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Abstract. We propose a generalized quadrature rule for approximating indefinite integrals 

by combining Steffensen's rule with the Anti-Gaussian rule. The convergence properties 

of this new method are thoroughly analyzed to ensure its reliability. Our error analysis 

highlights the improved accuracy of the generalized quadrature rule compared to its base 

methods. We test the rule on various example integrals to support these theoretical findings, 

demonstrating its effectiveness and precision. This approach significantly improves 

numerical integration, making it a valuable tool for solving indefinite integrals with greater 

accuracy and efficiency. 
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1. Introduction 
Quadrature rules are vital in numerical analysis for approximating definite integrals. These 

rules simplify the process of numerical integration by providing effective approximation 

methods. The precision of a quadrature rule plays a crucial role in determining its accuracy. 

Higher precision typically indicates a more effective quadrature rule. Many mixed-type 

quadrature rules [4,7,8,9,10] have been developed to handle definite integrals, and 

researchers continue to improve their precision through innovative techniques. 

In recent studies, Mohanty and Dash introduced a generalized approach [5,6] for 

creating higher precision quadrature rules. Their method combines multiple lower 

precision rules to achieve enhanced accuracy. They focused specifically on closed-type 

quadrature rules for definite integrals, marking a significant step forward in the field of 

numerical integration. 

This paper builds upon Mohanty and Dash's foundational work by extending their 

approach to open-type quadrature rules. Our primary objective is to develop an open-type 

generalized quadrature rule with precision-5. To achieve this, we combine two lower-

precision rules: the anti-Gaussian rule [1,2,3,11,12] and Steffensen's rule and the, both of 
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which have a precision of 3. By amalgamating these rules, we introduce a novel technique 

for achieving higher precision in numerical integration. 

The organization of this paper is structured as follows: Section 2: Preliminaries. 

Section 3: Development of the Generalized Quadrature Rule. Section 4: Analysis of Error. 

Section 5: Numerical Examples. Section 6: Conclusion. 

 

2. Preliminaries 

In this section, we present two basic quadrature rules available in the literature, which are 

used in the construction of the proposed generalized quadrature. 

 

2.1. Anti-Gaussian rule 

Laurie’s concept [3] enables deriving an anti-Gaussian quadrature rule from the Gaussian 

2-point rule, which integrates polynomials up to degree 3 exactly. The anti-Gaussian rule 

complements this by minimizing errors for higher-degree polynomials, specifically 

targeting those orthogonal to the ones integrated accurately by the Gaussian rule 

[1,8,11,12]. In this paper, we employ the following anti-Gaussian rule. 

𝑎𝐺𝐿(𝑓) =
1

13
[5𝑓 (−√

13

5
) + 16𝑓(0) + 5𝑓 (√

13

5
)]                       (1) 

Due to Taylor [1], 

𝑎𝐺𝐿(𝑓) = 2 [𝑓(0) +
1

3!
𝑓′′(0) +

13

9×5!
𝑓𝑖𝑣(0) +

169

675×6!
𝑓𝑣𝑖(0) + +

(13)3

3×8!×(15)3 𝑓𝑣𝑖𝑖𝑖(0) +

2×(13)4

10!×(15)5 𝑓𝑥(0) + ⋯ ]                                                       (2) 

Lemma 2.1. If 𝑓(𝑥) is sufficiently differentiable on the interval [−1,1], the truncation 

error for 𝑎𝐺𝐿(𝑓) is given by 𝐸𝑎𝐺𝐿(𝑓) = −
1

135
𝑓𝑖𝑣(0) −

1016

7!×675
𝑓𝑣𝑖(0) −

6432

9!×(15)3 𝑓𝑣𝑖𝑖𝑖(0) + ⋯.          

