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Abstract. In agraphG, a spanning tred is said to be a tree t-spanner of the gréph
if the distance between any two verticeslinis at mostt times their distance i . The
tree t-spanner has many applications in networkks distributed environments. In this
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time, wheren is the number of vertices of the graph.
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1. Introduction

1.1. Trapezoid graph

A trapezoid graph can be represented in terms &fapezoid diagram. A trapezoid
diagram consist of two horizontal parallel lines, namedasline and bottom line. Each

line containsn intervals. Left end point and right end point ofiaterval i are a and
b (=a) on the top line ancc and d, (=c) on the bottom line. Atrapezoid i is
defined by four corner points[a,b,c,d.] in the trapezoid diagram. Let
T={1,2,...,n}, be the set oin trapezoids. LetG = (V, E) be an undirected graph
with n vertices andm edges and levV ={1, 2, ..., n}. G is said to be a

trapezoid graph if it can be represented by a trapezoid diagrach shat each trapezoid
corresponds to a vertex M and (i, j))JE if and only if the trapezoids and |

intersect in the trapezoid diagram [9]. Two trapdgd and j(>1i) intersect if and only
if either (a; =) <0 or (c; —d,) <O or both. We assume that the gra@h= (V,E)

135



S.C.Barman, S.Mondahd M.Pal

is connected. Without any loss of generality waiassthe following :
(a) atrapezoid contains four different corner poantd that no two trapezoids
share a common end point,
(b) trapezoids in the trapezoid diagram and verticeke trapezoid graph are one and
same thing,
(c) the trapezoids in the trapezoid diagrdmare indexed by increasing right end points
on the top line i.e., ifg, <b, <---<b, then the trapezoids are indexed b,3,--,n
respectively.
Figure 2 represents a trapezoid graph and it's trapezpigsentation is

2 b1 by azasbsas by asas bs bg ar by as bs aw by an b b a1z bio

Figure 2: A trapezoid graph G.
shown in Figurel. The class of trapezoid graphs includes two wetvin classes of
intersection graphs: the permutation graphs anéhtbeval graphs [11]. The permutation

graphs are obtained in the case wheye=b and ¢, =d; for all i and the interval

graphs are obtained in the case whare=c and b =d, for all i. Trapezoid graphs

can be recognized i(n*) time [13]. The trapezoid graphs were first studie¢B, 9].

These graphs are superclass of interval graphsnupetion graphs and subclass of
cocomparability graphs [12].

Lot of works have been done to solve differpnoblems on graph theory,
particularly on interval, circular-arc, permutatjdrapezoidal, etc. graphs [22-41].

1.2. Définitions
Let G =(V,E) be a graph with vertex s& and edge seE, where n be the number

of vertices inV and m be the number of edges . The distance between two
verticesu and Vv in G is denoted byd, (u,v) and it is the minimum number of edges

required to traversed frora to v or v to U.
For a connected grap& =(V,E), H=(V,E") is a spanning subgraph iff
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E'0OE. A t-spanner of a graplc is a spanning subgraphi (G) in which the
distance between every pair of vertices is at niosimes their distance irfG, i.e.,
d, (u,v) <td;(u,v), for all u,vV . The parametet is called the stretch factor. The

minimum t-spanner problem is to find &spannerH with the fewest possible edges
for fixed t. The spanning subgrapH is called a minimunt-spanner ofG and it is
denoted byH,(G) . A spanning tree of a connected gra@his an acyclic connected

spanning subgraph d& . A tree spanner of a graph is a spanning treeajatoximates
the distance between the vertices in the origingbly In particular, a spanning trde is
said to be a tred¢-spanner of a grapls if the distance between every pair of vertices in

T is at mostt times their distance i3, i.e., d; (u,v) <td;(u,v), forall u,vV .

1.3. The t-spanner problem

The minimumt -spanner problem is of two types: decision versama optimization
version.

The decision version of the problem is stated Aevis.

Decision Version:

Input: A graph G =(V,E) and k>0 are given.

Question: Whether G has at-spanner withk or fewer edges, i.e.,
|E(H,(G)) k.

The optimization version of the problem is statedadlows.
Optimization Version:

Input: A graph G =(V,E).

Problem: Find a t-spanner with fewest possible edges for a fixed
In this paper, the optimization version of the peotnis considered.

