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Abstract. In this study, we introduce the harmonic E-Banhatti index and its corresponding 

polynomial of a graph. Furthermore, we compute the harmonic E-Banhatti index for some 

standard graphs, wheel graphs and friendship graphs. Also, some mathematical properties 

of the harmonic E-Banhatti index are obtained. 
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1. Introduction 

In this paper, G denotes a finite, simple, connected graph, V(G) and E(G) denote the vertex 

set and edge set of G. The degree dG(u) of a vertex u is the number of vertices adjacent to 

u. The degree of an edge e = uv in G is defined by dG(e)=dG(u)+dG(v)–2. We refer [1], for 

other undefined notations and terminologies. 

        Graph indices have applications in various scientific and technological disciplines. 

For more information about graph indices, see [2].  

        Kulli [3] defined the Banhatti degree of a vertex u of a graph G as  

 
 

 
,G

G

d e
B u

n d u



 

where |V(G)|= n and the vertex u and edge e are incident in G. 

       The first and second E-Banhatti indices were introduced by Kulli in [3] and they are 

defined as 
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Recently, some E-Banhatti indices were studied in [4, 5, 6, 7, 8, 9].                      

      The modified E-Banhatti Sombor index [10] of a graph G is 
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     The harmonic index [11] of a graph G is defined as 
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This index was studied, for example, in [12, 13, 14, 15]. 

     We put forward a new topological index, defined as 
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which we propose to be named as harmonic E-Banhatti index.

  

  

       Considering the harmonic E-Banhatti index, we introduce the harmonic E-Banhatti 

polynomial of a graph G and defined it as 
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      In this paper, we determine the E-Banhatti index of some standard graphs, wheel graphs 

and friendship graphs. Also some mathematical properties of harmonic E-Banhatti index 

are obtained. 

 

2. Results for some standard graphs 

Proposition 1. If G is an r-regular graph with n vertices and r ≥ 2, then        
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Proof: Let G be an r-regular graph with n vertices and r ≥ 2. Then |E(G)| =
2

nr
. For any 

edge uv=e in G, dG(e)=2r−2. Then 
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Corollary 1.1.  Let  nC be a cycle with n≥ 3 vertices. Then     
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Corollary 1.2.   Let Kn   be a complete graph with n≥ 3 vertices. Then   
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Proposition 2. Let  nP  be a path with n≥ 3 vertices. Then          
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 Proposition 3.  Let Km,n   be a complete bipartite graph with 1 ≤ m≤ n and n ≥ 2. Then   
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Proof: Let Km,n    be a complete bipartite graph with m + n vertices and mn edges such that 

|V1|= m , | V2 |= n, V (Kr,s ) = V1 ∪ V2   for 1 ≤ m  ≤ n, and n ≥ 2. Every vertex of V1 is incident 

with n edges and every vertex of V2   is incident with m edges. Then  

dG(e)= dG(u)+ dG(v) −2= m + n −2.  
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Corollary 3.1.   Let Kn,n   be a complete bipartite graph with n≥ 2. Then 
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Corollary 3.2.   Let K1,n   be a star with n≥ 2. Then   1,   
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2. Mathematical properties 

Theorem 1. Let G be a simple connected graph. Then  

                                    2( )m EBS G HEB G  

with equality if G is regular. 

Proof: By the Jensen inequality, for a concave function f(x),  
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with equality for a strictly concave function if  x1  = x2  = …= xn.    

 Choosing   f(x) = √x, we obtain 
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with equality if G is regular. 

 

Theorem 2. Let G be a simple connected graph. Then  
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Proof: It is known that for 1≤x ≤ y, 

                              2 2x y x y+ < +
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Setting x=B(u) and y=B(v), we get 
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3. Results for friendship graphs 

A friendship graph F4 is shown in Figure 1. A friendship graph Fn is a graph with 2n+1 

vertices and 3n edges.  

 

 
 

Figure 1: Friendship graph F4       
 

In Fn, there are two types of edges as follows: 

       1 | 2 ,
n nn F FE uv E F d u d v             |E1| = n. 

       2 | 2, 2 ,
n nn F FE uv E F d u d v n      |E2| = 2n. 

Therefore, in Fn, we obtain that {B(u), B(v): uv ∈ E(Wn)} has two Banhatti edge set 

partitions. 

            BE1 = {uv ∈ E(Fn) | B(u) = B(v) =
2

2 1n 
},          |BE1| = n. 

 BE2 = {uv ∈ E(Fn) | B(u) =
2

2 1

n

n 
, B(v) =2n},     |BE2| = 2n.  

Theorem 3. Let Fn be the friendship graph. Then  
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Proof: We have 
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 After simplification, we get 
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Theorem 4. Let  Fn  be the friendship  graph. Then  
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4. Results for wheel graphs 
A wheel graph Wn is the join of Cn and K1. Then Wn has n+1vertices and 2n edges. A graph 

Wn is presented in Figure 2. 

 
Figure 2: Wheel graph Wn 

 

 In Wn, there are two types of edges as follows:  

     E1 = {uv ∈ E(Wn) | d(u) = d(v) = 3},     |E1| = n. 

     E2 = {uv ∈ E(Wn) | d(u) =3, d(v) = n},  |E2| = n. 

 

Therefore, in Wn, there are two types of Banhatti edges based on Banhatti degrees of end 

vertices of each edge follow: 
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     BE1 = {uv ∈ E(Wn) | B(u) = B(v) =
 
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Theorem 5. . Let  Wn  be the wheel graph. Then  
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Proof: We have  
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Theorem 6.  Let Wn be the wheel graph. Then  
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Proof: We have 
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After simplification, we get 
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5.  Conclusion 

We have introduced the harmonic E-Banhatti index and its corresponding exponential of a 

graph. Furthermore the harmonic E-Banhatti index and its exponential of some standard 

graphs, wheel graphs and friendship graphs are determined. Also, some mathematical 

properties of harmonic E-Banhatti index are obtained. 
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