Proof: Using Taylor’s theorem, the exact value of the integral is: 

𝐼(𝑓) = 2 [𝑓(0) +
1

3!
𝑓′′(0) +

1

5!
𝑓𝑖𝑣(0) +

1

7!
𝑓𝑣𝑖(0) + +

1

9!
𝑓𝑣𝑖𝑖𝑖(0) + ⋯ ]                       (3)    

The truncation error due to 𝑎𝐺𝐿(𝑓) is given by           

𝐸𝑎𝐺𝐿(𝑓) = 𝐼(𝑓) − 𝑎𝐺𝐿(𝑓)                                                                            (4) 

Using equations (2) and (3) in equation (4), we obtain: 

𝐸𝑎𝐺𝐿(𝑓) = −
1

135
𝑓𝑖𝑣(0) −

1016

7!×675
𝑓𝑣𝑖(0) −

6432

9!×(15)3 𝑓𝑣𝑖𝑖𝑖(0) + ⋯.                               (5) 

 

2.2. Steffensen's quadrature rule  
Steffensen's quadrature rules, a type of open Newton-Cotes rules, are useful for 

numerical integration when function values at endpoints are unknown or have 
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singularities. They are especially effective in solving differential equations numerically 

under such conditions, providing an efficient alternative for complex boundary cases. 

The Steffensen's 4-point transformed rule [2] is given by 

∫ 𝑓(𝑥)
1

−1
𝑑𝑥 ≈ 𝑆𝑇(𝑓) =

1

12
[11𝑓 (−

3

5
) + 𝑓 (−

1

5
) + 𝑓 (

1

5
) + 𝑓 (

3

5
)]                    (6) 

 

Using Taylor’s expansion on (6), we get 

𝑆𝑇(𝑓) = 2 [𝑓(0) +
1

3!
𝑓′′(0) +

223

375×5!
𝑓𝑖𝑣(0) +

401

9375×6!
𝑓𝑣𝑖(0) +

+
18043

3×9!×58 𝑓𝑣𝑖𝑖𝑖(0) +
32477

3×10!×59 𝑓𝑥(0) + ⋯ ]                                                           (7) 

 

Lemma 2.2. If 𝑓(𝑥) is sufficiently differentiable on the interval [−1,1], the truncation error 

for 𝑆𝑇(𝑓) is given by 

𝐸𝑆𝑇(𝑓) =
38

5625
𝑓𝑖𝑣(0) +

13136

7!×9375
𝑓𝑣𝑖(0) +

2018976

9!×3×58 𝑓𝑣𝑖𝑖𝑖(0) +
11004256

11!×3×58 𝑓𝑥(0) + ⋯.  

Proof:  We have  𝐸𝑆𝑇(𝑓) = 𝐼(𝑓) − 𝑆𝑇(𝑓)                                                                     (8)                                               

Using values from (3) and (7) on (8), we get 

𝐸𝑆𝑇(𝑓) =
38

5625
𝑓𝑖𝑣(0) +

13136

7!×9375
𝑓𝑣𝑖(0) +

2018976

9!×3×58 𝑓𝑣𝑖𝑖𝑖(0) +
11004256

11!×3×58 𝑓𝑥(0) + ⋯       (9) 

Equation (9), establishes that the degree of precision of 𝑆𝑇(𝑓) is three.                □    

3. Development of the generalized quadrature rule 

In this section, we develop the proposed generalized quadrature using a generalized 

technique [5,6]. The approach is systematically outlined, emphasizing its foundational 

principles and methodology to enhance precision and applicability in numerical 

computations. 

 

Generalized quadrature rule: Quadrature rule of higher precision formed out by 

using n-rules of lower precision, 𝑛 ∈ 𝑁, 𝑛 ≥ 2 is known as a generalized quadrature rule 

[5,6]. 

Given 𝑆𝑅𝑛  as the generalized quadrature rule of higher precision formed by using 

quadrature rules 𝑅1, 𝑅2, 𝑅3, … . 𝑅𝑛 of lower precision satisfying SR-Conditions [5,6], we 

can express  

                𝑆𝑅𝑛= 𝑎1𝑅1 + 𝑎2𝑅2 + 𝑎3𝑅3 + ⋯ + 𝑎𝑛𝑅𝑛;  ∑ 𝑎𝑖
𝑛
𝑖=1 = 1               (10) 

where 𝑎1, 𝑎2, 𝑎3, … 𝑎4 are n-number of rational coefficients that can be obtained by 

making the rule 𝑆𝑅𝑛 exact for all polynomials of degree up to 𝑑𝑅𝑛 + 2. The truncation 

error due to the rule (10) is given by 𝑆𝑅𝑛= 𝑎1𝐸𝑅1 + 𝑎2𝐸𝑅2 + 𝑎3𝐸𝑅3 + ⋯ +

𝑎𝑛𝐸𝑅𝑛; ∑ 𝑎𝑖
𝑛
𝑖=1 = 1                                                                                                     (11) 

