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Abstract. This work is concerned with the Numerical treatment of MHD on unsteady 
Magnetohydrodynamics Fluid flow past an infinite rotating vertical porous plate with 
heat transfer considering Hall current has been made. The solution would be based 
mainly on numerical transformation methods. The above mentioned framework has been 
considered in the one-dimensional unsteady problem. The system of equations has been 
transformed by usual transformation into a non-dimensional form. The dimensionless 
momentum and temperature equations are solved numerically by implicit finite difference 
technique. They are discussed for different time steps as well as for different values of 
parameters of physical and engineering interest. Also the corresponding wall shear 
stresses as well as rate of heat transfer coefficient, better named the Nusselt number has 
been performed. The obtained solutions have been graphically represented for different 
values of the well-known parameters. Finally, a qualitative comparison has been made 
between the present work and previous published result.  
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1. Introduction 
MHD flow problems have become in view of its significant applications in industrial 
manufacturing processes such as plasma studies, petroleum industries 
Magnetohydrodynamics power generator cooling of clear reactors, boundary layer 
control in aerodynamics. Many authors have studied the effects of magnetic field on 
mixed, natural and force convection heat and mass transfer problems. Indeed, MHD 
laminar boundary layer behaviour over a stretching surface is a significant type of flow 
having considerable practical applications in chemical engineering, electrochemistry and 
polymer processing. This problem has also an important bearing on metallurgy where 
magnetohydrodynamic (MHD) techniques have recently been used.  
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Chin et al. [6] obtained numerical results for the steady mixed convection 
boundary layer flow over a vertical impermeable surface embedded in a porous medium 
when the viscosity of the fluid varies inversely as a linear function of the temperature. Pal 
and Talukdar [5] analysed the combined effect of mixed convection with thermal 
radiation and chemical reaction on MHD flow of viscous and electrically conducting 
fluid past a vertical permeable surface embedded in a porous medium is analysed. 
Mukhopadhyay [8] performed an analysis to investigate the effects of thermal radiation 
on unsteady mixed convection flow and heat transfer over a porous stretching surface in 
porous medium. Hayat et al. [9] analysed a mathematical model in order to study the heat 
and mass transfer characteristics in mixed convection boundary layer flow about a 
linearly stretching vertical surface in a porous medium filled with a viscoelastic fluid, by 
taking into account the diffusionthermo (Dufour) and thermal-diffusion (Soret) effects. 

Abdelkhalek [2] investigated the effects of mass transfer on steady two 
dimensional laminar MHD mixed convection flow. Crane [4] considered the problem of 
steady 2D, incompressible MHD flow past a circular cylinder with an applied magnetic 
field parallel to the main flow. Chowdhury and Islam [3] presented a theoretical analysis 
of a MHD free convection flow of a viscoelastic fluid adjacent to a vertical porous plate. 
Abo-Eldahab and Elbarbary [1] studied the Hall current effects on MHD free-convection 
flow past a semi-infinite vertical plate with mass transfer. The effect of Hall current on 
the steady magnetohydrodynamics flow of an electrically conducting, incompressible 
Burger’s fluid between two parallel electrically insulating infinite planes was studied by 
Rana et al. [7]. 

Hence our aim is to study the roll of magnetic field on ionized 
Magnetohydrodynamics fluid flow through an infinite rotating vertical porous plate with 
heat transfer. The investigation has been made for solving the system of nonlinear 
equations. For this purpose the implicit finite difference technique has been used for 
problems for which non-similar solutions of the coupled non-linear partial differential 
equations are sought. Therefore, it is necessary to investigate in detail the distributions of 
primary velocity, secondary velocity and temperature across the boundary layer in 
addition to the Suction parameter. Also the Shear stresses as well as Nusselt number 
follows their usual trends.  
 
