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Abstract. We propose and analyse a numerical solution that is based on a time stepping 

Crank-Nicolson (C-N) combined with finite element (FE) in the space of the time fractional 

diffusion advection problem. We numerically implement the C-N solution and explore the 

possibility of modifying the scheme to address the issues arising from the presence of the 

fractional derivative. For the stability and the error analysis, we use some properties of the 

Riemann–Liouville fractional derivative operator, which are listed in the last section. For 

numerical simulations, we write an efficient computer code using MATLAB that illustrates 

numerically the convergence rates of the proposed C-N schemes on various model 

problems.  
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1. Introduction 

Our fractional PDE is of the form:  

 𝜕𝑡𝑢 − ∇ ⋅ (𝜅∇𝜕𝑡
1−𝛼𝑢 − 𝐹𝜕𝑡

1−𝛼𝑢) = 𝑔 (1) 

 We discretize in time the model problem. To do so, we let 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑁 =
𝑇 and we use a time graded mesh with the following nodes 𝑡𝑖 = (𝑖 𝑘)

𝛾 for 0 ≤ 𝑖 ≤ 𝑁 

with 𝛾 ≥ 1 and 𝑘 = 𝑇1/𝛾/𝑁, where 𝑁 is the number of subintervals. Denote by 𝑘𝑛 =
𝑡𝑛 − 𝑡𝑛−1  the length of the 𝑛 th subinterval 𝐼𝑛 = (𝑡𝑛−1, 𝑡𝑛) , for 1 ≤ 𝑛 ≤ 𝑁 . In our 

notation, we will often suppress the dependence on 𝑥  and think of 𝑢 = 𝑢(𝑥, 𝑡) as a 

function of 𝑡 taking values in 𝐿2(Ω). Integrating the fractional Fokker–Planck equation 

(1) over the 𝑛th time interval 𝐼𝑛 gives  

 𝑢(𝑡𝑛) − 𝑢(𝑡𝑛−1) + ∫𝐼𝑛
𝜕𝑡
1−𝛼𝒜𝑢 𝑑𝑡 = ∫𝐼𝑛

𝑔(𝑥, 𝑡) 𝑑𝑡. (2) 

where  

 𝒜𝑢 = −∇2𝑢 + ∇ ⋅ (𝐹𝑢) 
We seek to compute 𝑈𝑛(𝑥) ≈ 𝑢(𝑥, 𝑡𝑛) for 𝑛 = 1, 2, , 𝑁 by requiring that  

 𝑈𝑛 − 𝑈𝑛−1 + ∫𝐼𝑛
𝜕𝑡
1−𝛼𝒜𝑈̅ 𝑑𝑡 = 𝑘𝑛𝑔̅

𝑛 (3) 

with 𝐹̅𝑛(𝑥) = 𝐹(𝑥, 𝑡
𝑛−

1

2

), 𝑡
𝑛−

1

2

=
𝑡𝑛+𝑡𝑛−1

2
  and 𝑈̅ =

𝑈𝑛+𝑈𝑛−1

2
,  
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𝑔̅𝑛 ≈ 𝑘𝑛
−1 ∫𝐼𝑛

𝑔(𝑥, 𝑡) 𝑑𝑡. 

The time stepping starts from the initial condition  

 𝑈0(𝑥) = 𝑢0(𝑥)    for0 ≤ x ≤ L, 
2. Previous work 

When 𝐹 = 0, numerical methods for (1) were proposed and analyzed by several authors. 

For time-stepping methods, Langlands [6] proposed backward Euler scheme for 

discretization the fractional derivative. Mclean and Mustapha [9] applied finite-difference 

time discretization combined with finite elements in space. For the discontinuous Galerkin 

in time and finite elements in space, we refer to Mclean and Mustapha [10]. Mustapha [12] 

investigated an implicit finite-difference Crank-Nicolson scheme combined with finite 

elements in space. For piecewise constant discontinuous Galerkin method to discretize the 

time, see McLean and Mustapha [11]. Later on Mustapha et al. [13] proposed and analyzed 

a time-stepping Petrov–Galerkin method combined with the continuous conforming finite 

elements method in space. 

Sweilan et al. [14] proposed a Crank-Nicolson finite difference method to solve 

the linear time-fractional diffusion equation, formulated with Caputo’s fractional 

derivative. Zeng et al. [15] developed a new Crank–Nicolson finite elements method in 

which a novel time discretization called the modified 𝐿1 method was used to discretize 

the Riemann–Liouville fractional derivative. 