1.4. Applicationsof t-spanners

The t-spanner and treé-spanner have many applications in communicatidwaors,
distributed systems, etc. The notiontepanner was introduced by Peleg and Ullman
[17] in connection with the design of synchronizeFke synchronizer is a simulation
technology introduced by Awerbuch [1] and it isdisetransform synchronous algorithms
into efficient asynchronous algorithms to execute asynchronous network. Thie
-spanner is the underlying graph structure of §rlsronizer, and the stretch factor and
the size of thet -spanner are closely related to the time and conzation complexities
of the synchronizer respectively. Spanners alsc happlication in planning efficient
routing schemes to maintain succinct routing tall#&8]. Spanners also arise in
computational geometry in the study of approximatid complete Euclidean graphs [7].
In addition to this, it is used in computationallbgy in the process of reconstruction of
phylogenetic trees [2].

1.5. Survey of thereated works
In the construction of the spanner, the fundameptablem is to find a minimunt
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-spanner of a graph, wherg>1) is a fixed integer. The construction of minimum
2-spanner is NP-hard for general graphs [18]. InG4i showed that the construction bf
-spanner is NP-hard for eadt® 3. Determination of minimunt -spanner for each fixed
t =2, is still NP-hard on graphs with maximum degreeadp 9 [5]. Madanlal et al. [14]
have designed linear time algorithms to find minimu -spanner on interval and
permutation graphs for each fixdd> 3. Besides, whert =2 the problem remains open

for interval and permutation graphs. A linear tiahgorithm is designed to find a minimum
2-spanner on graphs with a bounded degree lessdtf&in This problem is NP-hard for
perfect graphs even for chordal graphs wHem2 [21]. However, the problem is
polynomial solvable for interval graph whei>3 [14, 15]. Fort =2, the exact
complexity of the problem still remains open, bupaynomial time 2-approximation
algorithm is available in [21]. For permutation jging, the exact complexity of determining
2-spanners remains open, but, fae 3 the problem is polynomial solvable [14]. For the
split graph, the problem is NP-hard whér 2 and polynomial solvable wheh>3
[21]. However, for the bipartite graphs the problantrivially polynomial solvable for

t =2 and NP-hard fot 23 [4]. In [14], Madanlal et al. have designed &{n+m)
time sequential algorithm to find tree 3-spanneinterval graphs, permutation graphs and
regular bipartite graphs, whem® and n represent, respectively, the number of edges
and vertices. Saha et al. [19] have designed amalgparallel algorithm to construct a tree
3-spanner on interval graphs @(logn) time using O(n/logn) processors on an
EREW-PRAM. Recently, Barman et al. [3] have desibmelinear time algorithm to
construct a tree 4-spanner on trapezoid grapt@(in) time.

1.6. Main result
Here we consider the problem of determining the f8espanner on undirected, simple
and connected trapezoid graphs. In this paperesigd an algorithm to construct a tr&e

-spanner on trapezoid graphs@(n?) time, wheren is the number of vertices.

1.7. Organization of the paper

In the next section, i.e. in Sectidh, we shall discuss about BFS tree of trapezoidigrap
and the main path between the vertideand n. In Section 3, we present the algorithm
of marking all alternative shortest paths betwdenrbot1 and the members of the last
level of the BFS tree. Some notations have alssemted in this section. Some important
results related to tre@-spanner on trapezoid graphs are also investigate®kction 4 .

In section 5, we discuss about the modified main path and lg@righm for finding tree
3-spanner of the trapezoid graph.The time complésiglso calculated in this section.

2. TheBFStreeand themain path

21 TheBFStree

It is well known that the BFS is an important gragdversal technique. It also constructs
a BFS tree. The BFS, started with an arbitraryexes. We visit all the vertices adjacent

to v and then move to an adjacent vertax At W we then visit all vertices adjacent to

W which is not visited earlier and move to an adjcertex of w. If all the vertices
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adjacent tow are already visited then go back to the venexand select a vertex
adjacent tov, which is unvisited. This process is continuddatlithe vertices in the graph
are considered [10].

A BFS tree can be constructed on general grapi®(m+m) time, wheren

and m represent respectively the number of verticesramdber of edges of the graph
[20]. Recently, Mondal et al. [16] have designedadgorithm to construct a BFS tree

T (i) with root asi OV on trapezoid graptG = (V,E) in O(n) time, wheren is
the number of vertices. A BFS trée (1) rooted at 1 of the trapezoid graph of Figite

is shown in Figure3.
We define the level of a vertexv as a distance o¥ from the rootl of the tree

T'(1) and denoted byevel (v),vV and take the level of rodt as 0. The level of
each vertex on BFS tre€ (1), 10V can be assigned by the BFS algorithm of Chen and
Das [6].

