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Abstract. We studied the equation of continuity and derived the Navier-Stockes (N-S) 
equations of motion for viscous compressible and incompressible fluid flow, Boundary 
layer and thermal boundary layer equations are then derived. Then we studied unsteady 
solutions of thermal boundary layer equations. Thermal Boundary layer equations have 
been non-dimensionalised by using non-dimensional variable and the equations have 
been derived from Navier-Stokes equation and concentration equation by boundary layer 
technique. The non-dimensional boundary layer equations are non-linear partial 
differential equations. These equations are solved by using finite difference method. The 
solution of heat and mass transfer flow is studied to examine the velocity, temperature 
and concentration distribution. The effect on the velocity, temperature and concentration 
profiles for various parameters entering into the problems are separately discussed and 
shown graphically.    
     
Keywords: Thermal Boundary Layer, Grashof number, Modified Grashof number, 
Prandlt number, Schmidt number. 

AMS Mathematics Subject Classification (2010):  80A20 

1. Introduction  
An important application of finite differences is in numerical analysis, especially in 
numerical differential equations, which aim at the numerical solution of ordinary, partial 
differential and thermal Boundary Layer equations respectively. The idea is to replace the 
derivatives appearing in the differential equation by finite differences that approximate 
them. The resulting methods are called finite difference methods. Common applications 
of the finite difference method are in computational science and engineering disciplines, 
such as thermal engineering, fluid mechanics, etc. 
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The unsteady solution of thermal boundary layer equation is one of the most 
interesting choices to the researcher by using finite difference method. S. V. Patankar and 
D. B. Spalding, [1] performed. A finite-difference procedure for solving the equations of 
the two-dimensional boundary layer flow in 1967. M. S. Alam et all.,[2] Studied the 
mass transfer flow past a vertical porous plate. M. M. Alam et all. [3] performed 
mass transfer flow in vertical porous plate. M. M. Alam et all. [5] investigated 
combained heat and mass transfer flow. A general, implicit, numerical, marching 
procedure is presented for the solution of parabolic partial differential equations, with 
special reference to those of the boundary layer. The main novelty lies in the choice of a 
grid which adjusts its width so as to conform to the thickness of the layer in which 
significant property gradients are present. The non-dimensional stream function is 
employed as the independent variable across the layer. 

 
2. Mathematical model of the flow 
By introducing Cartesian coordinate system, the X − axis is chosen along the plate in the 
direction of the flow and the Y − axis is normal to it. Initially we consider that the plate 
as well as the fluid is at the same temperature ( )T T∞ and the concentration level 

( )C C∞ everywhere in the fluid is same. Also it is considered that the fluid and the plate 

is at rest after that the plate is to be moving with a constant velocity. 0U  in its own  plane 
and  instantaneously at time t > 0, the species concentration and the temperature of the 
plate are raised to  ( )wC C∞>  and ( )wT T∞> respectively, which are there after 

maintained constant, where  wC , wT  are species concentration and temperature at the 

wall of the plate and C∞ ,T∞  are the concentration and temperature of the species far 
away from the plate respectively. The physical model of the study is shown in Fig. 1. 
 

 
      
         

 
 
 
 
 
 
 

 
 

Fig. 1.  The physical model and coordinate system 
 

Within the framework of the above stated assumptions with reference to the 
generalized equations described before the equation relevant to the transient two 
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dimensional problems are governed by the following system of coupled non-linear 
differential equations.     

Continuity equation                        0=
∂
∂

+
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∂

y
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x
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                                                           (1) 
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2

*
2
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+ + = + − + −
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With the corresponding initial and boundary conditions are 
At        0 0, 0,t u v T T C C∞ ∞= = = → → everywhere                                      (5)     
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where yx,  are Cartesian coordinate system. vu,  are yx,  component of flow velocity 
respectively  is the  local acceleration due  to  gravity ; υ  is the  kinematic viscosity; ρ  

is  the density  of  the  fluid ; K  is  the  thermal conductivity ; pC  is  the  specific heat  at  
the constant  pressure; D  is the coefficient of mass diffusivity. 
 
3. Mathematical Formulation 
Since the solutions of the governing equations (1)-(4) under the initial (5) and boundary 
(6) conditions will be based on a finite difference method it is required to make the said 
equations dimensionless. 

For this purpose we now introduce the following dimensionless variables; 
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Now  we  substitute  the values of  the derivatives into the equations (1)-( 4) and 
by simplifying  we  obtain the following  nonlinear coupled  partial differential equations  
in terms of  dimensionless  variables 
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where,   Grashof number 
( )

3
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Heat source parameter 2
0

Q
U
υα =  

  Also the associated initial and boundary conditions become 

                  0 0, 0, 0, 0U V T Cτ = = = = =        Everywhere                   (11)   
0, 0, 0, 0 0

0 0, 0, 1, 1 0
0, 0, 0, 0

U V T C at X
U V T C at Y
U V T C as Y

τ
= = = = =

> = = = = =

= = = = →∞                                       (12)               
 

4. Numerical Calculations  
In  this  section, we  attempt   to  solve  the   governing  second  order   nonlinear coupled  
dimensionless  partial  differential  equations  with  the  associated  initial  and  boundary 
conditions. For  solving a  transient free  convection flow with heat and mass  transfer  
past a semi  infinite  plate, Callahan  and  Marner (1976) used  the  difference  method.  

