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Abstract. Radiation-conduction interaction with steady streamwise surface 
temperature variation over a vertical cone has been analyzed by using finite 
difference method. The surface rate of heat transfer eventually alternates in sign with 
distance from the leading edge, but no separation occurs unless the amplitude of the 
thermal modulation is sufficiently high. Numerical results are obtained for different 
values of the physical parameters, the radiation parameter Rd, Prandtl number Pr and 
the surface temperature wave amplitude a. It is found that as Pr decreases, the skin 
friction increases and at 01.0Pr = , the wave amplitude becomes higher than that at 
Pr = 7.0. It is also found that the rate of heat transfer increases as Rd increases but at 
a decreasing rate, i.e. when Rd =1 the skin friction and the rate of heat transfer 
increase significantly in respect of Rd =10. We have also found that as the surface 
temperature wave amplitude increases, the rate of heat transfer also increases and for 
decreasing of the wave amplitude it decreases gradually. 
 
Keywords: radiation, skin friction, surface temperature, wave amplitude, heat 
transfer   
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1. Introduction 
Radiative convective flows are encountered in many industrial and environmental 
processes e.g. heating and cooling chambers, fossil fuel combustion energy 
processes, evaporation from large open water reservoirs, astrophysical flows, solar 
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power technology and space vehicle re-entry. Mathematically the equations for 
radiative heat transfer with absorption, scattering and emission can be generated by 
one of two approaches, namely the continuum model or the spectral radiative 
treatment of a single particle. Details of the derivation of the general equation of 
radiative heat transfer are provided in the classic monograph by Chandrasekhar 
(1960). 
            Little is currently known about the boundary layer flows of radiating fluids. 
The inclusion of conduction-radiation effects in the energy equation, however, leads 
to a more highly nonlinear partial differential equation. The majority of studies 
concerned with the interaction of thermal radiation and natural convection were 
made by Sparrow and Cess (1962), Arpaci (1972), Cheng and Ozisik (1972), 
Hasegawa et al.(1972), and Bankston et al. (1977) for the case of a vertical semi-
infinite plate. Soundalgekar and Takhar (1993) studied radiation effects on free 
convection flow of a gas past a semi-infinite flat plate using Cogley-Vincentine-
Giles equilibrium model and Hossain and Takhar (1996) analyzed the effect of 
radiation using the Rosseland diffusion approximation which leads to a nonsimilar 
mixed convective boundary-layer flow of an optically dense viscous incompressible 
fluid past a heated vertical plate with a uniform free stream velocity and surface 
temperature. The boundary layer equations were obtained using a group of 
transformations and they are valid in both the forced convective and free convective 
limits. The resulting equations were solved using an implicit finite difference 
method. The problem of natural convection-radiation interaction on boundary layer 
flows with the Rosseland diffusion approximation has been studied by Hossain and 
Alim (1997) and Hossain et al. (1998). Hossain and Rees (1998) investigated the 
effect of radiation-conduction interaction in the mixed convective flow along a 
slender impermeable vertical cylinder. Kutubuddin, Hossain and Pop (1999a, 1999b) 
analyzed the effect of conduction-radiation interaction on the forced, free and mixed 
convection flow from a horizontal cylinder. Various papers have been published 
which deal with the effects of surface variations; for example, Yao (1983) and 
Moulic and Yao (1989a, 1989b) have sought to investigate the effects of streamwise 
surface undulations of free and mixed convection from vertical surfaces held at 
uniform temperatures. Rees (1999) has been concerned with the effect of sinusoidal 
surface temperature variations, although in that case the surface variations were 
spanwise, thereby giving rise to a three-dimensional flow-field. 
           A significant number of authors have investigated laminar free convection for 
two-dimensional axisymmetric flows. Merk and Prins (1953, 1954) developed the 
general relations for similar solutions on isothermal axisymmetric forms and showed 
that the vertical cone has such a solution. Approximate boundary layer techniques 
were utilized to arrive at an expression for the dimensionless heat transfer. Broun et 
al. (1961) contributed two more isothermal axisymmetric bodies for which similar 
solutions exist, and used an integral method to provide heat transfer results for these 
and the cone over a wide range of Prandtl number. Similarity solutions for free 
convection from the vertical cone have been exhausted by Hering and Grosh (1962). 
They showed that the similarity solutions to the boundary layer equations for a cone 
exist when the wall temperature distribution is a power function of distance along a 
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cone ray. In their investigation, they presented the results by numerical integration 
of the transformed equations for non-isothermal temperature distributions for Prandtl 
number equals to 0.7. Latter, Hering (1965) extended the analysis to investigate for 
low Prandtl numbers. In the present paper, we have investigated the combined 
effects of surface temperature variations and radiation on the steady boundary-layer 
flow of a Newtonian fluid from a heated vertical cone. It is well known that power-
law surface temperature distributions (and also power-law surface heat fluxes) give 
rise to self-similar boundary layer flows (Ostrach, 1952; Sparrow and Gregg, 1958). 
But here we are interested in another form of surface variation, namely, sinusoidal 
variations about a mean temperature, which is held above the ambient temperature 
of the fluid. As in Rees (1999), this type of surface distribution may be taken as a 
simplified model of the effects of a periodical array of heaters behind or within the 
heated surface. An accurate analysis of such a configuration requires a detailed 
examination of the effects of solid conduction within the heated surface, but the aim 
of the present work is to simplify the problem by imposing a surface temperature 
distribution. In this way, we can determine a large amount of information about the 
resulting flow using both numerical methods. 
 