2.  Mathematical Model of the Flow 
Consider an unsteady laminar, incompressible, viscous as well as electrically conducting 
fluid flowing through an infinite vertical porous plate. Initially the flow velocity 
patternܷ∞, density ߩ∞ and temperature ∞ܶare assumed to be uniform which is similar to 
that of fluid outside from the boundary layer. In Fig. 1(a) the ݔ െaxis is taken along the 
vertical plate with usual porosity. And ݕ-axis is normal to the plate. The flow is permitted 
by a non-conducting vertical porous plate which is taken along ݔ െaxis in the upward 
direction. The unsteady fluid flow starts at ݐ ൌ 0, afterward the whole frame is allowed to 
rotate with an angular velocity ܴ about ݕ-axis. With ݐ  0, the porous plate is started to 
move in its own plane with constant velocity ܷ and with this also rises or fall its 
temperature from ௪ܶ to ஶܶ instantaneously which is thereafter be maintained as such.  
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A strong uniform magnetic field of 
strength ܤis applied normal to the plate 
which is electrically non-conducting that 
induced another magnetic field on the 
electrically conducting fluid. Here we 
assumed that,  ൌ ሺ0, ,ܤ 0ሻ and the 
magnetic lines of force are fixed relative to 
that of fluid. In general, the electrically 
conducting fluid is affected by Hall current 
in the presence of strong magnetic field. 
Consequently, the effect of Hall current 
gave rise to a force in the ݖ-direction. 
Eventually it permitted a cross flow in the ݖ-direction. Therefore, the flow becomes 
two dimensional. Since the plate is of 
infinite extent and also the motion of the fluid is unsteady, therefore, all the flow 
variables are depend on ݕ and time ݐ.  

From continuity equation, ݒ represents the constant suction velocity. The 
equation of conservation of charge . ܬ ൌ 0 gives ܬ௬ ൌ constant. Since the direction of 
propagation only along the ݕ-axis ࡶdoes not have any variation in ݕ െdirection. This 
constant is zero and hence ܬ௬ ൌ 0 at the plate and consequently zero everywhere. In this 
case, the generalized Ohm’s law should be in another form. Considered as; ݉݁ଶ݊ ߲ଔԦ߲ݐ ൌ ሬԦܧ  Ԧݍ ר ሬԦܤ െ Ԧܬ ר ሬԦ݁݊ܤ  ݁݊ߩ െ ଔԦߪ                                                                                  ሺ1ሻ 

Here, 1st term in the left hand side reefers to current acceleration, 3rd term on the 
right hand side denoted that the Hall effect (owing to Lorentz Force) and the following 
term on the right hand side stands for diffusive streaming caused by the pressure gradient. 
Thus accordance with the above framework and Boussinesq’s approximation, the basic 
boundary layer equations are given by, 

Momentum equation in ݔ-direction with rotation, thermal buoyancy force and 
Hall current; ߲߲ݐݑ െ ݒ ݕ߲ݑ߲ ൌ ߴ ቆ߲ଶݕ߲ݑଶቇ  ሺܶߚ݃ െ ∞ܶሻ  ݓ2ܴ െ ሺ1ߩߪଶܤ    ݉ଶሻ ሺݑ   ሻ                        ሺ2ሻݓ݉

Momentum equation in ݖ-direction with rotation and Hall current; ߲߲ݐݓ െ ݒ ݕ߲ݓ߲ ൌ ߴ ቆ߲ଶݕ߲ݓଶ ቇ െ ݑ2ܴ  ሺ1ߩߪଶܤ    ݉ଶሻ ሺ݉ݑ െ  ሻ                                                  ሺ3ሻݓ

Energy equation with viscous dissipation and Joule’s dissipation; ߲߲ܶݐ െ ݒ ݕ߲߲ܶ ൌ ܿߩߢ ߲ଶ߲ܶݕଶ  1ܿ Ԃ ቈ൬߲ݕ߲ݑ൰ଶ  ൬߲ݕ߲ݓ ൰ଶ  ሺ1ܿߩଶܤߪ  ݉ଶሻ ሺݑଶ   ଶሻ                 ሺ4ሻݓ

with the boundary conditions for the present problem are given by,        ݑ ൌ ܷ, ݓ ൌ 0, ܶ ൌ ௪ܶat  ݕ ൌ 0  and  ݐ  ݑ        0 ൌ ݓ          ,0 ൌ 0,          ܶ ՜ ஶܶas  ݕ ՜ ∞ and  ݐ  0                                                   ሺ5ሻ 

