Annals of Pure and Applied Mathematics Vol. 2, No. 2, 2012, 185-193 ISSN: 2279-087X (P), 2279-0888(online) Published on 28 December 2012 www.researchmathsci.org Annals of

Pure and Applied <u>Mathematics</u>

Some Properties of 0-distributive Nearlattice

Md. Zaidur Rahman¹, Md. Bazlar Rahman¹ and A.S.A.Noor²

¹Department of Mathematics Khulna University of Engineering and Technology E mail: <u>mzrahman1968@gmail.com</u>

> ²Department of ECE East West University, Dhaka E mail: noor@ewubd.edu

Received 3 December 2012; accepted 21 December 2012

Abstract. In this paper we studied different properties of 0-distributive nearlattice. Here we prove that for a filter A of S, $A^0 = \{x \in S | x \land a = 0, \text{ for some } a \in A\}$ is an ideal if and only if S is 0-distributive. Then we include several characterizations of 0-distributive nearlattice using A^0 where A is a filter. Finally we show that S is 0-distributive if and only if for all $a, b, c \in S$,

 $(a \land (b \lor c))^{\perp} = (a \land b)^{\perp} \cap (a \land c)^{\perp}$ provided $b \lor c$ exists.

Keywords: 0-distributive nearlattice, Maximal filter, Prime filter, Minimal prime down set, Minimal prime ideal.

AMS Mathematics Subject Classification (2010): 06A12, 06A99, 06B10

1. Introduction

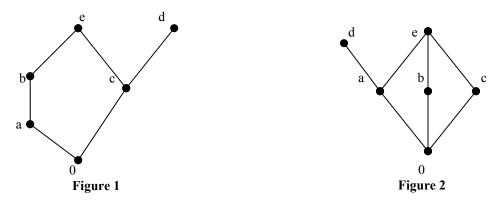
J.C. Varlet [5] has given the definition of a 0-distributive lattice to generalize the notion of pseudocomplemented lattice. By [5], a lattice with 0 is called a 0-distributive lattice if for all $a,b,c \in L$ with $a \wedge b = 0 = a \wedge c$ imply $a \wedge (b \vee c) = 0$. Then many authors including [1] and [4] studied the 0-distributive properties in lattices and meet semilattices. Recently [6] have studied the 0-distributive property in a nearlattice.

A *nearlattice* is a meet semilattice together with the property that any two elements possessing a common upper bound have a supremum. This property is known as the *upper bound property*.

A nearlattice S is called *distributive* if for all $x, y, z \in S$, $x \land (y \lor z) = (x \land y) \lor (x \land z)$, provided $y \lor z$ exists in S. For detailed literature on nearlattices, we refer the reader to consult [2] and [3].

A nearlattice S with 0 is called 0-distributive if for all $x, y, z \in S$ with $x \wedge y = 0 = x \wedge z$ and $y \vee z$ exists imply $x \wedge (y \vee z) = 0$.

It can be easily proved that it has the following alternative definition: S is 0-distributive if for all $x, y, z, t \in S$ with $x \wedge y = 0 = x \wedge z$ imply $x \wedge ((t \wedge y) \vee (t \wedge z)) = 0$; $(t \wedge y) \vee (t \wedge z)$ exists by the upper bound property of S. Of course, every distributive nearlattice S with 0 is 0-distributive. Figure 1 is an example of a non-modular nearlattice which is 0-distributive, while Figure 2 gives a modular nearlattice which is not 0-distributive.



A subset I of a nearlattice S is called a *down set* if $x \in I$ and for $t \in S$ with $t \leq x$ imply $t \in I$. An *ideal(down set)* I in a nearlattice S is a non-empty subset of S such that it is a down set and whenever $a \lor b$ exists for $a, b \in I$, then $a \lor b \in I$. A proper ideal I in S is called a *prime ideal(down set)* if $a \land b \in I$ implies that either $a \in I$ or $b \in I$. A non-empty subset F of S is called a filter if $t \geq a$, $a \in F$ implies $t \in F$ and if $a, b \in F$ then $a \land b \in F$. A proper filter F in S is called *prime* if $a \lor b$ exists and $a \lor b \in F$ implies either $a \in F$ or $b \in F$. In lemma 1, we prove that F is a filter of S if and only if S-F is a prime down set. Moreover, it is easy to shown that a prime down set P is a prime ideal if and only if S - P is a prime filter.