Assuming this error vanishes for all polynomials of degree upto 𝑑𝑆𝑅𝑛, we get the values 

of 𝑎1, 𝑎2, 𝑎3, … 𝑎4. Using the values of 𝑎𝑖′𝑠 on (10), we can obtain the desired generalized 

quadrature rule. 
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We construct a generalized quadrature of order 2 using two specific rules based 

on the generalized quadrature technique: 

𝑅1(𝑓) = 𝑎𝐺𝐿(𝑓) : Anti-Gaussian 3-point quadrature rule. 

𝑅2(𝑓) = 𝑆𝑇(𝑓) : Steffensen's quadrature rule. 

Both rules have precision 3, meaning 𝑑𝑅1(𝑓) = 𝑑𝑅2(𝑓) = 3 

Therefore, 𝑅1(𝑓) and 𝑅2(𝑓) satisfy the SR conditions [5,6]. Theorem 3.1 provides the 

formulation of the proposed generalized quadrature rule. 

 

Theorem 3.1. If 𝑓(𝑥) is sufficiently differentiable on the interval [−1,1], the Generalized 

quadrature rule  𝑆𝑀𝑔𝑠(𝑓) is given by 𝑆𝑀𝑔𝑠(𝑓) =
114

239
𝐺𝐿(𝑓) +

125

239
𝑆𝑇(𝑓) and truncation 

error due to the rule 𝐸𝑆𝑀𝑔𝑠(𝑓) =
114

239
𝐸𝑎𝐺𝐿(𝑓) +

125

239
𝐸𝑆𝑇(𝑓). 

Proof:  The generalized quadrature rule 𝑆𝑀𝑔𝑠(𝑓) constructed using 𝑅1(𝑓), 𝑅2(𝑓) is 

expressed as follows: 

𝑆𝑀𝑔𝑠(𝑓) = [𝑎1𝑅1(𝑓) + 𝑎2𝑅2(𝑓)],  𝑎1 + 𝑎2 = 1                                                          (12) 

The truncation error due to 𝑆𝑀𝑔𝑠(𝑓) is given by 

𝐸𝑆𝑀𝑔𝑠(𝑓) = [𝑎1𝐸𝑅1 + 𝑎2𝐸𝑅2]                                                                                    (13)                                                                                                           

Using (5) and (9) on (13), we have 

𝐸𝑆𝑀𝑔𝑠(𝑓) = 𝑎1 {−
1

135
𝑓𝑖𝑣(0) −

1016

7!×675
𝑓𝑣𝑖(0) −

6432

9!×(15)3 𝑓𝑣𝑖𝑖𝑖(0) +
131033

11!×(15)5 𝑓𝑥(0) +

⋯ } + 𝑎2 {
38

5625
𝑓𝑖𝑣(0) +

13136

7!×9375
𝑓𝑣𝑖(0) +

2018976

9!×3×58 𝑓𝑣𝑖𝑖𝑖(0) +
11004256

11!×3×58 𝑓𝑥(0) + ⋯ } + (14) 

We choose 𝑎1 and 𝑎2 in such a way that the rule 𝑆𝑀𝑔𝑠(𝑓) becomes exact for all 

polynomial of degree upto 5. From the error term,  

we have 
𝑎1

135
−

38

5625
𝑎2 = 0                                                                                            (15) 

On solving (12) and (15), we get 𝑎1 =
114

239
  and 𝑎2 =

125

239
. 

Using the value of 𝑎1 , 𝑎2 on (14) and (15), we get the desire result. 

