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1. Introduction 
A triple (S, +,⋅) is called a semiring if (S, +) is a semigroup; (S,⋅) is semigroup; a(b + c)  = 
ab + ac and  (b + c)a = ba + ca  for  every  a, b, c in S. A semiring (S, +, ⋅) is said to be a 
totally ordered semiring if the additive semigroup (S, +) and multiplicative semigroup  
(S, ⋅) are totally ordered semigroups under the same total order relation. An element x in 
a totally ordered semigroup (S, ⋅) is non-negative (non-positive) if x2 ≥ x(x2 ≤ x). A totally 
ordered semigroup (S, ⋅) is said to be non-negatively(non-positively) ordered if every one 
of its elements is non-negative(non-positive). (S, ⋅) is positively(negatively) ordered in 
strict sense if xy ≥ x and xy ≥ y (xy ≤ x and xy ≤  y) for every x and y in S. ( S, + ) is said 
to be band if a + a = a for all a in S. A semigroup ( S, + )  is said to be rectangular band if 
a + b + a = a  for all a, b in S. A semigroup (S, .) is said to be a band if a = a2  for all a in 
S. A semigroup (S, . ) is said to be left ( right) singular if ab = a (ab = b) for all a, b in S. 
A semigroup ( S, + )  is said to be left ( right ) singular if  a + b = a (a + b = b) for all a, b 
in S. A semiring (S, +,  . ) is said to be  Mono semiring if a + b = ab for all a, b in S. A 
semiring is said to be Positive Rational Domain ( PRD) if and only if ( S, . ) is an abelian 
group. A semiring ( S,  +,  . ) with additive identity zero is said to be zerosumfree 
semiring if x + x = 0 for all x in S. 
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Theorem 1.1. Let (S, +, . ) be a semiring. If S contains a multiplicative identity which is 
also an additive identity, then (S,  . ) is left singular if and only if S satisfies the condition 
a + ab + b = a, for all a,b in S.  

Proof:   Let ‘e’ be the multiplicative identity which is also an additive identity 
Assume that S satisfies the condition a + ab + b = a, for all a,b in S. 
         ฺ a [e+b] + b = a  ฺ ab + b = a  ฺ[a + e] b = a ฺ ab = a  
 .is left singular  (.   ,S)  
 
Conversely,   let ( S,  . ) be a left singular semigroup  

Consider  a + ab + b = a [e + b] + b = ab + b  = [a + e]b = ab  = a 
Hence, S satisfies the identity  a + ab + b = a, ∀ a, b  in S. 
 

Theorem 1.2. Let (S, +,  .) be a semiring and suppose the condition   a + ab + b = a, for 
all a, b in S. If  S contains a multiplicative identity which is also an additive identity then 

(i) (S,+ ) is band 
(ii) (S, .) is band 
(iii) (S,+ ) is left singular 
(iv) (S,+) is rectangular band 

 
Proof :  
(i)    Assume  that  S satisfies the condition   a + ab + b = a, for all a,b in S 
       Let e be the multiplicative identity which is also additive identity, i.e.  ae = e.a = a.         
       and   a + e = e + a = a. 
       Let a + ab + b = a,   for all a,b in S. 
       a[e + b] + b = a ⇒ ab  +  b = a ⇒ a + ab + b = a + a  ⇒ a = a + a, for all a,b in S 
                                    ∴  (S,  + ) is a band 
 
 (ii)  Suppose  a + a2  + a = a  for  all  a  in S. 
        ⇒ a [ e + a ] + a = a  ⇒ a.a + a = a    ⇒ a2  + a = a   ⇒ a [a + e] = a  ⇒ a.a = a       
        ⇒ a2 = a, for  all  a  in S 
                 ∴  (S,  .)  is a band 
 
(iii)   a + ab + b = a 
         a + [e + a] b = a      
         a + ab = a 
         a + ab +  b = a + b 
         a = a + b  
  ∴  (S,  + ) is left singular Semigroup 
 
(iv)  a + b + a = a  + ab +  b + b + a  = a [e + b] + b + b + a  =  ab +  b + b + a 

            =  [ a + e ] b + b + a =  ab + b + a = [a + e] b + a = ab + a = a[b + e]  
            = ab = a      (ab = a from Theorem 1.1) 

∴  ( S, + ) is a rectangular band 
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Example 1.3.  This satisfies Theorem 1.2. 

+ e a b
e e a b
a a a a 
b b a b

. e a b
e e a b
a a a a 
b b a b

 
Definition 1.4. A semiring (S, +,  . ) is said to be zero square semiring if   x2 = 0 for all x 
in S, where 0 is multiplicative zero. 
 
Theorem 1.5. Let ( S, +,  . ) be a zero square  semiring, where 0 is the additive identity. If 
S satisfies the identity  a + ab + b = a  for all a, b in  S, then S2 ={0}. 
 