A proper filter M of a nearlattice S is called *maximal* if for any filter Q with $Q \supseteq M$ implies either Q = M or Q = S. Dually, we define a *minimal prime ideal (down set)*

Let L be a lattice with 0. An element a^* is called the *pseudocomplement* of a if $a \wedge a^* = 0$ and if $a \wedge x = 0$ for some $x \in L$, then $x \le a^*$. A lattice L with 0 and 1 is called *pseudocomplemented* if its every element has a pseudocomplement. Since a nearlattice S with 1 is a lattice, so pseudocomplementation is not possible in a general nearlattice. A nearlattice S with 0 is called sectionally

pseudocomplemented if the interval [0, x] for each $x \in S$ is pseudocomplemented. For $A \subseteq S$, we denote $A^{\perp} = \{x \in S \mid x \land a = 0 \text{ for all } a \in A\}$. If S is distributive then clearly A^{\perp} is an ideal of S.

Moreover, $A^{\perp} = \bigcap_{a \in A} \{\{a\}^{\perp}\}$. If A is an ideal, then obviously A^{\perp} is the

pseudocomplement of A in I(S). Therefore, for a distributive nearlattice S with 0, I(S) is pseudocomplemented.

2. Some Results

Lemma 1. In a nearlattice S, F is a proper filter if and only if is a prime down set.

Proof: Let F be a proper filter. Let $x \in S - F$ and $t \leq x$. Then $x \notin F$ and so $t \notin F$ as F is a filter. Hence $t \in S - F$ and so S - F is a down set.

Now let $a \land b \in S - F$ for some $a, b \in S$. Then $a \land b \notin F$. This implies either $a \notin F$ or $b \notin F$ and so either $a \in S - F$ or $b \in S - F$. Therefore S - F is prime.

Conversely, suppose S - F is a prime down set. Let $a \in F$ and $t \ge a$ $(t \in S)$. Then $a \notin S - F$ and so $t \notin S - F$ as it is a down set. Thus $t \in F$ and so F is an up set. Now let $a, b \in F$, then $a \notin S - F$ and $b \notin S - F$. Since S - F is prime, so $a \land b \notin S - F$. This implies $a \land b \in F$, and so F is a filter.

Lemma 2. Every proper filter of a nearlattice with 0 is contained in a maximal filter.

Proof. Let F be a proper filter in S with 0.Let \mathcal{F} be the set of all proper filters containing F. Then \mathcal{F} is non-empty as $F \in \mathcal{F}$. Let C be a chain in \mathcal{F} and let $M = \bigcup \{X | X \in C\}$. We claim that M is a filter with $F \subseteq M$. Let $x \in M$ and $y \ge x$. Then $x \in X$ for some $X \in C$. Hence $y \in X$ as X is a filter. Therefore, $y \in M$. Let $x, y \in M$. Then $x \in X$ and $y \in Y$ for some $X, Y \in C$. Since C is a chain, either $X \subseteq Y$ or $Y \subseteq X$. Suppose $X \subseteq Y$. So $x, y \in Y$. Then $x \land y \in Y$ as Y is a filter. Hence $x \land y \in M$. Moreover M contains F. So M is maximum element of C. Then by Zorn's lemma \mathcal{F} has a maximal element, say Q with $F \subseteq Q$.

Following result trivially follows from lemma 2 and lemma 1

Corollary 3. Every prime down set of a nearlattice contains a minimal prime down set.•

Theorem 4. Let S be a nearlattice with 0. Then the following conditions are equivalent.

(i) S is 0-distributive.

- (ii) If A is a non-empty subset of S and B is a proper filter intersecting A, then there is a minimal prime ideal containing A^{\perp} and disjoint from B.
- (iii) For each non-zero element $a \in S$ and each proper filter B containing a, there is a prime ideal containing $\{a\}^{\perp}$ and disjoint from B.
- (iv) For each non-zero element $a \in S$ and each proper filter B containing a, there is a prime filter containing B and disjoint from $\{a\}^{\perp}$.
- (v) For each non-zero element $a \in S$ and each prime down set B not containing a, there is a prime filter containing S B and disjoint from $\{a\}^{\perp}$.