Fig. 1 (a):  Physical configuration and 
Co-ordinate system.
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where ݑ, ,ݔ are the velocity components in the ݓ  direction respectively, ݃ is ݖ
the acceleration due to gravity, ߚ is the coefficient of volume expansion, ܶ and ஶܶ are the 
temperature of the fluid inside the thermal boundary layer and the fluid temperature in the 
free stream, respectively. ߴis the kinematic viscosity, ߩ be the density, ߪ is the electrical 
conductivity, ܤ be the strength of the magnetic field, ݉ is the Hall current,  where,  ݉ ൌ ܤߪ ݁݊⁄  is the thermal conductivity of the medium, ܿ is the specific heat atߢ .
constant pressure.݁be the electron charge and ݊ represents number density of electron.  

3. Mathematical Formulation 
Mathematical formulation of this problem is dimensionalised by usual transformation 
technique. For this the required problem is introduced the following dimensionless 
variables to attain the solution of non-linear coupled partial differential equations.  ܻ ൌ ߴܷݕ , ܷ ൌ ݑܷ , ܹ ൌ ݓܷ , ߬ ൌ ߴଶܷݐ , ߠ ൌ ܶ െ ஶܶ௪ܶ െ ஶܶ 

Applying all these non-dimensional variables into the equation (2) to (4), the 
basic equations relevant to the problem are in dimensionless form, as; ߲ܷ߲߬ െ ߳ ߲ܷ߲ܻ ൌ ߲ଶܷ߲ܻଶ  ߠܩ  2Γܹ െ Μሺ1  ݉ଶሻ ሺݑ  ሻ                                                    ሺ6ሻ Similarlyݓ݉ ߲ܹ߲߬ െ ߳ ߲ܹܻ߲ ൌ ߲ଶܹ߲ܻଶ െ 2Γܷ  Μሺ1  ݉ଶሻ ሺ݉ݑ െ ሻ                                            ሺ7ሻ ߲θ߲߬ݓ െ ߳ ߲θ߲ܻ ൌ 1ܲ ߲ଶܻ߲ߠଶ  ܧ ቈ൬߲ܷ߲ܻ൰ଶ  ൬߲ܹܻ߲൰ଶ  Μ ሺ1ܧ  ݉ଶሻ ሺܷଶ  ܹଶሻ                        ሺ8ሻ 

with the corresponding boundary conditions ߬  0,      ܷ ൌ 1,   ܹ ൌ ߠ      ,0 ൌ 1                             at ܻ ൌ 0ܷ ൌ 0,   ܹ ൌ ߠ      ,0 ൌ 0                         as ܻ ՜ ∞                                                ሺ9ሻ where,       ߳ ൌ vU ሺSuction parameterሻ,    ܩ ൌ ሺߚ݃ ௪ܶ െ ஶܶሻߪଶܷߴ ሺGrashof Numberሻ,        Μ ൌ ߴߩଶߪଶܤߪ ሺMagnetic Parameterሻ, ܲ ൌ ߢߴܿߩ ሺPrandlt Numberሻ, Γ ൌ ଶܷߴܴ ሺRotation paሻ, ݉ ൌ ݁݊ܤߪ ሺHall Currentሻ, ܧ ൌ ܷଶܿሺ ௪ܶ െ ஶܶሻ ሺEckert Numberሻ. 
4. Method of Solution 
Systems of non-linear coupled partial differential equations with the boundary 
conditions are very difficult to solve analytically. For simplicity the implicit finite 
difference method has been used to solve (6) to (8) subject to the boundary conditions 
(9). In this case the region within the boundary layer is divided by some perpendicular 
lines of ܻ- axis, where ܻ- axis is normal to the medium as shown in Fig. 1(b). 

It should be noted that the maximum length of boundary layer is ܻ௫ሺൌ 35ሻ as 
corresponds to ܻ ՜ ∞ i.e. ܻvaries from 0 to 35. And the number of grid spacing in ܻ 
directions is ݉ሺൌ 200ሻ, hence the constant mesh size along ܻ axis becomes ∆ܻ ൌ0.175 ሺ0  ܻ  35ሻ with the smaller time step ∆߬ ൌ 0.001. 



