Annals of Pure and Applied Mathematics Vol. 3, No. 2, 2013, 113-118 ISSN: 2279-087X (P), 2279-0888(online) Published on 18 July 2013 www.researchmathsci.org

Annals of Pure and Applied <u>Mathematics</u>

α -ideals in a 0-Distributive Nearlattice

Md. Zaidur Rahman¹ and *A.S.A.Noor²* ¹Department of Mathematics Khulna University of Engineering & Technology E mail: <u>mzrahman1968@gmail.com</u>

> ²Department of ECE East West University, Dhaka E mail: <u>noor@ewubd.edu</u>

Received 26 June 2013; accepted 15 July 2013

Abstract. In this paper authors proved some result on α -ideals in a 0-distributive nearlattice. They have included several characterization of these ideals. They have also given a prime Separation Theorem for α -ideals.

Keywords: 0-distributive nearlattice, α -ideals, Annihilatior ideal, Prime ideal.

AMS Mathematics Subject Classification (2010): 06A12, 06A99, 06B10

1. Introduction

 α -ideals have been studied by Cornish [3] is case of distributive lattices. Recently [5] have generalized those results for distributive nearlattices. In recent years many authors e. g. [1] and [4] have studied the α -ideals in a general lattice.

[2] gives a detailed literature on nearlattice. A *nearlattice* is a meet semilattice together with the property that any two elements possessing a common upper bound have a supremum. This property is known as the *upper bound property*.

Verlet [7] have given the definition of 0-distributivity in a lattice with 0. By [8], A nearlattice S with 0 is called 0-distributive if for all $x, y, z \in S$ with $x \wedge y = 0 = x \wedge z$ and $y \lor z$ exists imply $x \wedge (y \lor z) = 0$.

We know from [8, Theorem 5] that a nearlattice S with 0 is 0-distributive if and only if I(S) is pseudocomplemented and so is 0-distributive. Let L be a lattice with 0. An element a^* is called the *pseudocomplement* of a if $a \wedge a^* = 0$ and if $a \wedge x = 0$ for some $x \in L$, then $x \le a^*$. A lattice L with 0 and 1 is called *pseudocomplemented* if its every element has a pseudocomplement. For a nearlattice S if I(S) is pseudocomplemented, then for each $A \in I(S)$, A^* is also known as an annihilator

Md. Zaidur Rahman and A.S.A.Noor

ideal. An ideal I in a 0-distributive nearlattice S is called an α -ideal if for each $x \in S$, $x \in I$ implies $(x]^{**} \subseteq I$.

In this section we would like to study the α -ideals in a 0-distributive nearlattice.

For any $A \subseteq S$, we define $A^{\perp} = \{x \in S \mid x \land a = 0 \text{ for all } a \in A\}$. A^{\perp} is clearly a down set. By [8] we know that A^{\perp} is an ideal if S is 0-distributive and if A is an ideal, then $A^{\perp} = A^*$ is the annihilator ideal.

2. Some Properties

Theorem 1. A nearlattice *S* is 0-distributive if and only if $((a \land b) \lor (a \land c)]^{\perp} = (a \land b]^{\perp} \cap (a \land c]^{\perp}$ for all $a, b, c \in S$.

Proof: Let *S* be 0-distributive and $x \in ((a \land b) \lor (a \land c)]^{\perp}$. This implies $x \wedge \{(a \wedge b) \lor (a \wedge c)\} = 0$. Thus, $x \wedge (a \wedge b) = 0$, $x \wedge (a \wedge c) = 0$. Hence, $x \in (a \land b]^{\perp}$ and $x \in (a \land c]^{\perp}$. So $x \in (a \land b]^{\perp} \cap (a \land c]^{\perp}$. Hence $((a \land b) \lor (a \land c)]^{\perp} \subset (a \land b]^{\perp} \cap (a \land c]^{\perp}$. Again, let $x \in (a \land b]^{\perp} \cap (a \land c]^{\perp}$. Then $x \land (a \land b) = 0$ and $x \land (a \land c) = 0$. Since S is 0-distributive. So, $x \wedge \{(a \wedge b) \lor (a \wedge c)\} = 0$. This implies $x \in ((a \land b) \lor (a \land c)]^{\perp}$. Hence, $(a \wedge b]^{\perp} \cap (a \wedge c]^{\perp} \subset ((a \wedge b) \vee (a \wedge c)]^{\perp}$, and so $((a \land b) \lor (a \land c)]^{\perp} = (a \land b]^{\perp} \cap (a \land c]^{\perp}$. Conversely, suppose $((a \land b) \lor (a \land c)]^{\perp} = (a \land b]^{\perp} \cap (a \land c]^{\perp}$ for all $a, b, c \in S$. $(a \wedge b) \wedge (a \wedge c) = 0 = (a \wedge b) \wedge (b \wedge c).$ Let $(a \wedge b) \in (a \wedge c]^{\perp}$ and $(a \wedge b) \in (b \wedge c]^{\perp}$. Then Hence $(a \land b) \in (a \land c]^{\perp} \cap (b \land c]^{\perp} = ((a \land c) \lor (b \land c)]^{\perp}$ Thus, $(a \wedge b) \wedge \{(a \wedge c) \lor (b \wedge c)\} = 0$ and so S is 0-distributive by [8].