Proof:  Let a  +  ab + b = a  for all a, b in  S. 
a(a + ab + b = a ) = a.a ⇒ a2 + a2b + ab = a2  ⇒ 0 + 0.b + ab = a2   ⇒ a + ab = 0 ⇒  ab = 0. 
Also, a + ab + b = a ⇒ a2 + (ab) a + ba =  a2 ⇒  0 + 0.a + b.a = 0 ⇒ 0 + ba = 0 ⇒ ba = 0 
           ∴  S2 = {0} 
 
Example 1.6. Let S = {0, a, b}with the addition given in the table and S2 = {0} is an 
example which satisfies the conditions of theorem 1.5.  

 
 
 
 
 

 
Theorem 1.7.  Let ( S, +,  . ) be a zerosumfree semiring, then 

(i)  a + ab + b = a  for all a, b in  S if and only if (S, .) is right singular 
(ii) If   a  + ab + b = a then  a2b  + ab2   = ab  + (ab)2 = 0 
 

Proof:  (i)  Consider a + ab + b = a   for all a, b in  S 
                     ⇒ a  + ab + b + b = a  + b  
                     ⇒ a  + ab + 0 = a  + b 
                     ⇒ a  + a +  ab = a  + a + b 
                    ⇒ 0 + ab = 0 + b 
                    ⇒ab = b 
Conversely,assume,   (S, .) is right singular 

  ⇒ ab = b 
                 ⇒ a  + ab = a + b 
                   ⇒ a  + ab + b = a + b + b 
                  ⇒ a + ab + b = a + 0 
                  ⇒ a + ab + b = a   
(ii)    a2b  + ab2   =  a.ab + abb 
                           = a [ ab  + bb ] 
                           =  a [ b + b2] 

+ 0 a b 
0 0 a b 
a a a a 
b b b b 
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                           = a [b + b]  (from (i), b.b= b) 
                           =  a.0 
                = 0. 
 
Theorem 1.8. Let ( S,  +,  . ) be a semiring satisfying  the identity  a + ab + b = a  for all 
a, b in  S and let  ( S,  + ) be   band then  
(i) a  + b = a, for all a, b in S. 
(ii) If (S, +) is commutative, then a + ab = a  
 
Proof:  (i) Consider   a + ab + b = a  for all a, b in  S 
               ⇒ a + ab + b + b  = a + b for all a, b in  S 
              ⇒ a + ab + b  =  a + b for all a, b in  S 
              ⇒ a = a + b,    for all a, b in  S 
      (ii)  Consider   a + ab + b = a  for all a, b in  S 
  a = a + a( b + b ) + b  
    = a + ab + ab + b 
     = a + ab + b + ab 
     = a + ab. 
 
Definition 1.9. A semiring (S, +, •) is said to be a Boolean semiring if (S, •) is a band. 
 
Theorem 1.10. Let (S, +, .) be a Boolean semiring. Then 

(a) If a + ab + b = a for all a, b in S, then S= {a, 2a}U{b,2b} U … for all a,b …∈S 
(b) If  a + b =a for all a,b in S, then a+ ab + b = a 

 
Proof:   (a) Let a + a.a + a = a for every a ∈ S 
 ⇒ a + a + a = a 
 ⇒ 3a = a  
 ⇒ 4a = 2a . 
This proves the theorem 
 
 (b)     Consider a + ab + b = a2 + ab + b2 
        = a2 + (a + b)b 
        = a2 + ab 
        = a (a + b) 
        = a.a 
        = a 
Hence, a + ab + b = a. 
 
Example 1.11. The following are the examples of semiring satisfying Theorem 1.10(a) 
 

(a)    S = {a, 2a} 
+ a 2a
a 2a a 
2a a 2a

. a 2a
a a 2a
2a 2a 2a
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(b)    S = {a, 2a, b, 2b} 

 
+ a 2a b 2b 
a 2a a 2a a 
2a a 2a a 2a 
b 2b b 2b b 
2b b 2b b 2b 
 

. a 2a b 2b 
a a 2a a 2a 
2a 2a 2a 2a 2a 
b b 2b b 2b 
2b 2b 2b 2b 2b 
    

Theorem 1.12. Let ( S,+,  .) be a semiring. If  S contains a multiplicative identity which 
is also an absorbing element  then a + b = a if and only if a + b + ab = a for all a, b in S. 

Proof : Suppose a + ab + b = a ⇒ a ( 1 + b)  + b = a  ⇒  a.1 + b = a ⇒a + b = a  
Conversely, suppose a + 1 = 1 ⇒ ab + b = b ⇒ a + ab + b = a + b ⇒ a + ab + b = a 
 
Definition 1.13.  A   C-semiring is a semiring in which 

(i) (S, +) is a commutative monoid 
(ii) (S, .) is a commutative monoid 
(iii) a.(b + c) = ab + ac  and ( b + c).a = ba + ca , for every a, b, c in S 
(iv) a.0 = 0.a = 0 
(v) (S, +) is a band and 1 is the absorbing element of  ` +’. 
 

Theorem 1.14. Let (S, +, ⋅) be a totally ordered C - semiring and satisfying the identity   
a + ab + b = a, for all a, b in S.  If   (S, +) is p.t.o (n.t.o.), then (S, ⋅) is n.t.o. (p.t.o.). 

