L
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-labelling is the difference between the largest and the smallest frequences assigned to 
the vertices. The (2,1)L -labelling number of a graph G , denoted by )(Gλ , is the 

least integer k  such that G  has an (2,1)L -labelling of span k . 

    Several results are known for (2,1)L -labelling of graphs, but, to the best of our 
knowledge no result is known for cactus graph. 
    The lower bound for )(Gλ  is 1+∆ , which is achieved for the star ∆1,K . Griggs 

and Yeh [15] prove that ∆+∆≤ 2)( 2Gλ  for general graph and improve this upper 

bound to 32)( 2 −∆+∆≤Gλ  when G  is 3- connected and 2)( ∆≤Gλ  when G  
is diameter 2 (diameter 2 graph is a graph where all nodes have either distance 1 or 2 

each other). Jonas [29] improves the upper bound to 42)( 2 −∆+∆≤Gλ  if 2≥∆ , 
by constructive labelling schemes. Chang and Kuo [10] further decrease the bound to 

∆+∆2 . Further, Kral and Skrekovski [31] improves this bound 1)( 2 −∆+∆≤Gλ  

for any graph G . The best known result till date is 2)( 2 −∆+∆≤Gλ  due to 
Goncalves [14] 
    To label the vertices of a cactus graph, we first label the vertices of all induced 
subgraphs of the cactus graph. We obtained the following results. 
Let H  be a subgraph of G , then obviously )()( GH λλ ≤  [10].  

If G  and H  are two graphs and if φ=HG VV I  then  

)}(),({=)( HGmaxHG λλλ U  and 

2)}(1,|{|)}(1,|{|=)( +−+−+ HVmaxGVmaxHG HH λλλ  [10]. 
Also, 

)}(),({)( HGmaxHG
v

λλλ ≥U , where .=}{ HG VVv I  

   For any star graph ∆1,K , 1=)( 1, +∆∆Kλ , which is equal to n , where n  is the 

number of vertices. 
   For any cycle nC  of length n , 2=4=)( +∆nCλ  [15]. 

Suppose a graph G contains two cycles nC  and mC  joined by a cutvertex 0v , then 

1=5=)(
0

+∆mvn CC Uλ . 

   Let a graph 1G  contains n  number of triangles with a common cutvertex. Then 

21=)( 1 +∆+∆ orGλ  according as n  is even or odd, where ∆  is the degree of 
the cutvertex. 
   Let a graph G  contains n  number of cycles of length 3  and m  number of 
cycles of length 4 . If they have a common cutvertex with degree ∆ , then 

1=)( +∆Gλ . 

   Let G  be a graph which contains finite number of cycles of any length and finite 
number of edges. If 0v  be the common cutvertex with degree ∆  then 

1=)( +∆Gλ . 
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  Let G  be a graph, contains a cycle of any length and finite number of edges, they 
have a common cutvertex 0v . If ∆  be the degree of the cutvertex then, 

1=)( +∆Gλ . 

  Let G  be a graph contains a cycle of any length and each vertex of the cycle has 
another cycle of length three. If ∆  is the degree of G  then 3=)( +∆Gλ . 

  For any caterpillar graph the value of λ  lies between 1+∆  and 2+∆ . 
Let 1G  and 2G  be two cactus graphs. If 3)(1 111 +∆≤≤+∆ Gλ  and 

3)(1 222 +∆≤≤+∆ Gλ , then, 3)(1 +∆≤≤+∆ Gλ , where 21= GGG
vU . 

 The time complexity of the proposed algorithm to label a cactus graph using 
L(2,1)-labelling technique takes )(nO  time, where n is the total number of vertices 
of the cactus graph. 

 
3.8.  L(0,1)-labelling of cactus graphs 
 An (0,1)L -labelling of a graph G  is an assignment of nonnegative integers to the 

vertices of G  such that the difference between the labels assigned to any two 
adjacent vertices is at least zero and the difference between the labels assigned to any 
two vertices which are at distance two is at least one. The span of an (0,1)L -labelling 

is the maximum label number assigned to any vertex of G . The (0,1)L -labelling 

number of a graph G , denoted by )(0,1 Gλ , is the least integer k  such that G  has 

an (0,1)L -labelling of span k . This labelling has an application to a computer code 
assignment problem. The task is to assign integer control codes to a network of 
computer stations with distance restrictions. 
     Some results are available on ),( khL  -labelling problem. Here we discuss 

some particular cases. When 0=h  and  1=k  then we get (0,1)L -labelling 

problem. Several results are known for (0,1)L -labelling of graphs, but, to the best of 
our knowledge no result is known for cactus graph. In this section, the known result 
for general graphs and some related graphs of cactus graph are presented. 