Theorem 2. For any ideal I in a 0-distributive nearlattice S the set $I^e = \left\{ x \in S \mid (a]^* \subseteq (x]^* \text{ for some } a \in I \right\}$

is the smallest α -ideal containing I and ideal I in S is an α -ideal if and only if $I = I^e$.

Proof: Let $x \in I^e$. Then $(a]^* \subseteq (x]^*$ for some $a \in I$ and so $(x]^{**} \subseteq (a]^{**}$. Suppose $y \in (a]^{**}$. Thus $(y] \subseteq (a]^{**}$ and so $(a]^* \subseteq (y]^*$. This implies $y \in I^e$. α -ideals in a 0-Distributive Nearlattice

Therefore, $(a]^{**} \subseteq I^e$ and so $(x]^{**} \subseteq I^e$. It follows that I^e is an α -ideal. Now suppose $x \in I$, Then by definition, $x \in I^e$, and so $I \subseteq I^e$. Suppose K is an α -ideal containing I.

Let $x \in I^e$. Then $(a]^* \subseteq (x]^*$ for some $a \in I \subseteq K$. This implies $(x]^{**} \subseteq (a]^{**} \subseteq K$ as K is an α -ideal. Thus $(x] \subseteq K$ and so $x \in K$. Hence $I^e \subseteq K$. That is I^e is the smallest α -ideal containing I.

Theorem 3. Every annihilatior ideal in a 0-distributive nearlattice S is an α -ideal.

Proof: Let $I = A^*$ be the annihilator ideal of S. Suppose $y \in I = A^*$. Then $y \wedge a = 0$ for all $a \in A$. Then $(y] \wedge (a] = (0]$ and so $(y] \subseteq (a]^*$. Thus $(y]^{**} \subseteq (a]^{***} = (a]^*$ for all $a \in A$. Hence, $(y]^{**} \subseteq \bigcap_{a \in A} (a]^* = A^* = I$ and so I is an α -ideal. \bullet

Theorem 4. For any ideal I in a 0-distributive nearlattice S the following are equivalent.

(i) I is an α -ideal.

(*ii*) (*ii*)
$$I = \bigcup_{x \in I} (x)^*$$

(iii) For any $x, y \in S$, if $x \in I$ and $(x]^* = (y]^*$ then $y \in I$.

Proof: $(i) \Rightarrow (ii)$ Let $x \in I$. Then $(x]^{**} \subseteq I$ as I is an α -ideal. So, $\bigcup_{x \in I} (x]^{**} \subseteq I$. On the other hand, for any $t \in I$. $t \in (t]^{**}$ implies $t \in \bigcup_{x \in I} (x]^{**}$. Thus $I \subseteq \bigcup_{x \in I} (x]^{**}$, and so (ii) holds.

 $(ii) \Rightarrow (iii)$ Let $x \in I$ and $(x]^* = (y]^*$. Then by (ii) $(y]^{**} = (x]^{**} \subseteq I$, and so $y \in (x]^{**} \subseteq I$.