From  the concept  of  the  above discussion, for  simplicity  the  explicit finite  
difference  method  has been used to solve  equations (7) - (10) subject to the conditions  
given  by  (11) and (12). To  obtain  the  difference   equations  the  region  of   the  flow  
is  divided into a grid of lines parallel to X and Y axes where X -axes is taken along the   
plate  and  Y - axes  is   normal  to  the  plate. Here   we   consider  that  the  plate  of  

height max( 200)X =  i.e. X  varies from 0 to  200 and regard max ( 20)Y =  as 

corresponding to ∞→Y  i.e. Y  varies 0 to 20. Again, we   consider  that  the  plate  of  

height max ( 100)X =  i.e. X  varies from 0 to  100 and regard max ( 20)Y =   for 

0.71rP =    as corresponding to ∞→Y  i.e. Y  varies 0 to 20. Consider 

400, 400m n= =  in the X  and Y  axis grid spaces for 1.00rP =  and  7.00.rP =  For 

0.71rP =  has been taken 200m =  and 200n =  in  the X  and Y  axis grid spaces  as  
shown  in the  Fig. 2. 
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Now ', , ,U V T C′ ′ ′  are denoted the values of  
', , ,U V T C  at the end of a step of 

time respectively.  
Using the explicit finite difference approximation we get, 
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Fig. 2. The finite difference space grid 
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Substituting the above relations into the corresponding differential equation we 
obtain an appropriate set of finite difference equations, 
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The initial and boundary conditions with the finite difference scheme are 

                      0 0 0 0
, , , ,0, 0, 0, 0i j i j i j i jU V T C= = = =                               (19) 
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where  ∞→L  
Here the subscripts i  and j  designate the grid points with x and y coordinates 

respectively and the superscript n  represents a value of  time, ττ ∆= n  where 

0,1, 2,3........n =  From the initial condition (11), the values of , ,U T C  is known at 

.0=τ  During any one time step, the coefficients  jiU ,  and jiV ,  appearing in equations 

(13)-(14) are created as constants. Then at the end of  any time-step τ∆ the temperature 

T ′ , the concentration 
'

C ,the new velocityU′ , the new induced  field V ′ at all interior 
nodal points may be  obtained  by  successive  applications  of   equations  (15) - (18)  
respectively.  This  process is repeated in time and provided  the time-step is sufficiently 
small, ,U ,V ,T C  should  eventually  converge  to  values which    approximate the  
steady-state solution of equations  (15)-(18). These converged solutions are shown 
graphically in figures. 
 
5.  Results and Discussion 
The main goal of the computation is to obtain the steady state solutions for the non-
dimensional velocity U , temperature T  and concentration C  for different values of 
Prandtl number ( )Pr , Grashof number ( )Gr  Modified Grashof number ( )Gm  Schmidt 
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number ( )Sc  Heat source parameter ( )α . For this purpose computations have been 
carried out up to dimensionless time τ  = 80. The results of the computations, however, 
show graphical changes in the below mentioned quantities to time τ =40 have been 
reached and after this at (50 80)τ = −  graphical change negligible. Thus the solution for 
dimensionless time τ =80 is essentially steady state solutions. Along with the steady state 
solutions the solutions for the transient values of U  versus Y  ,T  versus Y , C  versus 
Y  are shown in below for different values of parameters. Three values of prandtl number 
are considered as 0.71, 1.0 and 7.0. Here,  Pr = 0.71 represent air at 020 , Pr =1.0 
correspond to electrolyte solutions(such as salt water)  and Pr =7.0 represents water. 
Three values of Schmidt number (Sc), Grashof number (Gr), Modified Grashof number 
(Gm) and heat source parameter ( )α  are however chosen arbitrarily. 
 

 
 
  
 
 
 

 
 
 

 
 
 

                               
                                 (a)                                                                    (b) 

 
 

 
 
 
 
 

                              
 
 
 
                              
 
                            (c)                                                                       (d) 
Fig. 3. Velocity profile for different values of Grashof number at Pr 1.00,=  2.00,α =  

3.00,Gm =  15.00Sc = (a) at time 10τ =  (b) at time 20τ =  (c) at time 50τ =  (d) at 
time 80τ =  
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From Fig. 3(a) we observe that the velocity profile increases with the increase of 
Gr at time 10τ =  and with the increasing of time the velocity profile remain unchanged 
which is shown by Fig. 3(b), Fig.3(c) and Fig. 3(d). 