     The upper bound for )(0,1 Gλ  of any graph G  is ∆−∆≤ 2
0,1 )(Gλ  [30], 

where ∆  is the degree of the graph. 
     Here we label the vertices of a cactus graph by (0,1)L -labelling and have 

shown that, ∆≤≤−∆ )(1 0,1 Gλ  for a cactus graph, where ∆  is the degree of the 

graph G . Here we start the labelling by the labelling the subgraphs of the cactus 
graph. And we obtained some results which are stated below. 
     If we label a star graph ∆1,K  by (0,1)L -labelling, then we get 

1=)( 1,0,1 −∆∆Kλ . For any cycle nC  of length n , 1=)(0,1 nCλ , when kn 4= , 

where k  is a positive integer, and 2=)(0,1 nCλ  for other cases [8]. 

     Let G  be a graph which contains two cycles and they have a common 
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cutvertex. If ∆  be the degree of G, then, ∆=)(0,1 Gλ , when two cycles are of length 

3 and 1−∆ , for others. This result is true for the graph contains n  number of cycles 
of any lengths, joined with a common cutvertex. 
     For the graph which contains finite number of cycles of any length and finite 
number of edges, then 1.=)(0,1 −∆Gλ If the graph is a sun graph with n2  vertices, 

then we proved that 1=2=)( 20,1 −∆nSλ . Suppose G  contains a cycle of any 

length and each vertex of the cycle has another cycle of any length, then 
∆≤≤−∆ )(1 0,1 Gλ . 

     It is proved for caterpillar, lobster and tree the value of 0,1λ  is 1−∆ . 

     Finally, by arranging all the results, we can conclude that for a cactus graph 
∆≤≤−∆ )(1 0,1 Gλ . 

 
3.9.  (2,1)-total labelling of the cactus graph 

A (2,1)-total labelling of a graph ),(= EVG  is an assignment of integers to each 

vertex and edge such that: (i) any two adjacent vertices of G  receive distinct 
integers, (ii) any two adjacent edges of G  receive distinct integers, and (iii) a vertex 
and its incident edge receive integers that differ by at least 2. The  span of a 
(2,1)-total labelling is the maximum difference between two labels. The minimum 
span of a (2,1)-total labelling of G  is called the (2,1)-total number and denoted by 

)(2 Gtλ . 
   Motivated by frequency channel assignment problem Griggs and Yeh [15] 
introduced the (2,1)L -labelling of graphs. The notation was subsequently 

generalized to the ),( qpL -labelling problem of graphs. Let p  and q  be two 

non-negative integers. An ),( qpL -labelling of a graph G  is a function c  from its 

vertex set )(GV  to the set },{0,1, kK  such that pycxc ≥− |)()(|  if x  and y  

are adjacent and qycxc ≥− |)()(|  if x  and y  are at distance 2. The ),( qpL

-labelling number )(, Gqpλ  of G  is the smallest k  such that G  has an ),( qpL

-labelling c  with max kGVvvc =)}(|)({ ∈ . 
   This labelling is called (2,1)-total labelling of graphs which introduced by Havet 
and Yu [21] and generalized to the ,1)(d -total labelling, where 1≥d  be an integer. 

A k - ,1)(d -total labelling of a graph G  is a function c  from )()( GEGV ∪  to 

the set },{0,1, kK  such that )()( vcuc ≠  if u  and v  are adjacent and 

decuc ≥− |)()(|  if a vertex u  is incident to an edge e . The ,1)(d -total number, 

denoted by )(Gt
dλ , is the least integer k  such that G  has a k - ,1)(d -total 

labelling. 
   It is shown in [40] that for any cactus graphs, 31 2,1 +∆≤≤+∆ λ . Now in this 

section, we label the vertices and edges of a cactus graphs G  by (2,1) -total 



  Some Algorithms on Cactus Graphs 
 

125 

 

labelling and it is shown that 21 2 +∆≤≤+∆ tλ  [21]. 
   We label the vertices and edges of a cactus graph by (2,1)-total labelling procedure 

and have shown that, 2)(1 2 +∆≤≤+∆ Gtλ  for a cactus graph, where ∆  is the 

degree of the graph G . First we label the vertices of different subgraphs of cactus 
graph by (2,1)-total labelling. 