Hall Current Effects on Magnetohydrodynamics Fluid over an Infinite Rotating Vertical 
Porous Plate Embedded in Unsteady Laminar Flow  

193 
 

Using the finite difference method, ܷ, ܹ,  and θ can be represented in terms of 
the values of ܷ, ܹ, andߠ at the end of the time step respectively. Implicit finite 
difference approximation gives; 

 

 

 

 

 

 

Fig. 1(b): Implicit finite difference space grid. 

൬߲ܷ߲߬൰ ൌ ܷାଵ െ ܷ∆߬ , ൬߲ܷ߲ܻ൰ ൌ ܷାଵ െ ܷ∆ܻ , ቆ߲ଶܷ߲ܻଶ ቇ ൌ ܷାଵ െ 2 ܷ  ܷିଵሺ∆ܻሻଶ  

 ൬߲ܹ߲߬൰ ൌ ܹାଵ െ ܹ∆߬ , ൬߲ܹܻ߲൰ ൌ ܹାଵ െ ܹ∆ܻ , ቆ߲ଶܹ߲ܻଶ ቇ ൌ ܹାଵ െ 2 ܹ  ܹିଵሺ∆ܻሻଶ  

൬߲θ߲߬൰ ൌ ାଵߠ െ ߬∆ߠ , ൬߲θ߲ܻ൰ ൌ ାଵߠ െ ܻ∆ߠ ,      ቆ߲ଶܻ߲ߠଶቇ ൌ ାଵߠ െ ߠ2  ିଵሺ∆ܻሻଶߠ  

Substituting the above relations into the corresponding partial differential 
equation (6) to(8), an appropriate set of finite difference equations have been made as 

ܷାଵ െ ܷ∆߬ െ ߳ ܷାଵ െ ܷ∆ܻ ܷାଵ െ 2 ܷ  ܷିଵሺ∆ܻሻଶ    ߠܩ  2Γ ܹ െ ሺ1ܯ  ݉ଶሻ ሺ ܷ  ݉ ܹሻ  ሺ10ሻ 

 ܹାଵ െ ܹ∆߬ െ ߳ ܹାଵ െ ܹ∆ܻ ൌ ܹାଵ െ 2 ܹ  ܹିଵሺ∆ܻሻଶ െ 2Γ ܷ  Μሺ1  ݉ଶሻ ሺ݉ ܷ െ ܹሻ       ሺ11ሻ ߠାଵ െ ߬∆ߠ െ ߳ ାଵߠ െ ܻ∆ߠ ൌ 1ܲ ାଵߠ െ ߠ2  ିଵሺ∆ܻሻଶߠ  ܧ ቆ ܷାଵ െ ܷ∆ܻ ቇଶ  ቆ ܹାଵ െ ܹ∆ܻ ቇଶ൩ 

       Μ ଶߙ൫ܧ  ଶ൯ߚ ൫ ܷଶ  ܹଶ൯                                                                                                        ሺ12ሻ 

and the boundary condition with finite difference scheme as; ܷ ൌ 1,    ܹ ൌ 0, ߠ       ൌ 1,                                       ߬  0ܷ ൌ 0,    ܹ ൌ 0, ߠ       ൌ 0,                                          ߬  0                                            ሺ13ሻ 
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Here the subscript ݅ degenerate the grid points with ܻ coordinates and 
superscript ݊ represents a value of time, ߬ ൌ ݊∆߬, where, ݊ ൌ 0,1,2,3, … … … … At the 
end of any time step  ∆߬, the new temperature  ߠାଵ, the new secondary velocity ܹାଵ, 
and the new primary velocity ܷାଵ at all interior nodal points, may be obtained by 
successive applications of (10) to (12) respectively. Also the numerical values of the 
shear stresses, as well as Nusselt number are eventually by five point approximate 
formula for the derivatives. But the overall criteria are not shown for brevity.   