2. Mathematical formulations 
       A steady two-dimensional laminar free convection flow of the boundary layer 
induced by a heated semi-infinite surface immersed in an incompressible Newtonian 
fluid is considered. In particular, the heated surface is maintained at the steady 
temperature, fluid having temperature, T, from a vertical cone. The physical 
coordinates (x, y) are chosen such that x is measured from the leading edge in the 
stream wise direction and y is measured normal to the surface of the cone. The 
coordinate system, velocity direction and the gravity orientation are shown in Figure 
1.  
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Figure 1: Physical model and the co-ordinate system 

 
The boundary layer form of the equations for flow is 
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where ∞T  is the ambient fluid temperature, Tw is the mean-surface temperature such 
that ∞> TTw , a is the relative amplitude of the surface temperature variations and 
2d is the wavelength of the variations. After a suitable non-dimensionalisation the 
steady two-dimensional equations of motion are given by 
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In the derivation of equation (2) the Boussinesq approximation has been assumed. 
We note that the Grashof number Gr has been based on d, half the dimensional 
wavelength of the thermal waves. In the equations, u and v are, respectively, the 
velocity components in the x and y directions respectively, T is the fluid temperature, 
ν is the kinematic viscosity, β is the thermal expansion coefficient, α is the thermal 
diffusivity, κ is the thermal conductivity, a is the Rosseland mean absorption 
coefficient, σ is the Stephan-Boltzman constant, σs is the scattering coefficient. 
When the surface temperature is uniform and the Grashof number is very large, the 
resulting boundary-layer flow is self-similar. But the presence of sinusoidal surface 
temperature distributions, such as that given by Eq. (1), renders the boundary-layer 
flow non-similar.  
 
The boundary-layer equations are obtained by introducing the scaling 
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into equation (2), formally letting Gr become asymptotically large and retaining 
only the leading order terms. Thus we obtain 
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where the asterisk superscripts have been omitted for clarity of presentation. 
Equation (9) serves to define the pressure field in terms of the two velocity 
components and is decoupled from the other three equations. Therefore, we shall not 
consider it further. As the equations are two-dimensional we define a stream 
function ψ, in the usual way.  
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and therefore, Eq. (7) is satisfied automatically. Guided by the familiar self-similar 
form corresponding to a uniform surface temperature, we use the substitution 
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where Pr and Rd are respectively the Prandtl number and radiation parameter, which 
are defined as  
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The boundary conditions are  
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In equations (14)-(16), primes denote derivatives with respect to η. 
 
3. Numerical solutions 
The parabolic system of equations (14)-(15) together with boundary conditions (16) 
is non-similar and its numerical solution must be obtained using a marching method. 
The results presented here were obtained by using the Keller-box method. After 
reducing the equations (14) and (15) to first-order form in η, the subsequent second-
order accurate discretisation based halfway between the grid points in both the η- 
and x-directions yields a set of nonlinear difference equations which are solved 
using a multi-dimensional Newton-Raphson iteration scheme. The results presented 
in Figure 2 to Figure 15 are based on uniform grids in both coordinate directions. 
There were 101 grid-points lying between η = 0 and η = 10 and 201 between x = 0 
and x = 10. We restrict the presentation of our results to the three values of the 
Prandtl number, Pr = 0.01 (liquid metal) Pr = 0.7 (air) and Pr = 7.0 (water). 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Figure 2:  Skin friction against ξ  for 
Rd = 0.0, a = 0.2 and  Pr = 7.0,  0.7, 
0.01. 