Proof:  Let a + ab + b = a, for all a, b in S 
⇒ a + a (b + b) + b = a 
⇒ a + ab + ab + b = a 

  ⇒ ab + a + ab + b = a  
⇒  ab + a = a     (∵a + ab + a = a)                                                  …  (A)  

  ⇒  a = ab + a  ≥  ab  (∵(S, +) is p.t.o.) 
⇒  a  ≥  ab 

 Suppose ab  > b 
  ⇒  ab + a ≥   b + a 

⇒ a ≥  b + a  (∵  from (A)) 
  ⇒ a ≥  a + b   
  ⇒ a + b ≤   a 
 which contradicts the hypothesis that  (S, +) is p.t.o. 
  ⇒ ab ≤   b 
  ∴ab ≤   a  and  ab ≤   b 
 Hence (S,⋅) is n.t.o. 

Similarly, we can prove that (S,⋅) is p.t.o  if  (S, +) is n.t.o. 
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2.   Boolean Like Semirings 
Definition 2.1. A semigroup (S, . ) is said to be weak commutative if  abc = bac, for all a, 
b, c in S. 
 
Definition 2.2. A non-empty set S together with two binary operations ` + ’ and  ` . ’ 
satisfying the following conditions is called a Boolean like semiring, if  
(i) ( S, +) is a semigroup 
(ii) ( S, .) is a semigroup 
(iii) a.(b + c) = a.b + a.c  and  (b + c).a = b.a + c.a 
(iv) ab (a + b + ab) = ab , for all a, b in S  and a.0 = 0.a = 0 
(v) weak commutative  
 
Theorem 2.3. Let (S, +, ⋅) be a Boolean like semiring with additive identity zero. If S is a 
zero square semiring, then  ab = 0, for all a, b in S. 
 
Proof:  Given S is a Boolean like semiring, 
 We have ab ( a + b + ab) = ab, for all a, b in S 

⇒ a (ba + b2 + bab) = ab 
⇒ a (ba + 0 + bab) = ab         (∵S is a zero square semiring, b2 = 0) 
⇒ a (ba + abb) = ab    (∵By weak commutative) 
⇒ a (ba + ab2) = ab 
⇒ a (ba + 0) = ab   (∵S is a zero square semiring, b2 = 0) 
⇒ aba = ab 
⇒ aab = ab     (∵By weak commutative)  

  ⇒ a2b = ab   
⇒ 0 = ab      (∵S is a zero square semiring, a2 = 0) 
∴ab = 0, for all a, b in S. 

 
Theorem 2.4. Let (S, +, ⋅) be a boolean like semiring with additive identity zero. If S is a 
zerosumfree semiring, then      a2 = a2n and a2n+1 = a3  and so on ,  for n > 1. 
 
Proof:  Given S is a Boolean like semiring, 

We have ab ( a + b + ab) = ab, for all a, b in S 
⇒ a .a (a + a + aa) = aa for all a in S 
⇒ a2 (a + a + a2) = a2 

⇒ a2 (0 + a2) = a2                     (∵S is a zerosumfree semiring, a + a = 0) 
⇒ a2 ( a2) = a2 ⇒ a4 = a2 
⇒ a4 .a = a2.a ⇒ a5 = a3 
⇒ a5.a = a3.a ⇒ a6 = a4 = a2⇒ a6  = a2 
⇒ a6 .a = a4.a = a2.a ⇒ a7 = a5 = a3 
i.e., a2 = a4 = a6 = a8 =…… 
⇒ a2 = a2n , for n > 1 
And a3 = a5 = a7 = a9 = …… 
⇒ a3 = a2n+1 , for n > 1 
∴  a2 = a2n , for n > 1  and     a3 = a2n+1 , for n > 1 
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Theorem 2.5. Let (S, +, .) be a boolean like semiring. If (S, .) is a rectangular band, then 
a + b + ab = ab for all a, b in S. Converse is also true if (S, .) is right cancellative. 
 
Proof: Consider ab (a +b + ab) = ab 
        ⇒ a (ba + bb +bab ) = ab  ⇒ a (ba + bb +b) = ab  

       ⇒  (aba + abb +ab ) = ab  ⇒ (a + bab + ab) = ab 
             ⇒ (a + b + ab) = ab 
 
Conversely,  ab(a + b + ab) = ab 
         ab (ab ) = ab 
         aba = a 
 

REFERENCES 
 

1. Arif  Kaya  and M. Satyanarayana, Semirings satisfying properties of distributive 
type, Proceeding of the American Mathematical Society, 82 (3) (1981), 341-346. 

2. Jonathan S. Golan, Semirings and their Applications, Kluwer Academic Publishers, 
Dordrecht, 1999. 

3. Jonathan S. Golan, Semirings and Affine Equations over Them: Theory and 
Applications, Kluwer Academic  Publishers, 2003.  

4. M.Satyanarayana, On the additive semigroup of ordered semirings, Semigroup  
Forum, 31 (1985), 193-199. 

5. T. Vasanthi and N. Sulochana, Semirings satisfying the identities   International 
Journal of Mathematical Archive,  3 (9), ( 2012), 3393-3399 . 