 $(iii) \Rightarrow (i)$ Let $x \in I$ and $t \in (x]^{**}$. Then $(t] \subseteq (x]^{**}$ implies $(x]^* \subseteq (t]^*$. Now choose any $r \in S$. Then $(r \land t] \subseteq (x]^{**}$. Again $(r \land t] \subseteq (t]^{**}$. Hence $(r \land t] \subseteq (x]^{**} \cap (t]^{**} = (x \land t]^{**}$. This implies $(x \land t]^* \subseteq (r \land t]^*$. Thus $(x \land t]^* = (x \land t]^* \cap (r \land t]^* = ((x \land t) \lor (r \land t)]^*$. Now $x \land t \in I$. So by (*iii*), $(x \land t) \lor (r \land t) \in I$. Then $r \land t \in I$ for all $r \in S$. Md. Zaidur Rahman and A.S.A.Noor

In particular, choose r = t This implies $t \in I$. Hence $(x]^{**} \subseteq I$ and so I is an α -ideal. \bullet

Theorem 5. Let *S* be a 0-distributive nearlattice. A be a meet subsemilattice of *S*. Then A^0 is an α -ideal, where $A^0 = \{x \in S \mid x \land a = 0 \text{ for some } a \in A\}$.

Proof: By [9, Theorem 5] A^0 is an ideal. Now Let $x \in A^0$ and $y \in (x]^{**}$. Clearly $x \in A^0$ implies $x \wedge a = 0$ for some $a \in A$. But then $a \in (x]^*$ and hence $y \wedge a = 0$. This shows that $y \in A^0$ consequently $(x]^{**} \subseteq A^0$. Hence A^0 is an α -ideal of S.

Using the technique of proof of Theorem 1, we have the following result.

Corollary 6. A nearlattice S with 0 is 0-distributive if and only if for all $a,b,c \in S$ $\{(a \land b) \lor (a \land c)\}^0 = (a \land b)^0 \cap (a \land c)^0 \bullet$

Theorem 7. If a prime ideal P of a 0-distributive nearlattice S is non-dense then P is an α -ideal.

Proof: By assumption $P^* \neq (0]$. Hence there exists $x \in P^*$ such that $x \neq 0$. But then $(x]^* \supseteq P^{**}$ gives $(x]^* \supseteq P$ as $P \subseteq P^{**}$. Furthermore if $t \in (x]^*$, then $x \wedge t = 0 \in P$. But as P is a prime ideal, $t \in P$ (since $P \cap P^* = (0] \Longrightarrow x \notin P$). This implies $(x]^* \subseteq P$. Combining both the inclusions, we get $P = (x]^*$. Hence P is an annihilator ideal and so by Theorem3, P is an α -ideal.

Let S be a 0-distributive nearlattice. For an element $x \in S$, the ideals I of the form $(x]^*$ are called the annulets of S.

Corollary 8. Every non-dense prime ideal of a 0-distributive nearlattice is an annulet.

Proof: It is trivial from the proof of Theorem 7. •

Lemma 9. For an α -ideal I of a 0-distributive nearlattice S, $I = \left\{ y \in S \mid (y] \subseteq (x]^{**} \text{ for some } x \in I \right\}.$

Proof: Let $a \in I$. Then $(a] \subseteq (a]^{**}$ implies that $a \in R.H.S$. Conversely, let $a \in R.H.S$. Then $(a] \subseteq (x]^{**}$ for some $x \in I$. Since I is an α -ideal, so $(x]^{**} \subseteq I$ and so $(a] \subseteq I$. Hence $a \in I$.

α -ideals in a 0-Distributive Nearlattice

We conclude the paper with a prime Separation Theorem for α -ideals in a 0-distributive nearlattice. This result is also a generalization of the result [1, Theorem 11].