    If H  is a subgraph of G , then )()( 22 GH tt λλ ≤ . For any star graph ∆1,K , 

2=)( 1,2 +∆∆Ktλ .  If we label the cycle nC , then we get, 4=)(2 n
t Cλ . 

    When a graph contains two or more cycles joined with a common cutvertex, then 

the value of t
2λ  equal to 2+∆ , if all cycles are of even lengths and 1+∆ , for 

others. 
Let G  be a graph, contains a cycle of any length and finite number of edges 

and they have a common cutvertex 0v . If ∆  be the degree of the cutvertex, then 

2=)(2 +∆Gtλ , if the cycle is of even length and 1+∆ , for other cases. 

For any sun nS2 , the value of t
2λ  is 2+∆ . If graph is obtained from nS2  

by adding an edge to each of the pendent vertex of nS2 , then 2=2 +∆tλ  for that 

graph. For a graph which contains a cycle of any length and each vertex of the cycle 

contain another cycle of any length, then t
2λ  equal to 2+∆ . The t

2λ  value of the 
path, caterpillar graph and lobster are same and equal to 2+∆ . One of the important 
result of (2,1)-total labelling of cactus graph is described below. 

Let 1G  and 2G  be two cactus graphs. If 2)(1 1121 +∆≤≤+∆ Gtλ  and 

2)(1 2222 +∆≤≤+∆ Gtλ , then 2)(1 2 +∆≤≤+∆ Gtλ , G  is the union of two 

graphs 1G  and 2G , they have only one common vertex v  and max },{ 21 ∆∆  

21 ∆+∆≤∆≤ . 
     Combining all the results, we conclude that 

     If ∆  is the degree of a cactus graph G , then 2.)(1 2 +∆≤≤+∆ Gtλ  
 

REFERENCES 
 

1. Aho, A., Hopcroft, J. and Ullman, J., The Design and Analysis of Computer 
Algorithms,  Addison-Wesley, Reading, MA, 1974. 

2. Ahuja, R. K., Mehlhorn, K., Orlin, J.B., and Tarjan, R. E., Faster algorithms for 
the shortest path problem,  J. ACM, 37 (2) (1990) 213-223. 

3. Alon, N., Galil, Z., and Margalit, O., On the exponent of the all-pairs shortest path 
problem,  proc. 32th IEEE FOCS, IEEE (1991) 569-575. 

4. Ahuja, R.K., Magnanti, T.L. and Sharma, D., Very large-scale neighbourhood 
search.  International Transactions in Operational Research, 7 (2000) 295-302. 

5. Allen, M., Kumaran, G. and Liu, T., A combined algorithm for graph-colouring in 
register allocation,  Proceeding of the Computational Symposium on Graph 



Kalyani Das  
 

126 

 

Colouring and its Generalizations, Ithaca, New York, USA, 2002. 
6. A. A. Bertossi, Total domination in interval graphs,  Information Processing 

Letters, 23(1986) 131-134. 
7. K. S. Booth and J. H. Johnson, Dominating sets in chordal graphs,  SIAM J. 

comput. 11(1992) 191-199. 
8. A.A. Bertossi and M.A. Bonuccelli, Code assignment for hidden terminal 

interference avoidance in multihope packet radio networks,  IEEE/ACM 
Transactions on Networking, 3 (4) (1995), 441-449. 

9. Chiarandini, M.and St¨utzle, T., An application of iterated local search to graph 
coloring.  In D. S. Johnson, A. Mehrotra, and M. Trick, editors, Proceedings of 
the Computational Symposium on Graph Coloring and its Generalizations, 
Ithaca, New York, USA, 2002 pages 112-125. 

10. G. J. Chang and David Kuo. The (2,1)L -labelling problem on graphs, SIAM J. 

Discrete Math., 9(2) (1996) 309-316. 
11. Corneil, E. J and Hedetniemi, S. T., Optimal domination in graphs,  IEEE Trans, 

circuits & System, 22 (1975) 855-857 
12. Chang, G. J., Farber M. and Tuza, Z., Algorithmic aspects of neighbourhood 

numbers,  SIAM J. Discrete Math., 6 (1993) 24-29. 
13. de Werra, D., An introduction to timetabling. European Journal of Operation 

Research, 19 (1985) 151-162. 
14. D. Goncalves, On the ,1)( pL -labelling of graphs, in: EuroCom 2005, Discrete 

Mathematices and Theoretical Computer Science Proceedings, vol. AE (2005) 
81-86. 