Let h be the height of the tre@ (1). The set of all vertices at levél of T (1)
is denoted by, , i.e., L, ={u:level(u) =i}.

Figure3: A BFS treeT (1) of the graph Gf Figure 2.

2.2. Computation of the main path on the BFStree T (1)
In the BFS treeT (1), rooted atl, let the distance betweeh and n be k, i.e.,
level(n)=k , where k is a fixed positive integer. Also we assume that
l1-27 -2z -+ - Z_ - n bethe shortest path betwegnand n with 1 as parent
of z,, z as parent ofz,, forall i =1,2,3,..,k-2 and z_, as parent ofn on the
BFS treeT (1) and let this path be themain path between1 and n.

Let u be the vertex on themain path at level i on T (1). The open

neighbourhood set of any vertexi is denoted by N(u) and defined by
N(u) ={x:x0OV and (x,u)JE}.

3. Marking of all alternative shortest paths
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We mark all alternative shortest paths betweenrdm(u;) =1) of T'(1) and the
members of the seL, , by the following algorithm.

Algorithm MASPT
Input: The corner point§a ,b,c,d;] of the trapezoidi forall i =1,2,---,n.

Output: All marked alternative shortest paths betweu'gnand the members of the
setL,,, which is a subgraph o6 = (V,E) and denoted byM "

Step 1: Compute open neighbourhool(x), for all X[JV .

Step 2: Construct a BFS tre@ (1) of the graphG with root as1(=u,).

Step 3: Find the setsl,,i =1,2,--,h.

Step 4: Mark the members of the sét, .

Step 5: Mark all unmarked vertices at levél—1 which are adjacent to the marked
vertices of the selt, and add the edges (if they are not present otrehe

T'(1)) between the marked vertices at levet1 and the marked vertices
at levelh and also mark these edges.

Step 6: Mark all unmarked vertices at levdél—2 which are adjacent to the marked
vertices at leveh—1 and add the edges (if they are not connectedetrél
T' (1)) between the marked vertices at levet 2 and the marked vertices
at levelh—1 and also mark these edges and go to the next level

Step 7: This process is continued until all edges betwagrand the marked vertices

of level 1 are marked.
Step 8: Delete all unmarked vertices from BFS tree andhle reduced subgraph be

*

M.
end MASPT.

The Algorithm MASPT gives the subgragi~ of G. A subgraphM " of the
graph of Figure2 is shown in the Figurel. Now we calculate the time complexity of the
Algorithm MASPT. For this purpose, we define the 4@t as follows:

P : the set of marked vertices at levielon M, i=1,2,---,h and let|P |=I,
where h is the height of the BFS tre€ (1)).
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Figure4: SubgraphM™ of the trapezoid graph G.

Theorem 1. The time complexity of marking all alternative shortest paths between the
root(Uu,) of the BFStree T"(1) and the membersof theset L, ,is O(n?).

Proof. Step 1 can be computed @(n?) time. In Step 2, BFS tree can be constructed in
O(n) time. In Step 3, computation of the sdtsi =1,2,---,h can be finished inO(n)
time. Step 4 can be completed®(l,) time. The time complexities of Step 5, Step 6 and
Step 7 are respectivel®(l,l,), O(l,) and O(Ll;+Ll, +---+1 _l,_, +I,._,). Also,

Step 8 can be completed @(n) time. Hence the total time complexity oAlgorithm
MASPT is

O(n?) +O(n) + O(n) +O(l,) + O(l,l,) + O(l,l,) +

Ol +1gly -+l ol +1,1) +O(n)
:O(n2)+o(loll)+o(|1|2+|2|3+|3|4+"'+|h—2|h—1)

=0(n*) +O((L2)(0g +1, +1, 41, )" = (U5 +17 +17 +--+17,) -

(Iolz +|0|3"'+|0|h—1 +|1|3 +|1I4 +”'+|1|h—1 +|2|4 +|2|5”'+|2|h—1 +"'+|h—3|h—1))
<O(N*) +O((1/12)(o +1, +1, +-++1,,)%)

<O(n*) +0((1/2)n*) [as I, +1 +1,+---+1,, <n]<O(n?).

Therefore, the over all time complexity of thalgorithm MASPT is O(n?)