For space discretisation, Zhang et al. [16] considered a standard central 

difference approximation for the spatial discretisation, for the time stepping, two new 

alternating direction implicit schemes based on the 𝐿1 approximation and backwards Euler 

method were proposed to solve a two-dimensional anomalous sub-diffusion equation with 

time fractional derivative. For semidiscrete spatial finite volume method to approximate 

solutions of anomalous subdiffusion equations in a two-dimensional convex domain, we 

refer to Karaa et al. [4]. Jin et al. [3] applied Galerkin finite elements method and lumped 

mass Galerkin, using piecewise linear functions to solve initial boundary value problem 

for a homogeneous time-fractional diffusion equation in a bounded convex polygonal 

domain. Karaa et al. [5] applied a piecewise-linear finite elements method to approximate 

the solution of time-fractional diffusion equations on bounded convex domains. For 

general fractional convection-diffusion equation,  

 

 ℐ1−𝛼𝑢′ − (𝑎𝑢𝑥)𝑥 + 𝑏𝑢𝑥 + 𝑐𝑢 = 𝑓, (4) 

with coefficients 𝑎, 𝑏, 𝑐 that may depend on 𝑥 and 𝑡, Cui [1] investigated a high-order 

approximation for the time-fractional derivative combined with a compact exponential 

finite difference scheme for approximating the convection and diffusion terms.  

Recently, Gracia et al. [2] applied a standard finite difference method on a uniform 

mesh to solve (1). They proved that the rate of convergence of the maximum nodal error 

on any subdomain that is bounded away from t = 0 is higher than the rate obtained when 

the maximum nodal error is measured over the entire space-time domain. 

•  Case of space-time dependent forcing 𝐹 in one space dimension. Le et al. [7] 

proposed and analysed a piecewise-linear Galerkin finite elements method in space and an 

implicit Euler method for time to solve (1).  

• For the case of the space-time dependent forcing 𝐹 in multi-dimensional space. 

Le et al. [8] presented a new stability and convergence analysis for the spatial 

discretization of (17) in a convex polyhedral domain, using continuous, piecewise-linear, 
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finite elements. Their analysis used a novel sequence of energy arguments in combination 

with a generalized Gronwall inequality. 

 

Definition 2.1  [Ritz Projection Property]  

 ∥ 𝜌𝑛 ∥≤ 𝐶ℎ2 ∥ 𝑢(𝑡𝑛) ∥𝐻2(Ω)     for0 ≤ n ≤ N. (5) 

  

3. An implicit Crank-Nicolson time-stepping scheme 

We discretize in time the model problem (1). To do so, we let 0 = 𝑡0 < 𝑡1 < 𝑡2 < ⋯ <
𝑡𝑁 = 𝑇 and we use a time graded mesh with the following nodes 𝑡𝑖 = (𝑖 𝑘)

𝛾 for 0 ≤ 𝑖 ≤
𝑁 with 𝛾 ≥ 1 and 𝑘 = 𝑇1/𝛾/𝑁, where 𝑁 is the number of subintervals. Denote by 𝑘𝑛 =
𝑡𝑛 − 𝑡𝑛−1  the length of the 𝑛 th subinterval 𝐼𝑛 = (𝑡𝑛−1, 𝑡𝑛) , for 1 ≤ 𝑛 ≤ 𝑁 . In our 

notation, we will often suppress the dependence on 𝑥  and think of 𝑢 = 𝑢(𝑥, 𝑡) as a 

function of 𝑡 taking values in 𝐿2(Ω). Integrating the fractional Fokker–Planck equation 

(1) over the 𝑛th time interval 𝐼𝑛 gives  

 𝑢(𝑡𝑛) − 𝑢(𝑡𝑛−1) + ∫𝐼𝑛
𝜕𝑡
1−𝛼𝒜𝑢 𝑑𝑡 = ∫𝐼𝑛

𝑔(𝑥, 𝑡) 𝑑𝑡. (6) 

where  

 𝒜𝑢 = −∇2𝑢 + ∇ ⋅ (𝐹𝑢) 
We seek to compute 𝑈𝑛(𝑥) ≈ 𝑢(𝑥, 𝑡𝑛) for 𝑛 = 1, 2, , 𝑁 by requiring that  

 𝑈𝑛 − 𝑈𝑛−1 + ∫𝐼𝑛
𝜕𝑡
1−𝛼𝒜𝑈̅ 𝑑𝑡 = 𝑘𝑛𝑔̅

𝑛 (7) 

 with 𝐹̅𝑛(𝑥) = 𝐹(𝑥, 𝑡
𝑛−

1

2

), 𝑡
𝑛−

1

2

=
𝑡𝑛+𝑡𝑛−1

2
  and 𝑈̅ =

𝑈𝑛+𝑈𝑛−1

2
,  

𝑔̅𝑛 ≈ 𝑘𝑛
−1 ∫𝐼𝑛

𝑔(𝑥, 𝑡) 𝑑𝑡. 

The time stepping starts from the initial condition  

 𝑈0(𝑥) = 𝑢0(𝑥)    for0 ≤ x ≤ L, (8) 

 and is subject to the boundary conditions 𝑈𝑛(𝑥) = 0 for 𝑥 ∈ 𝜕Ω where 1 ≤ 𝑛 ≤ 𝑁. 