Theorem 10. Let F be a filter and I be an α -ideal in a 0-distributive nearlattice S such that $I \cap F = \phi$. Then there exists a prime α -ideal $P \supseteq I$ such that $P \cap F = \phi$. **Proof :** Let χ be the collection of all filters containing F and disjoint from $I \cdot \chi$ is non-empty as $F \in \chi$ Then by [6,lemma3], there exists a maximal filter Q containing F and disjoint from I. Suppose Q is not prime . Then there exist $f, g \notin Q$ such that $f \vee g$ exists and $f \vee g \in Q$. Then by [10, lemma 4], there exist $a \in Q$, $b \in Q$ such that $a \wedge f \in I$ and $b \wedge g \in I$. Thus we have $a \wedge b \wedge f \in I$ and $a \wedge b \wedge g \in I$. Then by lemma 9, $(a \wedge b \wedge f] \subseteq (x]^{**}$ and $(a \wedge b \wedge g] \subseteq (y]^{**}$ for some $x, y \in I$. Choose any $t \in Q$. Then $(a \wedge b \wedge f] \wedge (t] \subseteq (t]^{**} \wedge (x]^{**}$. That is $(a \wedge b \wedge t \wedge f] \subseteq (t \wedge x]^{**}$. Similarly, $(a \wedge b \wedge t \wedge g] \subseteq (t \wedge y]^{**}$. Thus we have $(a \wedge b \wedge t \wedge f] \wedge (t \wedge x]^{*} = (0] = (a \wedge b \wedge t \wedge g] \wedge (t \wedge x]^{*} \wedge (t \wedge y]^{*} \wedge (g]$. Since I(S) is 0-distributive, it follows that

$$(a \wedge b \wedge t] \wedge (t \wedge x]^* \wedge (t \wedge y]^* \wedge ((f] \vee (g)) = (0].$$

That is, $(a \land b \land t] \land ((t \land x) \lor (t \land y)]^* \land (f \lor g] = (0], (t \land x) \lor (t \land y)$ exists by the upper bound property of *S* and $(t \land x) \lor (t \land y) \in I$ as $x, y \in I$. Therefore, $(a \land b \land t] \land (f \lor g] \subseteq ((t \land x) \lor (t \land y)]^{**}$, which implies by Lemma 9, that is $a \land b \land t \land (f \lor g) \in I$. But $a \in Q, b \in Q, t \in Q$, $f \lor g \in Q$ imply $a \land b \land t \land (f \lor g) \in Q$ which is a contradiction to $Q \cap I = \varphi$. Therefore, *Q* must be prime. Thus P = S - Q is a prime ideal containing *I* such that $P \cap Q = \varphi$. Let $x \in P$. If $x \in I$, then $(x]^{**} \subseteq I \subseteq P$. Again if $x \in P - I$, then by maximality of

Q, there exists $a \in Q$ such that $a \wedge x \in I$. Thus, $(a]^{**} \wedge (x]^{**} \subseteq I \subseteq P$. Since $(a]^{**} \not\subseteq P$, so $(x]^{**} \subseteq P$ as P is prime. Therefore P is an α -ideal. \bullet

REFERENCES

- 1. M.Ayub Ali, R.M.Hafizur Rahman and A.S.A.Noor, Prime separation theorem for α -ideals in a 0-distributive lattice, *IJPAMST*, 12(1), (2012), 16-20.
- 2. M. B. Rahman, A study on distributive nearlattices, Ph.D Thesis, Rajshahi University, Bangladesh (1994).
- 3. W.H. Cornish, Normal lattices, J. Austral. Math. Soc., 14 (1972), 200-215.
- C. Jayaram, Prime α-ideals in a 0-distributive lattice, *Indian J. Pure Appl. Math.*, 17 3 (1986), 331-337.

Md. Zaidur Rahman and A.S.A.Noor

- 5. A.S.A. Noor, M. Ayub Ali and A.K.M.S. Islam, α-ideals in a distributive nearlattice, *Journal of Physical Sciences*, 16 (2012) 1-7.
- A.S.A. Noor, Md. Zaidur Rahman and Md. Bazlar Rahman, Some characterization of 0-distributive Nearlattice, Annals of Pure and Applied Mathematics, 2(2) (2012), 194-199.
- 7. J.C. Varlet, A generalization of the notion of pseudo-complementedness, *Bull.Soc. Sci. Liege*, 37 (1968), 149-158.
- 8. Md. Zaidur Rahman, Md. Bazlar Rahman and A. S. A. Noor, 0-distributive Nearlattice, *Annals of Pure and Applied Mathematics*, 2(2) (2012), 177-184.
- Md. Zaidur Rahman, Md. Bazlar Rahman and A. S. A. Noor, Some properties of 0distributive Nearlattice, *Annals of Pure and Applied Mathematics*, 2(2) (2012), 185-193.
- 10. Md. Zaidur Rahman, Md. Bazlar Rahman and A. S. A. Noor, On semi prime Ideal in Nearlattices, *Annals of Pure and Applied Mathematics*, 3(1) (2012), 1-9.