Proof. $(i) \Rightarrow (ii)$ Suppose (i) holds. Let A be a non-empty subset of S and B is a proper filter such that $B \cap A \neq \phi$. By Lemma 1, S - B is a prime down set and so by corollary 3, S - B contains a minimal prime down set N. Clearly $N \cap B = \phi$. Also $S - B \supseteq A$ and so $N \supseteq A$. Then there exists $p \in A$ such that $p \notin N$. Now suppose $x \in A^{\perp}$. Then $x \wedge a = 0$ for all $a \in A$. Thus $x \wedge p = 0 \in N$. Since N is prime and $p \notin N$, so $x \in N$ and so $A^{\perp} \subset N$. Since S is 0-distributive so by [6, theorem 9], N is a minimal ideal.

 $(ii) \Rightarrow (iii)$. Suppose (ii) holds. Now $\{a\} \subset S$ and suppose B is a proper filter containing a. Then $B \cap \{a\} \neq \phi$. Thus by (ii) there is a prime ideal containing $\{a\}^{\perp}$ and disjoint from B.

 $(iii) \Rightarrow (iv)$ This is trivial as P is an ideal of a nearlattice S if and only if S - P is a prime filter.

 $(iv) \Rightarrow (v)$ This is trivial by lemma 1.

 $(v) \Rightarrow (i)$ Suppose (v) holds and a be a non-zero element of S. Then by lemma 1, B = S - [a] is a prime down set and $a \notin B$. Then by (v) there is a prime filter Qcontaining S - B and disjoint from $\{a\}^{\perp}$. Then $a \in Q$ and so by [6, theorem 9], S is 0-distributive.•

For a subset A of a nearlattice S, we define

 $A^{0} = \{x \in S \mid x \land a = 0 \text{ for some } a \in A\}. \text{ It is easy to see that } A^{0} \text{ is a down set.}$ Moreover, $\{a\}^{0} = \{a\}^{\perp}$. Now we have the following result.

Theorem 5. Let S be a nearlattice with 0. Then the following conditions are equivalent.

(i) S is 0-distributive.

- (ii) A^0 is an ideal for every filter A of S.
- (iii) $\{a\}^0$ is an ideal.

Proof. $(i) \Rightarrow (ii)$ Let S be a 0-distributive. We already know that A^0 is a down set. Now let $x, y \in A^0$ and $x \lor y$ exists. Then $x \land a = 0 = y \land b$ for some $a, b \in A$. Hence $x \land a \land b = 0 = y \land a \land b$, $a \land b \in A$ as it is a filter. Thus $a \land b \land (x \lor y) = 0$ as S is 0-distributive. Therefore $x \lor y \in A^0$ and so A^0 is an ideal.

(ii) \Rightarrow (iii) This is trivial as $\{a\}^0 = \{a\}^{\perp}$.

(iii) \Rightarrow (i) Suppose (ii) holds. Let $a, b, c \in S$ with $a \land b = 0 = a \land c$ and $b \lor c$ exists. Consider [a]. Then $b, c \in [a]^0$. Since $[a]^0$ is an ideal so $b \lor c \in [a]^0$. Thus $a \land (b \lor c) = 0$, and hence S is 0-distributive.

Lemma 6. Let A and B be filter of a nearlattice S with 0 such that $A \cap B^0 = \phi$. Then there is a minimal prime down set N containing B^0 and $N \cap A = \phi$.

Proof. Since $A \cap B^0 = \phi$, so $0 \notin A \vee B$. So $A \vee B$ is a proper filter of S. Then by lemma 2, $A \vee B \subseteq M$ for some maximal filter. Now $B \subseteq M$ and consequently $M \cap B^0 = \phi$. By lemma 1, S - M = N is a minimal prime down set. Clearly $B^0 \subseteq N$ and $N \cap A = \phi$.

Theorem 7. Let S be a nearlattice with 0. Then the following conditions are equivalent.

- (i) S is 0-distributive.
- (ii) If A and B are filter of S such that A and B^0 are disjoint, there is a minimal prime ideal containing B^0 and disjoint from A.
- (iii) If A is a filter of S and B is a prime down set containing A^0 , there is a minimal prime ideal containing A^0 and contained in B.
- (iv) If A is a filter of S and B is a prime down set containing A^0 , there is a prime filter containing and disjoint from A^0 .
- (v) For each non-zero element $a \in S$ and each prime down set B containing $\{a\}^0$, there is a prime filter containing S B and disjoint from $\{a\}^0$.

Proof. $(i) \Rightarrow (ii)$ Suppose (i) holds. Let A and B be filter of S such that $A \cap B^0 = \phi$. Then by lemma 2, there is a minimal prime down set N such that $N \supseteq B^0$ and $N \cap A = \phi$. Since S is 0-distributive it follows from [6,theorem 9] that N is a minimal prime ideal.