 

4. Stability of the numerical solution 

In this section, we show the stability of the semidiscrete approximate solution 𝑈 of (7) in 

the following theorem.  

 

Theorem 1. Consider the implicit scheme (7). Assume that the driving force 𝐹⃗ = 𝐹⃗(𝑥) 
satisfies that  

 ∇ ⋅ 𝐹 ≥
−2∥∇𝑢∥2

𝑢2
  on  Ω 

then  

 ∥ 𝑈𝑛 ∥≤∥ 𝑈0 ∥ +2∑𝑛𝑗=1 ∥ 𝑔̃
𝑗 ∥. 

Proof. Taking the inner product of (7) with 𝑈̅𝑛,  

 〈𝑈𝑛 − 𝑈𝑛−1, 𝑈̅𝑛〉 + ∫𝐼𝑛
〈𝜕𝑡
1−𝛼𝒜𝑈̅(𝑡), 𝑈̅(𝑡)〉 𝑑𝑡 = 〈𝑔̅𝑛, 𝑈̅𝑛〉 

where  

 𝒜𝑈̅ = −∇2𝑈̅ + ∇ ⋅ (𝐹𝑈̅) 

Now, using the given assumption on 𝐹⃗  

 〈𝒜𝑈̅, 𝑈̅〉 = 〈−∇2𝑈̅ + ∇ ⋅ (𝐹𝑈̅), 𝑈̅〉 =∥ ∇𝑈̅ ∥2− 〈𝐹𝑈̅, ∇𝑈̅〉 ≥ 0. (9) 
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Let 𝑈𝑛
∗
= max0≤𝑛≤𝑁 ∥ 𝑈

𝑛 ∥. Summing the above equation from 𝑛 = 1 to 𝑛 =
𝑛∗ gives  

 ∥ 𝑈𝑛
∗
∥2 −∥ 𝑈0 ∥2+ 2∫

𝑡𝑛∗

0
〈𝜕𝑡
1−𝛼𝒜𝑈̅(𝑡), 𝑈̅(𝑡)〉 𝑑𝑡 = ∑𝑛

∗

𝑛=0 〈𝑔̅
𝑛, 𝑈𝑛 + 𝑈𝑛−1〉. 

Using (9) it follows that  

 ∥ 𝑈𝑛
∗
∥2≤∥ 𝑈0 ∥2+ 2 ∥ 𝑈𝑛

∗
∥ ∑𝑛

∗

𝑛=0 ∥ 𝑔̅
𝑛 ∥≤∥ 𝑈𝑛

∗
∥ (∥ 𝑈0 ∥ +2∑𝑛

∗

𝑛=0 ∥̅ 𝑔̅
𝑛 ∥ 

which implies the desired result.  

 

5. Error bound from the time dicretization 

In this section, we estimate the error 𝑒𝑛 = 𝑈𝑛 − 𝑢(𝑡𝑛) when 𝑈𝑛 is given by:  

 𝑈𝑛 − 𝑈𝑛−1 + ∫𝐼𝑛
𝜕𝑡
1−𝛼(𝒜𝑈̅) 𝑑𝑡 = 𝑘𝑛𝑔̅

𝑛 (10) 

 and 𝑢 is the solution of  

 𝑢′ + (𝜕𝑡
1−𝛼𝒜𝑢) = 𝑔, (11) 

 Integrating (1) from 𝑡 = 𝑡𝑛−1 to 𝑡 = 𝑡𝑛 shows that the exact solution 𝑢 satisfies:  

 𝑢(𝑡𝑛) − 𝑢(𝑡𝑛−1) + ∫𝐼𝑛
(𝜕𝑡
1−𝛼𝒜𝑢) 𝑑𝑡 = 𝑘𝑛𝑔̅

𝑛. 

 Comparing this with (10), we observe that the error 𝑒𝑛 satisfies:  

 𝑒𝑛 − 𝑒𝑛−1 + ∫𝐼𝑛
(𝜕𝑡
1−𝛼𝒜𝑒̅) 𝑑𝑡 = 𝜂𝑛 (12) 

 where  

 𝜂𝑛 = ∫
𝑡𝑛
𝑡𝑛−1

(𝜕𝑡
1−𝛼𝒜(𝑢 − 𝑢̅)(𝑡)) 𝑑𝑡 (13) 

 since 𝑒0 = 𝑈0 − 𝑢0, the stability result in Theorem 1 implies that  

 ∥ 𝑒𝑛 ∥≤∥ 𝑈0 − 𝑢0 ∥ +2∑
𝑛
𝑗=1 ∥ 𝜂

𝑗 ∥ (14) 

 In the next theorem, we estimate the error from the time discretisation.  