5. Results and discussion 
This Framework is plotted within the intermediate region of thermal boundary layer for 
different values of dimensionless suction parameterሺܵሻ, the magnetic parameter ሺܯሻ, 
Hall current ሺ݉ሻ, Prandtl number ሺ ܲሻ, Grashof number ሺܩሻ, Rotation Parameter (Γ) 
and Eckert number ሺܧሻ. The values of Grashof number ܩ are varied with positive 
and negative numbers; this problem refers to the values of ܩ  0 as grater cooling 
and greater heating respectively. Also the results are limited to ܲ ൌ 0.71 (Prandtl 
number for air at 20 C), ܲ ൌ 1.0 (Prandtl number for electrolytic solution like salt 
water at 20 C), ܲ ൌ 7.0 (Prandtl number correspond to water at 20 C). The other 
parameters are taken arbitrarily.  

To get the steady state solution of this developed model, the numerical 
computation has been carried out up to dimensionless time ߬ ൌ 80.05. But at the 
present case, changes appear till ߬ ൌ 60. And then onward the changes are not 
apparent. Therefore, ߬ ൌ 60  essentially represents steady state solution for this 
problem.  

With the above mentioned parameters, the primary velocity profiles, the 
secondary velocity profiles as well as the temperature profiles has been expedited in 
Fig.2 to Fig.17.  In Fig.2 the primary velocity caused affect due to different values of 
Magnetic parameter ܯ. It has been depicted that as dimensionless magnetic parameter ܯ increases the velocity profile decreases. So, it follows the boundary conditions. This 
decreasing occurs owing to the presence of magnetic field in the conducting fluid. The 
influence causes a resistive type of force called Lorentz force. This force has a 
tendency to slow down the lateral velocity. As expected the secondary velocity profiles 
increases with the increase of ܯ which has been shown in Fig. 3. On the other hand, the 
temperature (are not shown for brevity) follows the interesting pattern. It is observed 
from Fig. 4, the primary velocity steeply increases with the increase of Hall current ݉. 
Thereafter the profiles have a tendency to meet the free stream velocity which satisfies 
the boundary conditions. The effects of Hall current ݉ has also been expedited incase 
of secondary velocity in Fig. 5. The magnetic effect of thermal buoyancy force ܩ on 
primary velocity has been shown in Fig. 6. It has been observed from the figure 
thatincreasing the values of the Grashof number ܩ decreases in the primary velocity 
profiles. Also the secondary velocity profiles decreases with the increase of 
Grashofnumberܩ. In Fig. 8 the temperature increases for increasing values of ܩ.  

Various effects of dimensionless Eckert number ܧ on different flow field are 
expedited in Figs. 9 to 10. It is interesting to note that as  ܧ increases, there is a rapid 
rise in the primary velocity near the surface of the vertical porous plate and then 
descends asymptotically to meet the free stream velocity.  In Fig. 10, the temperature 
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profile increases near the plate and then onwards it tries to descend to get more stable 
as ܧincreases. Fig. 11 has been shown to expedite various effects of Rotation 
parameter Γ on velocity flow field. It physically relates that the parameter decreases the 
fluid rotation and rotational boundary layer thickness. Also the secondary velocity 
decreases with the increase of Rotation parameter Γ as shown in Fig. 12.The effect of 
Prandlt number ܲ on Primary velocity profile has been shown in Fig. 13. It has seen 
that the velocity profile decreases drastically for the increase of  ܲ. The effect of 
Prandlt number ܲcauses fall of temperature at the same values of Prandltnumber ܲ.Heat is therefore able to diffuse away more rapidly. In Fig.15 the effect of suction 
parameter  ߳ on the primary velocity profile is noteworthy. For large suction the 
velocity profile decreases drastically whereas the secondary velocity increases severely 
with the increase of  suction parameter  ߳. This is because sucking decelerates fluid 
particles through the wall reducing the growth of the boundary layer as well as thermal 
boundary layer as shown in Fig. 17. 

 

 

Fig. 2. Primary velocity profiles for 
dimensionless parameter ܯ.  Fig. 3. Secondary velocity profiles for 

dimensionless parameter ܯ. 
 

Fig. 4. Primary velocity profiles for 
dimensionless parameter ݉. 

 Fig. 5. Secondary velocity profiles for 
dimensionless parameter ݉. 
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Fig. 6. Primary velocity profiles for 
dimensionless parameter ܩ. 

 Fig.7. Secondary velocity profiles for 
dimensionless parameter ܩ. 

 

Fig. 8. Temperature for dimensionless 
parameter ܩ. 