(ii) \Rightarrow (iii) Suppose (ii) holds. Let A be a filter of S and B is a prime down set containing A^0 . Then by lemma 1, S - B is a filter such that $(S - B) \cap A^0 = \phi$. Then by (ii) there is a minimal prime ideal containing A^0 and disjoint from S - B, that is contained in B.

 $(iii) \Rightarrow (iv)$ This is trivial by lemma 1.

(iv) \Rightarrow (v) Let a be a non-zero element of S and B be a prime down set containing $\{a\}^0$. Let A = [a]. Then $B \supset \{a\}^0 = [a]^0 = A^0$. Then by (iv), there is a prime filter containing S – B and disjoint from $\{a\}^0$.

 $(v) \Rightarrow (i)$ Suppose (v) holds and let a be any non-zero element of S. By lemma 1, S-[a) is a prime down set not containing a. since $(a] \cap \{a\}^0 = (0] \subset S - [a)$, it follows that S-[a) contains $\{a\}^0$ as S-[a) is prime. Then by (v), there is a prime filter B containing [a] = S - (S - [a]) and disjoint from $\{a\}^0$. Clearly $a \in B$. Hence by [6, theorem 9], S is 0-distributive. •

We conclude the paper with the following characterizations of 0-distributive nearlattices. To prove this we need the following lemma.

Lemma 8. Let S be a nearlattice with 0. Suppose $A, B \in I(S)$ and $a, b \in S$, then we have the following:

- (i) If $A \cap B = (0]$, then $B \subseteq A^{\perp}$.
- (ii) $A \cap A^{\perp} = (0].$
- $(iii) \qquad a \leq b \ \text{implies} \ \big\{b\big\}^{\perp} \subseteq \big\{a\big\}^{\perp} \ \text{and} \ \big\{a\big\}^{\perp\perp} \subseteq \big\{b\big\}^{\perp\perp}.$
- (iv) $\{a\}^{\perp} \cap \{a\}^{\perp\perp} = (0]$
- $(v) \qquad \big\{a \wedge b\big\}^{\perp \perp} = \big\{a\big\}^{\perp \perp} \cap \big\{b\big\}^{\perp \perp}.$
- (vi) $\{a\} \subseteq \{a\}^{\perp \perp}$.
- (vii) $\{a\}^{\perp} = \{a\}^{\perp \perp \perp}$.

(viii) If $a \lor b$ exists and S is 0-distributive, then $\{a \lor b\}^{\perp} = \{a\}^{\perp} \cap \{b\}^{\perp}$. **Proof.** (i) Let $b \in B$. Then $a \land b = 0$ for all $a \in A$ as $A \cap B = \{0\}$. Therefore, $b \in A^{\perp}$ and so $B \subseteq A^{\perp}$.

(ii) Let $x \in A \cap A^{\perp}$. Then $x \in A$ and $x \wedge a = 0$ for all $a \in A$. Thus in particular $x = x \wedge x = 0$. Hence $A \cap A^{\perp} = (0]$.

(iii) Let $a \le b$. Suppose $x \in \{b\}^{\perp}$. Then $x \land b = 0$ and $x \land a \le x \land b = 0$ implies $x \land a = 0$. Thus $x \in \{a\}^{\perp}$. Therefore, $\{b\}^{\perp} \subseteq \{a\}^{\perp}$. Now let $x \in \{a\}^{\perp \perp}$. Then $x \land p = 0$ for all $p \in \{a\}^{\perp}$. Let $q \in \{b\}^{\perp}$. Since $\{b\}^{\perp} \subseteq \{a\}^{\perp}$, so $q \in \{a\}^{\perp}$. Hence $x \land q = 0$, which implies $x \in \{b\}^{\perp \perp}$. Therefore $\{a\}^{\perp \perp} \subseteq \{b\}^{\perp \perp}$.

(iv) Let $x \in \{a\}^{\perp} \cap \{a\}^{\perp \perp}$. Then $x \in \{a\}^{\perp}$ and $x \in \{a\}^{\perp \perp}$, and so $x \wedge p = 0$ for all $p \in \{a\}^{\perp}$. Thus in particular $x = x \wedge x = 0$, implies $\{a\}^{\perp} \cap \{a\}^{\perp \perp} = \{0\}$.