Figure 3: Skin friction against ξ for 
Rd = 0.0, a = 0.0, 0.2, 0.4, 0.6, 0.8, 
1.0 at Pr = 7.0 

Figure 2 shows the evolution of )0( =′′ ηf  with x, a scaled surface shear 
stress, for constant values of the temperature wave amplitude, a, and in absence of 
the radiation parameter Rd for various values of Pr.  In this figure, we observe that as 
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Pr is decreasing, the skin friction is increasing. One point may be mentioned here 
that when Pr = 0.01, the wave amplitude is higher than that at Pr = 7.0. It is found 
that as x increases, the amplitude of oscillation of the shear stress curves decays 
slowly. In Figure 3- Figure 5, we show the results of the evolution with x of surface 
shear stress for various values of the temperature wave amplitude, a, and the 
constant radiation parameter Rd for different values of Pr. In these figures, we 
observe that as Pr is decreasing, the skin friction is increasing. We also observe that 
as the surface temperature wave amplitude is increasing, shear stress is also 
increasing and for decreasing of the wave amplitude it is decreasing gradually. Some 
aspects of the overall behavior of these curves may be explained by observing that 
the boundary layer is thinner when the surface temperature is relatively high and 
thicker when it is low. Thus, we should expect high shear stresses and rates of heat 
transfer at, or perhaps just beyond, where the surface temperature attains its 
maximum values. There is an obvious qualitative difference between the curves 
shown in Figure 2 and those in Figure 5. It is found that as x increases, the amplitude 
of oscillation of the shear stress curves decays slowly with x. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 

 
Now we pay our attention to the figures presented in Figure 6 to Figure 8, 

where the evolution with x of surface shear stress for constant values of the 
temperature wave amplitude, a, and the various radiation parameter Rd for different 
values of Pr are shown. An interesting finding of the present study is that, when the 
radiation parameter Rd is increasing, the skin friction is also increasing but when Rd 
= 0, the result of skin friction is exactly the same as found by Rees (1999). In this 
study, we found that the skin friction is increasing as Rd is increasing but at a 

Figure 4: Skin friction against ξ for Rd 
= 0.0, a = 0.0, 0.2, 0.4, 0.6, 0.8,  1.0 at 
Pr = 0.7 

Figure 5: Skin friction against ξ for Rd 
= 0.0, a = 0.0, 0.2, 0.4, 0.6, 0.8, 1.0 at Pr 
= 0.01 
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decreasing rate. That is, when Rd = 1.0 then skin friction increases significantly in 
respect of Rd =10.   
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

 
Now we analyze the curves represented in Figure 9 to Figure 15. Figure 9 

shows the evolution with x of surface rate of heat transfer for constant values of the 
temperature wave amplitude, a, and the constant radiation parameter Rd for various 
values of Pr.  In this figure, we observe that as Pr decreases, the rate of heat transfer 
increases. It should be mentioned here that when Pr = 7.0, the wave amplitude is 
higher than that at Pr = 0.01. It is found that as x increases, the amplitude of 
oscillation of the rate of heat transfer increases significantly. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Skin friction against ξ for Rd = 0.0, 1.0, 5.0, 10.0  a = 0.2 at  Pr = 0.01. 
 

Figure 7: Skin friction against ξ 
for Rd = 0.0, 1.0,  5.0, 10.0 and a 
= 0.2, at Pr = 0.7 

Figure 6: Skin friction against ξ for Rd = 
0.0,1.0, 5.0, 10.0 and a = 0.2 at Pr = 7.0 
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          In Figure 10 to Figure 12, we observe the evolution with x of surface rate of 
heat transfer for various values of the temperature wave amplitude, a, and the 
constant radiation parameter Rd for different values of Pr.  In these figures, we 
observe that as Pr is decreasing, the rate of heat transfer is increasing. We also 
observe that as the surface temperature wave amplitude is increasing, the rate of heat 
transfer is also increasing, and for decreasing the wave amplitude it is decreasing 
gradually. An important aspect of the overall behavior of these curves may be 

Figure 9:  Rate of heat transfer 
against ξ  for Rd = 0.0,  a = 0.2,  Pr 
= 7.0, 0.7, 0.01 

 

Figure 10: Rate of heat transfer 
against ξ for Rd = 0.0, a = 0.0, 0.2, 
0.4, 0.6, 0.8, 1.0 at Pr = 7.0 

Figure 11: Rate of heat transfer against 
ξ  for Rd = 0.0, a = 0.0, 0.2, 0.4, 0.6, 
0.8, 1.0 at Pr = 0.7 