 
 

 
 
 

 
 
 
 
 
 

 
 
                    (a)                                                                     (b) 
 
 
 
 
 
 
 

 
                        
 
 
 
 
                             (c)                                                                   (d) 
Fig. 4. Velocity profile for different values of Prandtl number at 2.00,α =  6.00,Gr =  

3.00,Gm = 15.00Sc =  (a) at time 10τ =  (b) at time 20τ =  (c) at time 50τ =  (d) at 
time 80.τ =  
 

Fig. 4(a) and Fig. 4(b) shows that the velocity profile decreases with the 
increases of Pr at time 10,20τ =  but at time 50,80τ =  the velocity profile increases at 
Pr = 0.71, 1.00 which is shown by Fig. 4(c) and Fig. 4(d). We also observed that velocity 
profile decreases at Pr = 7.00 at time 50,80τ =  

Fig. 5 shows that the effects of temperature at various Pr with respect to time. 
We observed that the temperature profile decreases with the increases of Pr at different 
time. We observed that the rate of change temperature at Pr = 7.0 is low. 
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                                      (c)                                                                         (d) 
Fig. 5. Temperature profile for different values of Prandtl number at 2.00,α =  

6.00,Gr = 3.00,Gm = 15.00Sc =  (a) at time 10τ =  (b) at time 20τ =  (c) at time 
50τ =  (d) at time 80.τ =  
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                               (c)                                                               (d) 
Fig. 6. Concentration profile for different values of Prandtl number at 2.00,α =  

6.00,Gr = 3.00,Gm =  15.00Sc =  (a) at time 10τ =  (b) at time 20τ =  (c) at time 
50τ =  (d) at time 80.τ =  

 
Fig. 6  shows that the concentration profile for different values of Pr and from 

Fig. 6(a) and Fig. 6(b) we found that the concentration profile is steady at time 
10,20τ =  but Fig. 6(c) and Fig. 6(d) shows that the concentration profile increases with 

the increases of Pr at time 50,80τ = . 
 
 
 
  

 
 

 
 
  
 
 
 
 
 
 
 

(a)                                                                (b) 
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                                   (c)                                                         (d) 
Fig. 7. Velocity profile for different values of Modified Grashof number at Pr 1.00,=  

2.00,α = 6.00,Gr = 15.00Sc =  (a) at time 10τ =  (b) at time 20τ =  (c) at time 
50τ =  (d) at time 80τ =  

 
 

 

 

 

 

                                    

                                        (a)                                                                    (b)                                               

 

 

 

 

 

                                                    
                                          (c)                                                      (d) 
Fig. 8. Temperature profile for different values of Heat source parameter ( )α  at 

Pr 7.00,=  3.00,Gm = 6.00,Gr = 15.00Sc =  (a) at time 10τ =  (b) at time 20τ =  
(c) at time 50τ =  (d) at time 80.τ =  
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Fig. 7 represents the velocity profile for different values of Modified Grashof 
number at different time. We observed that velocity profile increases with the increases 
of Gm at different time. 
            Fig. 8 represents the temperature  profile for different values of heat source 
parameter ( )α  at different time. We observed that temperature  profile decreases with the 
increases of α  at different time.  

6. Conclusion 
In this paper, we studied equation of continuity and derived the Navier-Stokes (N-S) 
equations of motion for viscous compressible and incompressible fluid flow for different 
co-ordinate system. Then we performed the boundary layer equation in two-dimensional 
flow, energy equation, mass transfer/concentration equation and thermal boundary layer 
equation.  

Finally, the thermal boundary layer equations have been derived from Navier-
Stokes and concentration equation by boundary layer technique. Boundary layer 
equations have been non-dimensionalised by using non-dimensional variable. The non-
dimensional boundary layer equations are non-linear partial differential equations. These 
equations are solved by using finite difference method. Finite difference solution of heat 
and mass transfer flow is studied to examine the velocity, temperature and concentration 
distribution characteristics. The effect on the velocity, temperature and concentration for 
the various parameters entering into the problems are separately discussed with the help 
of graphs. Then the results in the form of velocity, temperature and concentration 
distribution are shown graphically.  

To obtain the steady-state solutions for the non-dimensional velocityU , 
temperature T  and concentration C  we use different values of Prandtl number ( )Pr , 

Grashof number ( )Gr  , Modified Grashof number ( )Gm , Schmidt number ( )Sc  and 

Heat source parameter ( )α . For this purpose, computations have been carried out up to 
dimensionless time τ =10, 20, 50, 80. Along with the steady state solutions, the solutions 
for the transient values of U versus Y  ,T  versus Y and C  versus Y  are obtained. The 
results of the computations, however, show graphical changes in the mentioned quantities 
to time τ = 40 have been reached and after this at (50 80)τ = −  graphical change are 
negligible. Thus the solution for dimensionless time τ = 80 are essentially steady-state 
solutions. 
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