 

Theorem 2. (Convergence theorem)  Let 𝑢 be the solution of the initial-value problem 

(1) and let 𝑈𝑛 be the solution of the discrete-time scheme (10). Assume that the initial data 

𝑢0 ∈ 𝐻
2(𝛺) and Assume that  

 𝑡𝛼 ∥ 𝑢′(𝑡) ∥ +𝑡1+𝛼 ∥ 𝑢′′(𝑡) ∥≤ 𝐶𝑡𝜂−1    , 0 < 𝜂 < 𝛼 + 2,    0 < 𝑡 < 𝑇.
 (15) 

 Then, for 1 ≤ 𝑛 ≤ 𝑁, we have  

 ∥ 𝑈ℎ
𝑛 − 𝑢(𝑡𝑛) ∥≤∥ 𝑈ℎ

0 − 𝑢0 ∥ +𝐶ℎ
2 + 𝐶 ×

{
 
 

 
 𝑘

𝛾𝛼 if1 ≤ γ <
α+1

α

𝑘𝛼+1max(1, log(𝑡𝑛/𝑡1)) ifγ =
α+1

α

𝑘𝛼+1 ifγ >
α+1

α

 

Proof: From [Mustapha, [14]] we have  

 ∥ 𝜂1
𝑗
∥2≤ 𝐶(𝑘2𝛾(𝜎+𝛼) + 𝑘2+𝛾(𝛼+𝜎)𝑘𝑗𝑡𝑗

𝛼+𝜎−1−2/𝛾
+ 𝑘4𝑘𝑗

2𝑡𝑗
2(𝛼+𝜎−1−2/𝛾)

). 

 Therefore,  

 
1

𝑘𝑗
∥ 𝜂1

𝑗
∥2≤ 𝐶(

1

𝑘𝑗
𝑘2𝛾(𝜎+𝛼) + 𝑘2+𝛾(𝛼+𝜎)𝑡𝑗

𝛼+𝜎−1−2/𝛾
+ 𝑘4𝑘𝑗𝑡𝑗

2(𝛼+𝜎−1−2/𝛾)
). 

Using  

 𝑘𝑗 = 𝑡𝑗 − 𝑡𝑗−1 = 𝑘
𝛾(𝑗𝛾 − (𝑗 − 1)𝛾) = 𝛾𝑘𝛾 ∫

𝑗

𝑗−1
𝑡𝛾−1 𝑑𝑡 ≥ 𝛾𝑘𝛾(𝑗 − 1)𝛾−1, 

implies that  
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1

𝑘𝑗
≤ 𝐶𝛾𝑘

−𝛾(𝑗 − 1)1−𝛾. 

 

 ∑𝑛𝑗=1 (
1

𝑘𝑗
∥ 𝜂1

𝑗
∥2) =

1

𝑘1
∥ 𝜂1

1 ∥2+∑𝑛𝑗=2 (
1

𝑘𝑗
∥ 𝜂1

𝑗
∥2) 

 ≤
1

𝑘1
∥ 𝜂1

1 ∥2+∑𝑛𝑗=2 𝐶𝑘
𝛾(2(𝜎+𝛼)−1)(𝑗 − 1)1−𝛾 

 +𝐶∑𝑛𝑗=2 𝑘
2+𝛾(𝛼+𝜎)𝑡𝑗

𝛼+𝜎−1−2/𝛾
+ 𝐶 ∑𝑛𝑗=2 𝑘

4𝑘𝑗𝑡𝑗
2(𝛼+𝜎−1−2/𝛾)

 

 ≤ 𝐶𝑘𝛾(2(𝛼+𝜎)−1)) + (𝐶𝑘𝛾(2(𝜎+𝛼)−1))∑𝑛𝑗=2 (𝑗 − 1)
1−𝛾 

 +𝐶𝑘𝛾(2(𝛼+𝜎)−1)∑𝑛𝑗=2 𝑗
𝛾(𝛼+𝜎)−𝛾−2 + 𝐶 ∑𝑛𝑗=2 𝑘

4 ∫𝐼𝑗
𝑡2(𝛼+𝜎−1−2/𝛾) 𝑑𝑡. 

 Now,  

 ∑𝑛𝑗=2 𝑘
4 ∫𝐼𝑗

𝑡2(𝛼+𝜎−1−2/𝛾) 𝑑𝑡 = 𝑘4 ∫
𝑡𝑛
𝑡2
𝑡2(𝛼+𝜎−1−2/𝛾) 𝑑𝑡 

 = 𝐶𝑘4 × {

𝑡2
2(𝛼+𝜎)−1−4/𝛾

if2(α + σ) − 2 − 4/γ < −1

log(𝑡𝑛/𝑡2) if2(α + σ) − 2 − 4/γ = −1

𝑡𝑛
2(𝛼+𝜎)−1−4/𝛾

if2(α + σ) − 2 − 4/γ > −1

 

 = 𝐶𝑘4 × {

𝑡2
2(𝛼+𝜎)−1−4/𝛾

if1 ≤ γ < 2/(α + σ − 1/2)

log(𝑡𝑛/𝑡2) ifγ = 2/(α + σ − 1/2)