Figure 12: Rate of heat transfer 
against ξ for Rd = 0.0, a = 0.0, 0.2, 0.4,  
0.6, 0.8, 1.0 at Pr = 0.01 
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explained by the fact that the boundary layer is thinner when the surface temperature 
is relatively high and thicker when it is low. This arises because relatively high 
surface temperatures induce relatively large upward fluid velocities with the 
consequent increase in the rate of entertainment into the boundary layer. There is an 
obvious qualitative difference among the curves shown in Figure 9 to Figure 12. It is 
found that as x increases, the amplitude of oscillation of the rate of heat transfer 
curves increases gradually with x. Indeed, the curves in Figure 10 to Figure 12, we 
may suggest that, whatever the value of a is, there will always be a value of x 
beyond which some part of the rate of the heat transfer curve between successive 
surface temperature maxima will be positive. This somewhat unusual phenomenon 
for boundary layer flows which may be explained by noting that when relatively hot 
fluid encounters a relatively cold part of the heated surface, the overall heat transfer 
will be from the fluid into the surface rather than the other way around.  
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 13 to Figure 15 show the evolution with x of surface rate of heat 

transfer for constant values of the temperature wave amplitude, a, and the various 
radiation parameter Rd for different values of Pr. The most interesting part of this 
analysis is that, when radiation parameter Rd is increasing, the rate of heat transfer is 
also increasing but when Rd = 0, the result of rate of heat transfer is exactly the same 
as obtained by Rees (1999). In this study, we found that the rate of heat transfer is 
increasing as Rd is increasing but at a decreasing rate i.e. when Rd =1 the rate of heat 
transfer increases more in respect of Rd =10. 
 
 

Figure 13: Rate of heat transfer against 
ξ  for Rd = 0.0, 1.0, 5.0, 10.0, a = 0.2 at  
Pr = 7.0 

Figure 14: Rate of heat transfer against ξ 
for Rd = 0.0, 1.0, 5.0, 10.0,  a = 0.2   at Pr 
= 0.7 
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Figure 15: Rate of heat transfer against ξ for Rd = 0.0, 1.0, 5.0, 10.0, a = 0.2 at Pr = 
0.01. 
 
4. Conclusions 
A numerical study on the effect of radiation-conduction interaction with steady 
streamwise surface temperature variation over a vertical cone has been investigated 
numerically by using a finite difference method. The effect of variations in the Plank 
number, the surface temperature wave amplitude, and the Prandtl number on the 
shear stress and rate of surface heat transfer have been presented graphically. We 
restrict the presentation of our results for three values of the Prandtl number, 

01.0Pr = (Liquid Metal) Pr = 0.7 (air) and Pr. = 7.0 (water). In this study, we 
observed that as Pr decreases, the skin friction increases. It is found that when 

01.0Pr = , the wave amplitude becomes higher than that at Pr = 7.0, and as x 
increases, the amplitude of oscillation of the shear stress curves decays slowly. An 
interesting finding is that, when the radiation parameter Rd increases, the skin 
friction also increases but when Rd = 0, the skin friction is exactly the same as that 
obtained by Rees (1999). In the present study, however, we have found that the skin 
friction increases as Rd increases but at a decreasing rate, i.e. when Rd =1 the skin 
friction increases more in respect of Rd = 10. We observe that as Pr decreases, the 
rate of heat transfer increases and at Pr = 7.0, the wave amplitude becomes higher 
than that at Pr = 0.01. It is found that as x increases, the amplitude of oscillation of 
the rate of heat transfer is increasing significantly. For the case of surface rate of 
heat transfer, for various values of the temperature wave amplitude, a, and the 
constant radiation parameter Rd for different values of Pr, we observe that as Pr 
decreases, the rate of heat transfer increases. We also observe that as the surface 
temperature wave amplitude increases, the rate of heat transfer also increases, and 
for decreasing of wave amplitude it decreases gradually. It is found that the rate of 
heat transfer increases as Rd increases but at a decreasing rate and when Rd =1, the 
rate of heat transfer increases significantly in respect of Rd =10.   
 

 

-0 .. 2 2 

-0 . 2 

-0 . 1 8 

-0 . 1 6 

-0 . 1 4 

-0 . 1 2 

-0 . 1 

-0 . 0 8 

-0 . 0 6 

-0 . 0 4 

-0 . 0 2 

0 

0 2 4 6 8 1 0

g’ 

ξ

R d  =  0 

R d  =  1 0 



Md. Kutub Uddin, Rabindra Nath Mondal, Md. Sharif Uddin and  
Sanjit Kumar Paul 

 162

REFERENCES 
 
1. Arpaci, V. S., Effect of thermal radiation with free convection from a heated 

vertical plate, Int. J. Heat Mass Transfer, 15 (1972) ,1243-1252. 
2. Bankston, J. D., Lloyd, J. R. and Novonty, J. L.,  Radiation convection 

interaction in an absorbing-emitting liquid in natural convection boundary layer 
flow, J. Heat Transfer, 99 (1977), 125-127. 