3.1.  Somenotations
Here we introduce some notations those are usin irest of the paper.

h : the height of the BFS trde (1).
level (v) : the distance of the vertex from the rootl of T (1), i.e.,
d; (1,v) =level(v).
L . L is the set of vertices at thgh level on the BFS tred (1), i.e.,
L ={x:x lies attheith level}, i =1, 2,---,h.

k the length of the main path betweenviirtices1 and n.
U, . U, isthe vertex on the main path at level

u : U is the vertex on the modified main path at leivel

P P is the set of vertices at levél on the subgraptM ™.

F F is the set of vertices which are I butnotin P, i.e.,

F=L-P.

Sia ¢ S ={xixOL —{u} and (xu)E, (xu,)DE}

S © Sgw={x:xOL ~{u}-S 4 and (x,y)OE where
yOS iy and (x,u;) (D E}.
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Sy ={x:x0L —{u} -S4 —S| (4 and (x,y)JE where
yOS' iy and (x,u;) IE}.
Siv S =Si0 0SS
D, D, = {x:x0S ;. and (x,y)PE where forall yOPR,, —{u;,.;} }
max(b) : max(b) = maqb,:yOPR, —{u.}, (y,u,)JE and for all

x0S 4 (% y)OE}.
max(d;) : max(d;) = max{d,:yOR, —{u,}, (y.u,,)OE and for all

x[ S*,(i—l) (X, Y)UE}.
max(h'): max(b’) = maxqb,:yOR -D,—{u} and (x,y)OE where

xOD, and (y,Z0E such that zOP,, -{u,} and (zu,)OE} .
max(d;): max(d;) = maxqd,:yOR -D, —{u} and(x,y)OE where

x0OD, and (y,z2)0E suchthatzOP,, —{u.,,} and (zu,,)JE}.

S

) (1)

Before going to our proposed algorithm we provefttiewing important results relating
to tree 3-spanner on trapezoid graphs.

4. Someimportant results
In this section, according to our observationspvesent some important results relating to

the tree 3-spanner on trapezoid graphs.

Lemmal. Themembersoftheset F atanylevel i, arenot adjacent with the

members of theset P, .

Proof. Let us assume that the members of thefSetire adjacent with the members of the
set P,,. Also we assume thay be any member of the s& and z be any member of
the setP,, .
1(=u,) of the treeT (1) and z such as

Z -y - parent(y) - parent(parent(y)) — --- - U,. This implies thaty JP But

it is impossible. Therefore the members of the Betat any leveli, are not adjacent with

So, (y,z)JE and there is at least one path between the root

the members of the sd®, .

Next we consider few important results, proved layrBan et al. [3] on the BFS
tree of the trapezoid graph.

Lemma 2.
(@) If i and j aretwointernal nodes of same level on the BFStree T (1) and
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b, <b then d; <d,.
(b) There exists at most two internal nodes at any level on the BFStree T (1).

(c) If i and j aretwointernal nodesat anylevel | onthe BFStree T (1) then

(i, )OE.
(d) If parent(m)=j and parent(k) =i wherei, j are two internal nodes at any
level | and m,k are two vertices at levdl+1 and alsok is an internal node at level
| +1 on the BFS treél (1), then either(m,k) JE or (m,i)JE or both.
(e) If parent(n)=j and parent(k) =i where i, j aretwo internal nodes at any
level | and n (highest numbered vertex), k aretwo verticesat level | +1 onthe BFS
tree T'(1) theneither (k,n)JE or (k,j)OE or both.
(f) If n bethe vertex at level | and | be the vertex at level | +1 on the BFS tree

T(1),then parent(j)=n.
Other important results are presented below.

Lemma3. If X beany member of theset L —{u} suchthat (x,u)[JE and
(x,Y)OE where yOL,,, —{u,,,} then (y,u)OE.

Lemmad. If xOS 4, YOS 4 0S iy and (x,2)0E where zOL,,, —{u,}
then (y,2)0E.

Proof. Let X be any member of the s& ;) and y be any member of the set

S‘,(i—l) O S':(i—l) :

So in the trapezoid diagraf, <b, as (X, u,)E. 3)
Again (x,2)0E where zOL,,, —{u,,,} . Thereforeb, <a <b,. 4)
So from (1) and (2), we haveb, <b, <b, . This implies that(y,z) U E.

Lemma5. If xOS ;0S5 and (y,u,,)[DE where yOL,,—{u.,} then
x,y)OE.

Proof. Let X be any member of the s& ;,, 0 S ;) then (x,u;,,) DE.

So, eithera. <b, or ¢c. <d, or both. (5)

Ui+l Ui+l
Now (y,u.,)[0E where yOOL,, —{u,,,}. So in the trapezoid diagram, the trapezoid
corresponding to the vertey will be scanned first than the trapezoid corresium to
the vertexu,,, ( by the Algorithm TBFS [16]).