15. J. R. Griggs and R. K. Yeh, Labelling graphs with a condition at distance two, 
SIAM Journal on Discrete Math., 5(4) (1992) 586-595. 

16. Galil, Z., and Margalit, O., All pair shortest distance for graphs with small integer 
length edges,  Information and Computing 134 (1997) 103-139. 

17. Ghosh, P. K. and Pal, M., An Optimal algorithm to solve 2-neighbourhood 
covering problem on trapezoid graph,  Advanced Modeling and Optimization, 9 
(1) (2007) 15-36. 

18. Garey, M. R. and Johnson, D. S.,  Computer and Intractability: A Guide to the 
theory of NP-Completeness (Freeman, San Francisco, CA, 1978). 

19. Gamst, A., Some lower bounds for a class of frequency assignment problems.  
IEEE Transactions of Vehicular Technology, 35(1) (1986) 8-14. 

20. Gavril, F. and Yannakakis, M., The maximum k -colorable subgraph problem for 
chordal graphs,  Information Processing Letter, 24 (1987) 133-137. 

21. F. Havet and M. L. Yu, ,1)( p -total labelling of graphs,  Discrete Math., 308 
(2008) 496-513. 

22. Hwang, S. F. and Chang, G. J., k-neighbourhood- covering and independence 
problems for chordal graphs,  SIAM J. Discrete Math., 11 (4) (1998) 633-643. 

23. Hsiao, J. Y., Tang, C. Y. and Chang, R.S., An efficient algorithm for finding a 
maximum weight 2-independent set on interval graphs,  Information Processing 
Letters, 43 (1992), 229-235. 

24. Hsu, W. L. and Tsai, K. H., A linear time algorithm or the two-track assignment 



  Some Algorithms on Cactus Graphs 
 

127 

 

problem,  Proceedings of 27th Allerton Conf. on Communication, Control and 
Computing, (1989) 91-300. 

25. Hota, M., Pal, M. and Pal, T. K., An efficient algorithm to generate all maximal 
independent set on trapezoid graphs,  Intern. J. Computer Mathematics, 70 
(1999), 587-599. 

26. Hassin, R. and Levin, A., Minimum restricted diameter spanning tree,  Discrete 
Applied Mathematics, 137 (2004) 343-357. 

27. Hassin, R. and Tamir, A., On the minimum diameter spanning tree problems,  
Information Processing Letters, 53(2) (1995) 109-111, 1995. 

28. Johnson, D. S., The NP-completeness Column: An on going guide,  
J.Algorithms, 6 (1985) 434-451. 

29. K. Jonas, Graph Coloring Analogue With a Condition at Distance Two: 
L(2,1)-labellings and List λ -labellings. Ph. D. thesis, University of South 
Carolina, Columbia, (1993). 

30. X. T. Jin and R.K. Yeh, Graph distance-dependent labelling related to code 
assignment in compute networks,  Naval Research Logistics, 51 (2004) 159-164. 

31. D. Kral and R. Skrekovski, A theorem on channel assignment problem, SIAM J. 
Discrete Math., 16(3) (2003) 426-437. 

32. D. Kratsch and L. Stewart, Domination on cocomparability graphs,  SIAM J. 
Discrete Math. 6(3) 400-417. 

33. Koontz, W. L. G., Economic evaluation of loop feeder relief alternatives,  Bell 
System Technical J., 59 (1980) 277-281. 

34. Kariv, O. and Hakimi, S. L., An algorithmic approach to network location 
Problems, Part 1: The p-center,  SIAM J. Appl. Math, 37 (1979) 513-537. 

35. Lehel, J. and Tuza, Z., Neighbourhood perfect graphs,  Discrete Math., 61 
(1986) 93-101. 

36. Lou, R. D., Sarrafgadeh and Lee, D. T, An optimal algorithm for the maximum 
two-chain problem,  SIAM J, Discrete Math., 5 (1992) 285-304. 

37. Leighton, F. T., A graph coloring algorithm for large scheduling problems. 
Journal of Research of the National Bureau of Standards, 85 (1979) 489-506. 