3. Broun, W. H., Ostrach, S. and Heighway, J. E., Free convection similarity flows 
about two-dimensional and axisymmetric bodies with closed lower ends, Int. J. 
Heat Mass Transfer, 2 (1961), 121-135. 

4. Cheng, E. H. and Ozisik, M. N., Radiation with free convection in an absorbing, 
emitting and scattering medium, Int. J. Heat Mass Transfer, 15  (1972), 1243-
1252. 

5. Chandrasekhar, S., Radiative Heat Transfer, Dover, New York, 1960. 
6. Hasegawa, S. Echigo, R. and Fakuda, K.,  Analytic and experimental studies on 

simultaneous radiative and free convective heat transfer along a vertical plate, 
Proc. Japanese Soci. Mech. Engineers,  38 (1972), 2873 - 2883 and  39, 250-
257. 

7. Hering, R. G. and Grosh, R. J.,  Laminar free convection from a non-isothermal 
cone, Int. Heat Mass Transfer, 5 (1962), 1059-1068. 

8. Hering, R. G., Laminar free convection from a non-isothermal cone at low randtl 
numbers, Int. J. Heat Mass Transfer, 8 (1965), 1333-1337. 

9. Hossain, M. A. and Takhar, H. S., Radiation effect on mixed convection along a 
vertical plate with uniform surface temperature, Heat and Mass Transfer, 35 
(1996), 243-248. 

10. Hossain, M. A. and Alim, M. A., Natural convection-radiation interaction 
boundary layer flow along a thin vertical cylinder, Heat and Mass Transfer, 36 
(1997), 515-520. 

11. Hossain, M. A., Alim, M. A. and S. Takhar, H. S., Mixed convection boundary 
layer flow along a vertical cylinder,   J. Appld. Mech. Engng., 20 (1998), 117-
122. 

12. Hossain, M. A. and Rees, D. A. S., Radiation-conduction interaction on mixed 
convection flow along a slender vertical cylinder, AIAA J. Thermophysics and 
Heat Transfer, 12 (1998), 611-614. 

13. Kutubuddin, M., Hossain M. A. and Thakar, H. S., Radiation interaction on 
forced and free convection across a horizontal cylinder, Applied Mechanics and 
Engineering, 4(2)  (1999a), 219-235. 

14. Kutubuddin, M., Hossain, M. A. and Pop, I., Effect of conduction-radiation 
interaction on the mixed convection flow from a horizontal cylinder, Heat and 
Mass Transfer, 35 (1999b), 307-314 

15. Moulic, S. G., Yao, L. S., Mixed convection along a wavy surface, Trans. ASME 
Journal of Heat Transfer, 111 (1989a), 974-979. 

16. Moulic, S. G., Yao, L. S., Natural convection along a vertical wavy surface with 
uniform heat flux, Trans. ASME Journal of Heat Transfer, 111 (1989b), 1106-
1108. 



A Numerical Study on Radiation-conduction Interaction with Steady Streamwise 
Surface Temperature Variations Over a Vertical Cone 

 163

17. Merk, E. J. and Prins, J. A., Thermal convection in laminar boundary layer I, 
Appl. Sci. Res., 4A (1953), 11-24. 

18. Merk, E. J. and Prins, J. A., Thermal convection in laminar boundary layer II, 
Appl. Sci. Res., 4A (1954), 195-206. 

19. Ostrach, S.,  An analysis of laminar free convection flow and heat transfer about 
a flat plate parallel to the direction of the generating body force. NACA IV 
2635, 1952. 

20. Rees, D. A. S., The effect of steady streamwise surface temperature variation on 
vertical free convection, Int. Journal of   Heat Mass Transfer, 42 (1999), 2455-
2464. 

21. Soundalgekar V. M. and Takhar H. S., Radiative free convection flow of gas 
past a semi-infinite vertical plate, Modeling, Measurement and Control, B51, 
(1993), 31-40. 

22. Sparrow, E. M. and Gregg, J. L., Similar solution for free convection from a non 
isothermal vertical plate, Trans. ASME Journal of Heat Transfer, 80 (1958), 
379-384. 

23. Sparrow, E. M. and Cess, R. D., Radiation Heat Transfer, Int. J. Heat Mass 
Transfer, 5 (1962), 179-806. 

24. Yao, L. S., Natural convection along a vertical wavy surface, Trans. ASME 
Journal of Heat Transfer, 105 (1983), 465-468. 