(v) Let and $y \in \{a \land b\}^{\perp}$. Then we have $(y \land a) \land b = 0$, which implies $y \land a \in \{b\}^{\perp}$. Since $x \in \{b\}^{\perp\perp}$, we get $(x \land y) \land a = x \land (y \land a) = 0$. This implies $x \land y \in \{a\}^{\perp}$. Since $x \in \{a\}^{\perp\perp}$, we have $x \land y \in \{a\}^{\perp\perp}$ as $\{a\}^{\perp\perp}$ is a down set. Thus $x \land y \in \{a\}^{\perp\perp} \cap \{b\}^{\perp\perp} = \{0\}$. Hence $x \land y = 0$ for all $y \in \{a \land b\}^{\perp}$, which implies $x \in \{a \land b\}^{\perp\perp}$. Therefore, $\{a\}^{\perp\perp} \cap \{b\}^{\perp\perp} \subseteq \{a \land b\}^{\perp\perp}$.

Conversely, since $a \wedge b \leq a, b$, so by (iii) $\{a \wedge b\}^{\perp \perp} \subseteq \{a\}^{\perp \perp}$ and $\{a \wedge b\}^{\perp \perp} \subseteq \{b\}^{\perp \perp}$. Hence $\{a \wedge b\}^{\perp \perp} = \{a\}^{\perp \perp} \cap \{b\}^{\perp \perp}$.

 $\begin{array}{ll} (vi) \ x \in \{a\}^{\perp \perp} \ \text{ implies } \ x \wedge p = 0 \quad \text{ for all } p \in \{a\}^{\perp} \ \text{ Now } \quad p \in \{a\}^{\perp} \ \text{ implies } \\ p \wedge a = 0 \ \text{ Thus we have } a \wedge p = 0 \ \text{ for all } p \in \{a\}^{\perp} \ \text{, which implies } a \in \{a\}^{\perp \perp} \ . \end{array}$

(vii) Since $\{a\}^{\perp} \cap \{a\}^{\perp \perp} = \{0\}$ so by (i) $\{a\}^{\perp} \subseteq \{a\}^{\perp \perp \perp}$.

Conversely, let $x \in \{a\}^{\perp \perp \perp}$. Then $x \wedge p = 0$ for all $p \in \{a\}^{\perp \perp}$. But by (vi) we have $a \in \{a\}^{\perp \perp}$. Therefore $x \wedge a = 0$ and so $x \in \{a\}^{\perp}$. Thus $\{a\}^{\perp \perp \perp} \subseteq \{a\}^{\perp}$, and so $\{a\}^{\perp} = \{a\}^{\perp \perp \perp}$.

(viii) Suppose S is 0-distributive and $a \lor b$ exists. Since $a, b \le a \lor b$ so by (iii) $\{a \lor b\}^{\perp} \subseteq \{a\}^{\perp} \cap \{b\}^{\perp}$.

Conversely, let $x \in \{a\}^{\perp} \cap \{b\}^{\perp}$. Then $x \wedge a = 0 = x \wedge b$ implies $x \wedge (a \vee b) = 0$ as S is 0-distributive. Thus $x \in \{a \vee b\}^{\perp}$. Therefore $\{a\}^{\perp} \cap \{b\}^{\perp} \subseteq \{a \vee b\}^{\perp}$, and so $\{a \vee b\}^{\perp} = \{a\}^{\perp} \cap \{b\}^{\perp}$.

Theorem 9. Let S be a nearlattice with 0. Then the following conditions are equivalent.

- (i) S is 0-distributive.
- (ii) For any non-empty subset A of S, A^{\perp} is the intersection of all the minimal prime ideal not containing A.
- (iii) For any ideal A of S and any family of ideals $\{A_i \mid i \in I\}$ of S,

$$\left(A \cap \left(\bigvee_{i \in I} A_i\right)\right)^{\perp} = \bigcap_{i \in I} (A \cap A_i)^{\perp}$$

(iv) For any three ideals A, B, C of S,

$$(A \cap (B \lor C))^{\perp} = (A \cap B)^{\perp} \cap (A \cap C)^{\perp}$$
.

(v) For all
$$a, b, c \in S$$
, $(a \land (b \lor c))^{\perp} = (a \land b)^{\perp} \cap (a \land c)^{\perp}$ provided $b \lor c$ exists.