38. Mondal, S., Pal, M. and Pal, T. K ., An optimal algorithm to solve 
2-neighbourhood covering problem on interval graphs,  Intern. J. Computer 
Math. 79 (2) (2002) 189-204. 

39. Neumann, F. and Wegener, I., Randomized local search, evolutionary algorithms 
and the minimum spanning tree problem,  Theoretical Computer Science , 2007, 
Article in Press. 

40. N.Khan, A.Pal and M.Pal, (2,1)L -labelling of cactus graphs, communicated, 
2010. 

41. Pal, M., and Bhattacharjee, G. P., An optimal parallel algorithm for all-pairs 
shortest paths on unweighted interval graphs,  Nordic Journal of Computing, 4 
(1997) 342-356. 

42. Ravi, R., Marathe, M.V., and Pandu, R.,C., An optimal algorithm to solve the 
all-pairs shortest paths on unweighted interval graphs, Networks, 22 (1992) 
21-35. 

43. C. Rhee, Y. D. Liang, S. K. Dhall and S. Laksmivarahan. An )( nmO +  



Kalyani Das  
 

128 

 

algorithm for finding minimum weight dominating set in permutation graphs,  
SIAM J. Comput. (1994). 

44. Scrdjukov, A.I., On finding a maximum spanning tree of bounded radius,  
Discrete Applied Mathematics, 114 (2001) 249-253. 

45. Saha, A. and Pal, M., Maximum weight k-independent set on permutation graphs,  
Intern. J. Computer Mathematics, 80 (12) (2003), 1477-1487. 

46. Sarrafgadeh, M. and Lee, D. T., A new approach to topological via minimization, 
IEEE Trans. Computer Aided Design, 8 (1989) 890-900. 

47. Seidal, R., On the all pairs shortest path problem, in :  Proc. of 24th ACM STOC. 
ACM Press, (1992) 745-749. 

48. Pal, M. and Bhattacharjee, G.P., Sequential and parallel algorithms for 
computing the center and the diameter of an interval graph, Intern. J. Computer 
Mathematics, 59(1+2) (1995) 1-13. 

49. Pal, M. and Bhattacharjee, G.P., Parallel algorithms for determining 
edge-packing and efficient edge domination sets in an interval graph, Parallel 
Algorithms and Applications, 7  (1995) 193-207. 

50. Pal, M. and Bhattacharjee, G.P., A sequential algorithm for    finding a 
maximum weight k-independent set on interval graphs, Intern. J. Computer 
Mathematics, 60 (1996) 205-214. 

51. Pal, M. and Bhattacharjee, G.P., A data structure on interval graphs and its 
applications,  Journal of Circuits, System and Computers, 7(3) (1997) 165-175. 

52. Saha, A. and Pal, M., An algorithm to find a minimum feedback vertex set of an 
interval graph, Advanced Modeling and Optimization, 7(1) (2005) 99--116. 

53. Pal, M., Efficient algorithms to compute all articulation points of a permutation 
graph, The Korean J. Comput. Appl. Math., 5(1) (1998) 141-152. 

54. Bera, D., Pal, M. and Pal, T.K., An optimal parallel algorithm for computing cut 
vertices and blocks on permutation graphs, Intern. J. Computer Mathematics, 
72(4) (1999) 449--462. 

55. Hota, M., Pal, M. and Pal, T.K., An efficient algorithm for finding a maximum 
weight k-independent set on trapezoid graphs, Computational Optimization and 
Applications, 18 (2001) 49-62. 

56. Bera, D., Pal, M. and Pal, T.K., An efficient algorithm for generate all maximal 
cliques on trapezoid graphs, Intern. J. Computer Mathematics, 79 (10) (2002) 
1057--1065.  

57. Bera, D., Pal, M. and Pal, T.K., An optimal PRAM algorithm for a spanning tree 
on trapezoid graphs, J. Applied Mathematics and Computing, 12(1-2) (2003) 
21--29. 

58. Barman, S.C., Mondal, S. and Pal, M., An efficient algorithm to find 
next-to-shortest path on trapezoidal graph, Advances in Applied Mathematical 
Analysis, 2(2) (2007) 97-107. 

59. Das, K. and Pal, M. An optimal algorithm to find maximum and minimum 
height spanning trees on cactus graphs, Advanced Modeling and Optimization, 
10 (1) (2008) 121-134. 