𝑡𝑛
2(𝛼+𝜎)−1−4/𝛾

ifγ > 2/(α + σ − 1/2)

 

 ≤ 𝐶 × {

𝑘𝛾(2(𝛼+𝜎)−1) if1 ≤ γ < 2/(α + σ − 1/2)

𝑘4log(𝑡𝑛/𝑡2) ifγ = 2/(α + σ − 1/2)

𝑘4 ifγ > 2/(α + σ − 1/2)

 

 For the series in the term  

 𝑘𝛾(2(𝛼+𝜎)−1)∑𝑛𝑗=2 𝑗
𝛾(𝛼+𝜎)−𝛾−2 

it converges only if 2 + 𝛾 − 𝛾(𝛼 + 𝜎) > 1 which implies  

 {
ifα + σ < 1 ⟹ 𝛾 >

1

𝛼+𝜎−1
  which is true for any γ

ifα + σ > 1 ⟹ 1 ≤ 𝛾 < 1/(𝛼 + 𝜎 − 1)
 

 Therefore we can combine the above results as follows  

 𝑘𝛾(2(𝛼+𝜎)−1)∑𝑛𝑗=2 𝑗
𝛾(𝛼+𝜎)−𝛾−2 + 𝐶 ∑𝑛𝑗=2 𝑘

4 ∫𝐼𝑗
𝑡2(𝛼+𝜎−1−2/𝛾) 𝑑𝑡 

 ≤ 𝐶 × {

𝑘𝛾(2(𝛼+𝜎)−1) if1 ≤ γ < 2/(α + σ − 1/2)

𝑘4log(𝑡𝑛/𝑡2) ifγ = 2/(α + σ − 1/2)

𝑘4 ifγ > 2/(α + σ − 1/2)

 

 For the case (𝛼 + 𝜎) < 1/2, it is contained by the first case since 𝛾>2𝛼+𝜎−1/2, as the 

right-hand side is negative and 𝛾 ≥ 1. The first series on the left side is convergent by the 

integral test. Therefore,  

 ∑𝑛𝑗=1 (
1

𝑘𝑗
∥ 𝜂1

𝑗
∥2) ≤ 𝐶 × {

𝑘𝛾(2(𝛼+𝜎)−1) if1 ≤ γ < 2/(α + σ − 1/2)

𝑘4log(𝑡𝑛/𝑡2) ifγ = 2/(α + σ − 1/2)

𝑘4 ifγ > 2/(α + σ − 1/2)

 

Using (5), followed by regularity assumption (15) one can conclude that  

 ∥ 𝜂2
𝑗
∥2≤ 𝐶ℎ4(∫𝐼𝑗

∥ 𝑢′(𝑡) ∥2  𝑑𝑡)
2 ≤ 𝐶ℎ4(∫𝐼𝑗

𝑡𝜎−1 𝑑𝑡)2 ≤ 𝐶ℎ4𝑘𝑗
2𝑡𝑗
2(𝜎−1)

 

Hence,  
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 ∑𝑛𝑗=1 (
1

𝑘𝑗
(∥ 𝜂2

𝑗
∥2)) ≤ 𝐶ℎ4∑𝑛𝑗=1

1

𝑘𝑗
𝑘𝑗
2𝑡𝑗
2(𝜎−1)

 

 ≤ 𝐶ℎ4∑𝑛𝑗=1 𝑘𝑗𝑡𝑗
2𝜎−2 ≤ 𝐶ℎ4 ∫

𝑡𝑛
𝑡1
𝑡(2𝜎−1)−1 𝑑𝑡 

 ≤ 𝐶ℎ4 × {
log(𝑡𝑛/𝑡1) ifσ = 1/2

𝑡𝑛
2𝜎−1 ifσ > 1/2

 

 Combining the above estimates leads to:  

 ∥ 𝜃𝑛 ∥2≤ 𝑡𝑛∑
𝑛
𝑗=1 (

1

𝑘𝑗
(∥ 𝜂1

𝑗
∥2+ 𝜂2

𝑗
∥2)) ≤ 

 𝐶𝑡𝑛(ℎ
4𝑘𝛾(2𝜎−1) + {

𝑘𝛾(2(𝛼+𝜎)−1) if1 ≤ γ < 2/(α + σ − 1/2)

𝑘4log(𝑡𝑛/𝑡2) ifγ = 2/(α + σ − 1/2)

𝑘4 ifγ > 2/(α + σ − 1/2)

 

 consequently,  

 ∥ 𝜃𝑛 ∥≤ 𝐶ℎ2𝑘𝛾(𝜎−1/2) + 𝐶 ×

{

𝑘𝛾(𝛼+𝜎−1/2) if1 ≤ γ < 2/(α + σ − 1/2)

𝑘2max(1,√log(𝑡𝑛/𝑡2)) ifγ = 2/(α + σ − 1/2)

𝑘2 ifγ > 2/(α + σ − 1/2)

. 