Corollary 3.1. If 𝑓(𝑥) is sufficiently differentiable in the interval [-1, 1], the truncation 

error due to the 𝑆𝑀𝑔𝑠(𝑓) is given by 

 𝐸𝑆𝑀𝑔𝑠(𝑓) =
32

7!×2151
𝑓𝑣𝑖(0) −

17824

9!×55×3
𝑓𝑣𝑖𝑖𝑖(0) +

322011182

11!×56×34 𝑓𝑥(𝑥) + ⋯  

Proof: Putting the value of 𝑎1, 𝑎2 on (14), we get the result.                   □ 

4. Error analysis 

From Sections 2 and 3, we obtain an error comparison between the constituent rules and 

the constructed rule. This comparison is detailed in the following theorem, which 

highlights the differences in accuracy and precision, providing a clear understanding of the 

advantages of the proposed generalised quadrature rule. 
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Theorem 4.1. The truncation error associated with the rule 𝑆𝑀𝑔𝑠(𝑓) is minimal 

compared to the errors of the base rules 

Proof: From Lemma 2.1 and corollary to the Theorem 3.1 

|𝐸𝑆𝑀𝑔𝑠(𝑓)| ≤ |𝐸𝑎𝐺𝐿(𝑓)|.  

            From Lemma 2.2 and corollary to the Theorem 3.1 

                                             |𝐸𝑆𝑀𝑔𝑠(𝑓)| ≤ |𝐸𝑆𝑇|        □ 

We compare the precision-5 rule with the original lower-precision rules, showcasing its 

improved accuracy through theoretical validation and practical examples provided in 

Section 5. 

 

5. Applications and numerical verification 
This section examines the practical use of the new quadrature rule for numerical integration 

in open-type test integrals, focusing on indefinite integrals. To show its superiority over 

the constituent rules, five open-form test integrals are analyzed. The results are shown in 

Table 1, and errors are compared in Table 2. 

Table 1: The values from five test integrals are calculated using the constituent rules and 

the 𝑆𝑀𝑔𝑠(𝑓) rule. 

Integral 𝑎𝐺𝐿(𝑓) 𝑆𝑇(𝑓) 𝑆𝑀𝑔𝑠(𝑓) 

𝐼1 = ∫
1

𝑥𝑒𝑥

∞

1

𝑑𝑥 
0.219383642 0.219384251 0.21938396051464435 

𝐼2 = ∫
sin 𝑥

𝑥𝑒𝑥

∞

0

𝑑𝑥 
0.78539947 0.785397034 0.78539819594142259414226 

𝐼3 = ∫
√𝑥

𝑒𝑥

∞

0

𝑑𝑥 
0.886227119 0.886226632 0.886226698 

0.8862268642928870292887 

𝐼4 = ∫
log x

𝑒𝑥

∞

0

𝑑𝑥 
–

0.577215756 

–

0.577215394 

–

0.577215566669456066945607 

𝐼5

= ∫
cos 𝑥 𝑑𝑥

𝑒𝑥
𝑑𝑥

∞

0

 

0.496029 0.517651239 0.50733770240585774 
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Table 2: Comparison of the absolute values of truncation errors for different rules 

and the constructed rule. 

Integral Exact Value |𝐸𝑎𝐺𝐿(𝑓)| |𝐸𝑆𝑇(𝑓)| |𝐸𝑆𝑀𝑔𝑠(𝑓)| 

𝐼1 0.219383934395520 1.936× 10−7 

2.9239552×
10−7 

3.1660448 

× 10−7 

2.6119124×

10−8 

𝐼2 0.7853981634 1.3066× 10−6 1.1294×

10−6 

3.25414226×

10−8 

𝐼3 0.886226925452758 

 

 

1.9355× 10−7 2.9345×

10−7 

6.11598×

10−8  

𝐼4 –0.5772156649 1.011× 10−7 2.609×

10−7 

8.8230543×

10−8 

𝐼5 0.5 0.05.0653×

10−2 

1.765124×

10−2 

7.337× 10−3 

 

5. Conclusion  

The theorems and tables show that the constructed rule performs better than the base rules, 

both in theory and practice, by greatly reducing errors and improving accuracy in numerical 

integration. Introducing a new open-type quadrature rule with precision-5 is a big step 

forward in the field. Combining the anti-Gauss 3-point rule and Steffensen's 4-point rule 

provides a simple way to achieve higher precision, which could be useful in many 

numerical analysis tasks. 
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