So,b,<a. andd, <c. . (6)

Yi+1 Yi+1
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Therefore from(1) and (2), we haveb, <a. <b, or d,<c. <d,. Thisimplies

Yi+1 Yi+1

that (x,y)OE.

Lemma6. If (z,X)[/E where zOD,, xO Sf(i_l) — D, thenthereexists at least one
member yOL,,, suchthat (y,x)OE foral xOS,,,-D;.
Lemma7. If u_, - U, — u,,beapartofthemain path (SeeFigure5) and (x,y) OE
but (y,u.,)ME where xOS ), yOL,, ~{u..} then

U, - u(=u) - u,(=u,,) will beapart of the modified main path.

Lemma8. If u, — U - u,, beapartofthemainpathand (z,x)[1 E but
(xy)OE, (y,u.,)OE where zOD,, xOJ S*,(i—l) -D, and yOR,, —{u,,} then
U_, - U (=) - u,, will bea part of the modified main path where b,,, =max(h)

or d, = max(d,) .

1+

Level
uy_, i—1
T o i
u;
Y ' i+1
Uiy

Figure5: A part of the BFS tred (1).
Lemma9. If u_ - U, - u,, beapartofthemainpathand (x,y)OE, (y,2)0E
and (zu,,) DE where xOD,, yOP -D, -{u} and zOP,, —{u,,} then
U, — U - U,, will beapart of the modified main path where b. = max(b’) or
d.=max(d)) and b, =maxb,:z0R,; and (zu)UE} or

d,  =maxd,:z0R,, and (zu )OE}.

1+

Lemmal0. If S,=¢ then uy(=u,) - U, — U, canbetakenasa partof the
modified main path.

5. TheAlgorithm
5.1. Themaodified main path

In Section 2, we construct a BFS tre€ (1) of the trapezoid graplc and compute the
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main path. But it is obvious thak (1) may or may not be a tre8-spanner. So, for this

purpose we modify the main path as well as the Tre€l) with the help of the lemmag
, 8 and 9. The modified tree is denoted bly(1). the treeT(1) is obtained from

T'(1) by interchanging some or all edges of the maih pafT " (1) with other edges of

the graphG . Thus the main path 6f (1) has been changed and the changed main path
is called the modified main path or the main pdthT¢1). The modification can be done
by the algorithm TRBSPT which is discussed in the next subsection.

5.2. TheAlgorithm
To find the tree 3-spanner on trapezoid graphsissedonstruct a BFS tre@ (1) with

root as 1 and find the main path. Also we assuraeth =1 be the initial member of the
modified main path as it is the root of the tr€e(1). Then we modify the BFS tree

T'(1) to construct a tree 3-spanner which is denoted £). The main algorithm to
find a tree 3-spanner of a trapezoid graph is pitesebelow.

Algorithm TR 3SPT

Input: A trapezoid graphG with the corner point§a,,b,c,,d.] of the trapezoid
i foralli=1,2,--,n.

Output: Tree 3-spannefl (1) of the trapezoid grapi® .

Stepl. Construct a BFS tred@ (1) with root as1 and let
Uy - U — U, - - - U, bethe main path betweehand n, where
1=u, and n=u,.

Step 2. Compute the setd; for i =1,2,---,h.

Step 3. Mark all alternative shortest paths betwaq')n and the members of the set

L,.
Step 4. Compute the set®,F, for i =1,2,---,h.

Step 5. Let u, — U, — U, be a part of themain path where u, = u, and compute
the setsS,, S, S, andS,.

Step 6. 1f S,=¢ or S,#¢ and (X,Y)OE, (y,u,) DE where
XOS o, YOPR, —{u,} , thenuy — u; - u, will be the the part of the
modified main path where, =u, and u, =u, (by Lemma 7, Lemma 10).
Elseif (zX)E, (xYy)OE and (y,u,)JE where zOD,, x0OS,
and yOPR, —{u,} thenu, - u, - u, will be a part of the modified main
path whereu, =u, and b,, = max(by) or d, =max(d,)
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(by Lemma 8).
Elseif(x,y)OE, (y,20E and (zu,) JE where x(D,,
yOPR -D,-{u} and zOPR,-{u,} thenu, - U, — u, will be a part of
the modified main path whetogI =max(b;) or dUI =max(d,) and
b,, =max{b, : zOP, and (z,u)OE} or
d,, =max{d,:z0P, and (z,u;) DE} (by Lemma 9).
Step 7. Set parent(x) =u, where xOOL, —{u;} and (x,u;) M E,(x,u,) I E
and compute the s&, , ={x:xOL, —{u;} and parent(x) =ug}.
Step 8. Set parent(y) =u, where yOL, —{u;}-C,,, (y,u;)JE and
(y,X)OE where xOC, , and compute the set
C,,={x:xOL ~{u} and parent(x) =u;}.
Step 9. Seti =2 and if i <h then go to next step, else go to Itép
Step 10. Let u_, - U, — Uu,,,be a part of themain path where
u =u andb. =max{b :x0OPR, and(x,u)0E} or