Combining the above estimates,  

 ∥ 𝑢ℎ
𝑛 − 𝑢(𝑡𝑛) ∥=∥ 𝜃

𝑛 + 𝜌𝑛 ∥≤ 𝐶ℎ2+∥ 𝜃𝑛 ∥ +∥ 𝜌𝑛 ∥ 

 ≤ 𝐶ℎ2 + 𝐶 × {

𝑘𝛾(𝛼+𝜎−1/2) if1 ≤ γ < 2/(α + σ − 1/2)

𝑘2max(1,√log(𝑡𝑛/𝑡2)) ifγ = 2/(α + σ − 1/2)

𝑘2 ifγ > 2/(α + σ − 1/2)

 

 for 1 ≤ 𝑛 ≤ 𝑁.  

 

6. Implementation and numerical experiments 

In Section 1, we discuss the implementation of the Crank-Nicolson finite elements scheme 

in one dimension. The implementation of the 𝐿1 approximation scheme is discussed in 

Section 2. The last section contained numerical experiments that confirm our theoretical 

convergence results for both numerical schemes. Some figures and numerical tables will 

be included.  

 

6.1. Implementations of the Crank-Nicolson finite element scheme 

Recall that our fully-discrete solution 𝑈ℎ
𝑛 ∈ 𝑆ℎ is given by  

〈𝑈ℎ
𝑛 − 𝑈ℎ

𝑛−1, 𝑣〉 + ∫
𝐼𝑛

〈𝜕𝑡
1−𝛼∇𝑈̅ℎ, ∇𝑣〉 𝑑𝑡 − ∫

𝐼𝑛

〈𝐹̅𝑛𝜕𝑡
1−𝛼𝑈̅ℎ, ∇𝑣〉 𝑑𝑡 = ∫

𝐼𝑛

〈𝑔, 𝑣〉 𝑑𝑡 

for all 𝑣 ∈ 𝑆ℎ and for 1 ≤ 𝑛 ≤ 𝑁, with 𝑈ℎ
0 = 𝑅ℎ𝑢0. Explicitly, let 𝜙𝑝 ∈ 𝑆ℎ denote the 

𝑝th nodal basis function so that 𝜙𝑝(𝑥𝑞) = 𝛿𝑝𝑞. So,  

 𝑈ℎ
𝑛(𝑥) = ∑𝑃−1𝑝=1 𝑈𝑝

𝑛𝜙𝑝(𝑥)    whereUp
n = Uh

n(xp) ≈ U
n(xp) ≈ u(xp, tn). 

Define the (𝑃 − 1) × (𝑃 − 1) tridiagonal matrices 𝐌 and 𝐁𝐧 with entries  

 𝐌𝐩𝐪 = 〈𝜙𝑞 , 𝜙𝑝〉      and   𝐁𝐩𝐪
𝐧 = 〈𝜙𝑞𝑥 , 𝜙𝑝𝑥〉 − 〈𝐹̅

𝑛𝜙𝑞 , 𝜙𝑝𝑥〉, 

and define (𝑃 − 1)-dimensional column vectors 𝑈𝑛  and 𝐆𝐧 with components 𝐔𝐩
𝐧 and 

𝐺𝑝
𝑛 = ∫𝐼𝑛

〈𝑔, 𝜙𝑝〉 𝑑𝑡. We find that   
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𝐌𝐔𝐧 −𝐌𝑈𝑛−1 +
1

2
𝜔𝑛𝑛𝐁

𝐧𝐔𝐧 +
1

2
∑

𝑛−1

𝑗=1

𝜔𝑛𝑗𝐁
𝐧𝐔𝐣 +

1

2
𝜔𝑛𝑛𝐁

𝐧𝐔𝐧−𝟏 

+
1

2
∑𝑛−1𝑗=1 𝜔𝑛𝑗𝐁

𝐧𝐔𝐣−𝟏 + ∑𝑛𝑗=1 𝜔𝑛𝑗𝐁
𝐧𝐔𝐣 − ∑𝑛−1𝑗=1 𝜔𝑛−1,𝑗𝐁

𝐧𝑈𝑗 − ∑𝑛−1𝑗=1 𝜔𝑛−1,𝑗𝐁
𝐧𝐔𝐣−𝟏 =

𝐆𝐧,                                 (16) 

  where  

 𝜔𝑛𝑗 = ∫𝐼𝑗
𝜔𝛼(𝑡𝑛 − 𝑠) 𝑑𝑠 = 𝜔1+𝛼(𝑡𝑛 − 𝑡𝑗−1) − 𝜔1+𝛼(𝑡𝑛 − 𝑡𝑗)    forn ≥ 2. 