Proof. (i) \Rightarrow (ii) Let N be a minimal prime down set not containing A. Then there exists $t \in A$ such that $t \notin N$. Suppose $x \in A^{\perp}$. Then $x \wedge a = 0$ for all $a \in A$. Thus $x \wedge t = 0 \in N$. Since N is prime, so $x \in N$. Hence $A^{\perp} \subseteq N$. Thus, $A^{\perp} \subseteq \bigcap \{ all \min imal \text{ prime down set not containing } A \} = X (say).$

Suppose $A^{\perp} \subset X$. Then there exists $x \in X$ such that $x \notin A^{\perp}$. Then for some $b \in A$, $x \wedge b \neq 0$. Thus $F = [x \wedge b)$ is a proper filter. Hence by lemma 2. there is a maximal filter $M \supseteq F$. Then S - M is a minimal prime down set such that $(S - M) \cap F = \phi$. Since $b \in F \subseteq M$, so $b \notin S - M$ and so $S - M \supseteq A$. Also $x \in F \subseteq M$ implies $x \notin S - M$. Thus $x \notin X$, which is a contradiction. Therefore, $A^{\perp} = X = \bigcap \{ all \min imal \text{ prime down set not containing } A \}$. Since S is 0-distributive, so by [6, theorem 9], the result follows.

(ii) \Rightarrow (iii) Suppose (ii) holds. Let $A \subseteq I(S)$ and $\{A_i \mid i \in I\} \subseteq I(S)$. If Q is any minimal prime ideal of S such that $Q \not\supseteq A \cap \left(\bigvee_{i \in I} A_i\right)$, then $Q \not\supseteq A \cap A_j$ for some

 $j \in I$. By (ii) it follows that $\left\{A \cap \left(\bigvee_{i \in I} A_i\right)\right\}^{\perp} \supseteq (A \cap A_i)^{\perp}$. On the other hand, $A \cap A_i \subseteq A \cap \left(\bigvee_{i \in I} A_i\right)$. Then by lemma 8 $\{A \cap A_i\}^{\perp} \supseteq \left\{A \cap \left(\bigvee_{i \in I} A_i\right)\right\}^{\perp}$. Therefore (iii) holds.

 $(iii) \Rightarrow (iv)$ is obvious.

$$\begin{aligned} (iv) &\Rightarrow (v) \text{ Let } A = (a], \text{ } B = (b], \text{ } C = (c]. \text{ Then by } (iv), \\ \{&(a] \cap ((b] \lor (c])\}^{\perp} = ((a] \cap (b])^{\perp} \cap ((a] \cap (c])^{\perp}. \text{ Thus} \\ &(a \land (b \lor c)]^{\perp} = (a \land b]^{\perp} \cap (a \land c]^{\perp}, \text{ and so} \\ &\{a \land (b \lor c)\}^{\perp} = (a \land b)^{\perp} \cap (a \land c)^{\perp}. \end{aligned}$$

 $(v) \Rightarrow (i)$ Suppose (v) holds. Let $a, b, c \in S$ with $a \land b = 0 = a \land c$ such that $b \lor c$ exists. Then $(a \land b)^{\perp} = S = (a \land c)^{\perp}$. So by (v), $\{a \land (b \lor c)\}^{\perp} = S$. Thus, $\{a \land (b \lor c)\}^{\perp \perp} = S^{\perp} = (0]$. Hence by lemma 8, $a \land (b \lor c) = 0$, and so S is 0-distributive.

REFERENCES

- 1. P.Balasubramani and P.V. Venkatanarasimhan, Characterizations of the 0-Distributive Lattice, *Indian J. Pure Appl. Math.*, 32(3) (2001), 315-324.
- 2. M. B. Rahman, A study on distributive nearlattices, Ph.D Thesis, Rajshahi University, Bangladesh (1994).
- 3. W.H. Cornish and A.S.A. Noor, Standard elements in a nearlattice, *Bull. Austral. Math. Soc.*, 26(2) (1982), 185-213.
- 4. Y. S Pawar and N. K. Thakare, 0-Distributive semilattices, *Canad*. *Math. Bull.*, 21(4) (1978), 469-475.
- 5. J. C. Varlet, A generalization of the notion of pseudo-complementedness, *Bull.Soc. Sci. Liege*, 37 (1968), 149-158.
- 6. Md. Zaidur Rahman, Md. Bazlar Rahman and A. S. A. Noor, 0-distributive nearlattice, *Annals of Pure and App. Math.*, 2(2) (2012), 177-184.