 Fig. 9. Primary velocity profiles for 
dimensionless parameter ܧ. 

 

Fig. 10. Temperature for dimensionless 
parameter ܧ. 

Fig. 11. Primary velocity profiles for 
dimensionless parameter Γ. 

It is seen from Fig. 22 that, ߬௫ increases for the value ܩ  1.The Nusselt 
number ሺെ ௨ܰሻ has fallen with the increase of Grashof numberܩ displayed in Fig.23. 
In Fig. 24, the shear stress ߬௫ increases with the increase of dimensionless Eckert 
number ܧ. Nusselt number ሺെ ௨ܰሻ fall with the increase of ܧ as depicted in Fig. 25. 
Dimensionless Rotation parameter Γ resists the time development of shear stress in ݔ-
direction plotted in Fig. 26. But ߬௭ fall drastically with the increase of Rotation 
parameter as shown in Fig. 27.Different values of suction parameter ܵ caused effects 
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on the shear stresses as shown in Fig. 28. Shear stress  ߬௫ falls drastically for large 
suction. Indicating suction stabilizes the growth of the boundary layer. Negative 
Nusselt number ሺെ ௨ܰሻ rises severely with the increase of suction has been expedited 
in Fig. 29. 
 

 

Fig.12. Secondary velocity profiles for 
dimensionless parameter Γ. 

 Fig.13. Primary velocity profiles for 
dimensionless parameter ܲ. 

 

Fig. 14. Temperature for dimensionless 
parameter ܲ. 

 Fig. 15. Primary velocity profiles for 
dimensionless parameter ߳. 

 

Fig. 16. Secondary velocity profiles for 
dimensionless parameter ߳. 

 Fig. 17. Temperature for dimensionless 
parameter ߳. 
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Fig.18. Shear Stress ߬௫ for dimensionless 
parameter ܯ.  Fig.19. Shear Stress ߬௭ for dimensionless 

parameter ܯ. 
 

Fig. 20. Shear Stress ߬௫ for dimensionless 
parameter ݉. 

 Fig. 21. Shear Stress ߬௭ for dimensionless 
parameter ݉. 

 

Fig. 22. Shear Stress ߬௫ for dimensionless 
parameter ܩ. 

 Fig. 23. Nusselt number ሺെ ௨ܰሻ for 
dimensionless parameter ܩ. 
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Fig. 24. Shear Stress ߬௫ for dimensionless 
parameter ܧ. 

 Fig. 25. Nusselt number ሺെ ௨ܰሻ for 
dimensionless parameter ܧ. 

 

 
Fig. 26. Shear Stress ߬௫ for dimensionless 
parameter Γ. 

 Fig. 27. Shear Stress ߬௭ for dimensionless 
parameter Γ. 

 

Fig. 28. Shear Stress ߬௫ for dimensionless 
parameter ߳. 

 Fig. 29. Shear Stress ߬௭ for dimensionless 
parameter ߳. 

6. Conclusion 
Hall current effects on unsteady MHD fluid flow past a porous vertical plate has been 
considered strong magnetic field. The resulting governing system of dimensionless 
coupled non-linear partial differential equations is numerically solved by an explicit finite 



 Nisat Nowroz Anika, Md. Mainul Hoque and Nazmul Islam 

200 
 

difference method. Some of the important findings obtained from the graphical 
representation of the results are listed below; 

1. The primary velocity  increases with the increase of  ݉, ,ܩ    while it decreasesܧ
with the increase of ܯ, Γ, ߳, ܲ. 

2. The secondary velocity increases with the increase of ܯ,  ݉, ܲ, ߳ while it 
decreases with the increases of ܩ, ,ܧ Γ. 

3. The temperature increases with the increase of ݉, ,ܩ ,ܧ Γ while it decreases 
with the increases of ܲ , ,ܯ ߳. 

4. The Nusselt number ሺെ ௨ܰሻ increase with the increase of  ܲ , ,ܯ ߳ while it 
decreases with the increases of ݉, ,ܩ ,ܧ Γ. 
The shear stresses߬௫, ߬௭follow the previous trends of Primary and Secondary 

velocities. The accuracy of present work is qualitatively good in case of all the flow 
parameters. 
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