Therefore, at the 𝑛th time step, we must solve the following linear system  

(𝐌 +
1

2
𝜔𝑛𝑛𝐁

𝐧)𝐔𝐧 = (𝐌−
1

2
𝜔𝑛𝑛𝐁

𝐧)𝐔𝐧−𝟏 + 𝐆𝐧 −
1

2
∑

𝑛−1

𝑗=1

(𝜔𝑛𝑗 −𝜔𝑛−1,𝑗)𝐁
𝐧𝐔𝐣 

 −
1

2
∑𝑛−1𝑗=1 (𝜔𝑛𝑗 −𝜔𝑛−1,𝑗)𝐁

𝐧𝐔𝐣−𝟏 (17) 

 with  

 𝑀 =

[
 
 
 
 
𝜙11 𝜙12 ⋯ 0 0
𝜙21 𝜙22 𝜙23 0 ⋱ ⋮
0 ⋱ ⋱ ⋱ 0
⋮ ⋱ 𝜙𝑝−2,𝑝−3 𝜙𝑝−2,𝑝−2 𝜙𝑝−2,𝑝−1
0 ⋯ 0 𝜙𝑝−1,𝑝−2 𝜙𝑝−1,𝑝−1]

 
 
 
 

, 

 

 𝐵𝑛 =

[
 
 
 
 
 
𝜓11 𝜓12 ⋯ 0 0

𝜓21 𝜓22 𝜓23 ⋯ 0

0 ⋱ ⋱ ⋱ 0
⋮ ⋱ 𝜓𝑝−2,𝑝−3 𝜓𝑝−2,𝑝−2 ⋮

0 ⋯ 0 𝜓𝑝−1,𝑝−2 𝜓𝑝−1,𝑝−1 ]
 
 
 
 
 

 

 

 −

[
 
 
 
 
 
𝜉11 𝜉12 ⋯ 0 0

𝜉21 𝜉22 𝜉23 ⋯ 0

0 ⋱ ⋱ ⋱ 0
⋮ ⋱ 𝜉𝑝−2,𝑝−3 𝜉𝑝−2,𝑝−2 ⋮

0 ⋯ 0 𝜉𝑝−1,𝑝−2 𝜉𝑝−1,𝑝−1 ]
 
 
 
 
 

 

where 𝜙𝑖𝑗 = 〈𝜙𝑖, 𝜙𝑗〉, 𝜓𝑖𝑗 = 〈𝜕𝑥(𝜙𝑖), 𝜕𝑥(𝜙𝑗)〉, 𝜉𝑖𝑗 = 〈𝐹
𝑛𝜙𝑖, 𝜕𝑥𝜙𝑗〉, 

𝑔𝑖 = ∫
𝑡𝑛
𝑡𝑛−1

〈𝑔(𝑡), 𝜙𝑖〉,    0 ≤ 𝑖, 𝑗 ≤ 𝑝 − 1  

 𝑈𝑛 = [

𝑈1
𝑛

𝑈2
𝑛

⋮
𝑈𝑃−1
𝑛

]     ,      𝐺𝑛 = [

𝑔1
𝑔2
⋮
𝑔𝑝−1

] 

  

7. Numerical convergence 

The convergence of both numerical methods (Crank-Nicolson and 𝐿1) will be tested on a 

sample example below. Choose  

 𝐹(𝑥, 𝑡) = 𝑥 + sin𝑡,    𝑇 = 1,    𝐿 = 𝜋,    𝜅𝛼 = 𝜇𝛼 = 1, 
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where the source term 𝑔  is chosen so that the exact solution 𝑢(𝑥, 𝑡) = [1 +
𝜔1+𝛼(𝑡)]sin𝑥. In this example the solution 𝑢 satisfies the following regularity properties:  

 𝑡𝛼 ∥ 𝑢′(𝑡) ∥ +𝑡1+𝛼 ∥ 𝑢′′(𝑡) ∥≤ 𝐶𝑡2𝛼−1. 
This valid for 𝜎 = 2𝛼.  Hence, from the error analysis in chapter 4 we expect the 

convergence rate of the Crank-Nicolson finite elements scheme to be of order 𝑂(𝑘2𝛼𝛾) 

for 1 ≤ 𝛾 <
1+𝛼

2𝛼
 and 𝑂(𝑘1+𝛼) for 𝛾 >

1+𝛼

2𝛼
. 

Whereas for the 𝐿1 approximation scheme, the required regularity assumption is  

 ∥ 𝑢′(𝑡) ∥ +𝑡2 ∥ 𝑢′′(𝑡) ∥≤ 𝑡𝜎−1 

This is valid for 𝜎 = 𝛼. Hence we expect 𝑂(𝑘𝛾(2𝛼−1/2)) rates of convergence for 1 ≤
𝛾 < 2/(2𝛼 − 0.5) and 𝑂(𝑘2) for 𝛾 > 2/(2𝛼 − 0.5). The numerical results in Table 1 

show a better convergence rate. 