Y1

d. =max{d, :x0OP,, and (x,u)0E}.

Yis1
Step 11. Compute the set§ ;. Sy » Sy and Sy
Step 12.1f (x,y)OE, (y,u,,)DE where xO S*,(i—l)’ylj P —{U.},
thenu_, - U - u,, will be a part of the modified main path where
u =u, andu,, =Uu,, (byLemma7).
Elseif (zx)[DE, (x,y)OE and (y,u,,)JE where zOD,,
x0S 4, YOR,—{u}thenu, - u - u,, will be a part of the
modified main path where;, =u; and b, =max(y) or
d, =max(d) (byLemma 8).
Elseif(z,x)0E, (x,y)OE and(y,u,,) JE where zOD;,
x0S 4. YOP.,—{u,}thenu , - u - u,, wil be apartof the
modified main path where
b. =max(h) or d. =max(d) and

b,,, =maxb,:z0R,, and (zu))OE} or
d

o,y = Maxqd,:z0OR,, and (z, u)OE} (by Lemma 9).
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Step 13.1f (x,u;) OE where XO L =C 42 ~Cyaypy ~{Ui s} then set
parent(X) = u; and compute the se_,,;, ={x:x0L_, —{u ;} and
parent(x) =u'}.
Else set parent(x) = u_, and compute the sets
Cii-ni = Cipoy DX XO Ly = Cyyygy = Cgygy ~{Uis} and
parent(x) =u_} .
Step 14. Set parent(x) =u_, where xOL —{u’} and (x,u’) D E,(x,u,,) N E
and compute the se® ;_,, ={x: xOL -{u} and parent(x) =u_}.
Step 15. Set parent(y) =u; where yOL, —{u} -C, ;. (y,u/)JE and
(y,x)OE where xOC, ,_;, and compute the sets
C, ={y:yOL —{u} and parent(x) =u}.
Step 16. Set i =i +1.
Step 17. If i =h then
if (x,u;)JE and (y,u,,)JE where
XOL,y =Chapr ~Coapa ~{Una} and yOL, —{u;} then set
parent(x) =u,, parent(y)=u. .
Else setparent(x) =u,_, and parent(y)=u,.

Else go to Sted 0.
end TR3SPT.

Using Algorithm TR 3SPT we get a tree, denoted Bly(1) which is shown in
Figure 6. Next we are to show that the trd@g1) is a tree 3-spanner.
It can be shown that the tree T(1) is a tree 34span

Lemmall. Thetree T(1) isatree3-spanner.

Next we shall discuss about the time complexitythef Algorithm TR3SPT
through following theorem.
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Level

5

Figure6: Tree 3-spannef(1) of the graph @f Figure 2.

Theorem 2. Thetime complexity to find atree 3-spanner on trapezoid graphsis O(n?),
where n isthe number of vertices.

Proof. A BFS treeT (1) and the main path can be computedd(n) time, in Stepl.
Step 2 can be computed iD(n) time. Marking of all alternative shortest pathsieen

u, and the members of the skf, can be computed i©(n*) time, in Step3. The time
complexity to compute the sefd,F, for i =1,2,---,h, in Step4, is O(n). Step5
can be completed ifD(n?) time. The running time of Step is O(n%). Step 7, can be
finished in O(n?) time. Also the time complexity of the Stépis O(n?). The time
complexity of the Ste® is constant time. SteftO can be completed i©(n) time. In
Step11, the setsS 4, S 4. Sy and S, can be computed iIO(n®) time.
Also Step12 can be completed ifD(n?) time. The time complexity of each step, Step
13, Step14 and Stepl5 is of O(n?). Step16 can be run in constant time. The time
complexity of Stepl7 is O(n?). Hence, the over all time complexity oflgorithm
TR 3SPT is O(n?).
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