   

   𝛼 = 0.3 

𝑁 𝛾 = 1    𝛾 = 2 

 𝐶𝑟𝑎𝑛𝑘 − 𝑁𝑖𝑐𝑜𝑙𝑠𝑜𝑛   𝐿1 𝐶𝑟𝑎𝑛𝑘 − 𝑁𝑖𝑐𝑜𝑙𝑠𝑜𝑛 𝐿1 

    𝑀. 𝐸.     𝑂. 𝐶.   𝑀.𝐸.     𝑂. 𝐶. 𝑀.𝐸.     𝑂. 𝐶. 𝑀.𝐸.     𝑂. 𝐶.  

20 6.87e-02  1.72e-02  1.52e-02  4.46e-03  

40 4.96e-02 0.47 1.31e-02 0.39 7.22e-03 1.07 2.17e-03 1.03 

80 3.53e-02 0.49 9.73e-03 0.43 3.34e-03 1.11 1.03e-03 1.08 

160 2.48e-02 0.51 7.04e-03 0.47 1.52e-03 1.14 4.78e-04 1.11 

320 1.73e-02 0.52 5.02e-03 0.49 6.79e-04 1.16 2.17e-04 1.14 

640 1.2e-02 0.53 3.54e-03 0.51 3.01e-04 1.17 9.72e-05 1.16 

 Theory   0.6  0.1  1.2  0.2 

  
  𝛼 = 0.3 

 𝑁  𝛾 = 3    𝛾 = 3.3 

  𝐶𝑟𝑎𝑛𝑘 − 𝑁𝑖𝑐𝑜𝑙𝑠𝑜𝑛   𝐿1 𝐶𝑟𝑎𝑛𝑘 − 𝑁𝑖𝑐𝑜𝑙𝑠𝑜𝑛 𝐿1 

 𝑀.𝐸.     𝑂. 𝐶. 𝑀.𝐸.     𝑂. 𝐶. 𝑀.𝐸.     𝑂. 𝐶. 𝑀.𝐸.     𝑂. 𝐶. 

20 9.279e-03  9.08e-04  1.204e-02  5.5e-04  

40 4.067e-03 1.19 2.85e-04 1.67 4.493e-03 1.18 1.54e-04 1.83 

80 1.74e-03 1.21 8.63e-05 1.72 1.95e-03 1.2 4.33e-05 1.83 

160 7.51e-04 1.22 2.56e-05 1.75 8.4e-04 1.21 1.2e-05 1.85 

320 3.19e-04 1.23 7.42e-06 1.78 3.55e-04 1.23 3.18e-06 1.92 

640 1.34e-04 1.25 2.16e-06 1.78 1.5e-04 1.24 8.2e-07 1.96 

Theory  1.3  0.3  1.3  2 

 

Table 1: Errors and convergence rates for different mesh grading 𝛾 with 𝛼 = 0.3.  

 

We observe better order for 𝐿1 scheme. The errors and convergence rates for Crank-

Nicolson and 𝐿1 improved when the mesh is graded. We observe that the numerical results 

of Crank-Nicolson are as expected in Theorem (2). However, the numerical results of the 
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𝐿1 scheme shows that the theoretical results are pessimistic.  

  

8. Conclusion 

We established the existence and uniqueness of the weak solution for the general form of 

the model problem (1) in the case of space-time dependent driving forcing via Galerkin 

method. Furthermore the behavior of the time derivatives of the weak solution was studied, 

proving estimates that play an important role in the error analysis of the numerical schemes. 

For the numerical solution of the model problem (1), an implicit Crank-Nicolson scheme 

to discretize in time was proposed such a scheme is formally second-order accurate. 

However, due to the presence of a weakly singular kernel and the fractional derivative 

operator 𝜕𝑡
1−𝛼, we only proved an 𝑂(𝑘1+𝛼) convergence for 0 < 𝛼 < 1 in the case of 

non-uniform time meshes, where 𝑘  denotes the maximum time step. A fully discrete 

scheme that combined finite elements in space with Crank-Nicolson in time was proposed, 

and the existence and uniqueness of the solution of the fully discrete scheme was proved. 

We introduced another numerical scheme based on 𝐿1 approximation in time and finite 

elements in space, and we performed the error analysis for the fully discrete scheme. We 

got results better than the first method; we got an order of 𝑂(𝑘2) convergence rate in the 

case of non-uniform time meshes. 

In comparison to the previous work regarding the convergence rate, we find that 

our results are better than the work done by Le et al. [7]. In their work, they proved an 

𝑂(𝑘𝛼) order of convergence. However, in our numerical methods, we got 𝑂(𝑘𝛼+1) using 

the Crank-Nicolson method and 𝑂(𝑘2) using the 𝐿1 approximation scheme.  

 

Future work 

In the future we plan to investigate the numerical solution of the time-fractional Fokker-

Planck equation in the case of non-smooth initial data.  
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