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Abstract. Incorporate imprecise, uncertain and linguistic information into logical analysis 
fuzzy inference scheme dominates over classical two-valued logic. Compositional 
algebra with relations is used in inference scheme for approximate reasoning. In a fuzzy 
inference scheme, linguistic variables are used in observation and effect parts to get a 
conclusion. The conclusion has been used to other system-generated result to get the final 
result that we have addressed as Adaptive fuzzy rule based scheme. In this paper, stability 
and continuity of compositional rules are studied for a generalized fuzzy inference 
scheme. Finally, adaptive fuzzy inference scheme has been applied to stock data.  
 
 Keywords: adaptive fuzzy scheme, compositional rule, t-norm, fuzzy logic, linguistic 
variable, inference.  
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1. Introduction 
During the past ten years, expert systems have drawn tremendous attention from 
researchers and practitioners working in the area of fuzzy information processing [1]. 
Advanced modeling techniques such as  stochastic differential equation (SDE), fuzzy 
logic controllers (FLC), artificial neural networks (ANN) and genetic algorithms (GA) 
have a vast array of applications in finance and economics. More complex problem can 
be addressed by combining these techniques to acheive the objective [2,3]. In this study 
firstly fuzzy Compositional rule of inference have been discussed and secondly adaptive 
fuzzy rule based scheme have been developed by combining FLC with existing technical 
Indicators. 

Fuzzy rule based scheme has been applied to stock data and obtained results have 
been combined with the existing most popular ADX and Boolinger band indicator [4] to 
get the final decision. This process has been addressed as adaptive fuzzy rule based 
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scheme. The adaptive fuzzy inference system have been applied in [5]. 
 

2. Preliminaries 
Usual notations, definitions, lemmas and theorems have been discussed in this section 
from [6,7,8].  
 
Definition 2.1. The compositional rule of inference has the general form  

Observaion : X has property P 
Relation 1 : X and Y are in relation W1 
... ... ... : ... ... ... ... ... ... ... ... ... 
Relation m : X and Y are in relation Wm 
Conclusion : Y has property Q 

where X and Y are linguistic variables taking their values from fuzzy sets in classical sets 
U and V respectively, P and Q are unary fuzzy predicates in U and V respectively, Wi is a 
binary fuzzy relation in U×V, i=1,…,m . The conclusion Q is determined by  

( )
m

i
i=1

Q P W= ∩ D  

or in detail, ( ) ( ) ( )( )
i=1,...,m x U
min sup , ,

iQ P wy T x x yµ µ µ
∈

= , where T is a triangular norm, the 

conclusion is obtained by triggering the antecedents separately and combining the partial 
results in the second step. 
 
Definition 2.2.  The extension principle plays a fundamental role in translating set-based 
concepts into their fuzzy-set counterparts. 

Assume X and Y are crisp sets and let f be a mapping :f X Y→ such that 
for , ( )x X f x y∈ = .  

Let A be a fuzzy set in X. The extension principle states that the image of A 
under this mapping is a fuzzy set B=f (A) in Y such that for each y in Y,  
B(y) sup A(x), subject to x X and y=f(x)

x
= ∈ . 

Assume that A is a fuzzy subset of X, using the extension principle,  f(A) can be defined 
as a fuzzy subset of Y such that  

( ) 1

1

( )
sup ( ) if ( )

( )
0 otherwise.

x f y
A x f y

f A y −

−

∈

⎧ ≠ ∅⎪= ⎨
⎪⎩

 

If  f  is strictly increasing or strictly decreasing then  

( ) ( ) { }1( if ( ) such that ( )
( )

0 otherwise.

A f y y Range f y Y x X f x y
f A y

−⎧ ∈ = ∈ ∃ ∈ =⎪= ⎨
⎪⎩

 

 
Theorem 2.1. Let :f X Y→ be a continuous function and let A be fuzzy number 

then[ ] [ ]( )( )f A f Aα α= , where f(A) is defined by the extension principle and  
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[ ]( ) [ ]{ }( )f A f x x A
αα = ∈ . 

If [ ] 1 2[ ( ), ( )]A a aα α α= and f  is monotone increasing then from the above theorem we 

get   [ ] [ ]( ) ( ) ( ) ( )1 2 1 2( ) [ ( ), ( )] ( ) , ( )f A f A f a a f a f aα α α α α α= = = ⎡ ⎤⎣ ⎦ . 

 
Theorem 2.2.  [6] Let :f X X X× → be a continuous function and let A and B be fuzzy 

numbers. Then [ ] [ ] [ ]( )( , ) ,f A B f A Bα α α= , 

where [ ] [ ]( ) [ ] [ ]{ }1 2 1 2, ( , ) ,f A B f x x x A x Bα α α α= ∈ ∈ . 

Definition 2.3. Let ( ) { }, max ,f x y x y= and let [ ] 1 2[ ( ), ( )]A a aα α α= and 

[ ] 1 2[ ( ), ( )]B b bα α α=  be two fuzzy numbers then 

[ ] [ ] [ ]( ) [ ] [ ]{ } [ ]1 1 2 2( , ) , max , ( ) ( ), ( ) ( )f A B f A B A B a b a bα α α α α α α α α= = = ∨ ∨ . 

Definition 2.4. Let ( ) { }, min ,f x y x y= and let [ ] 1 2[ ( ), ( )]A a aα α α= and 

[ ] 1 2[ ( ), ( )]B b bα α α=  be two fuzzy numbers then 

[ ] [ ] [ ]( ) [ ] [ ]{ } [ ]1 1 2 2( , ) , min , ( ) ( ), ( ) ( )f A B f A B A B a b a bα α α α α α α α α= = = ∧ ∧ . 

 
3. Metrics for Fuzzy Numbers 
Let A and B be fuzzy numbers with [ ] 1 2[ ( ), ( )]A a aα α α= and[ ] 1 2[ ( ), ( )]B b bα α α= .  
The set of fuzzy numbers is metricized by following metrics: 
 
3.1. Hausdorff Distance 
( )

[ ]
{ }1 1 2 2

0,1
, sup max ( ) ( ) , ( ) ( )D A B a b a b

α
α α α α

∈
= − −  

i.e. D (A, B) is the maximal distance between the α -level sets of A and B. For example 
if ( ),A a α= and ( ),B b α= are fuzzy numbers of symmetric triangular form with the 

same width 0α > then ( ),D A B a b= − and if ( ),A a α= and ( ),B b β=   

then ( ),D A B a b α β= − + − . 

3.2. C∞ Distance 

( ) { }, sup ( ) ( ) :C A B A u B u u∞ = − ∈\ i.e. ( ),C A B∞  is the maximal distance between 

the membership grades of A and B. 
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3.3. Hamming Distance 
Suppose A and B are fuzzy sets in X. Then their Hamming distance, denoted by H(A,B), 
is defined by ( ), ( ) ( )

X

H A B A x B x dx= −∫ . 

Definition 3.1. Let f be a function from F to F. Then f is said to be continuous in metric 
D if 0ε∀ > there exist  >0δ such that D(A,B) D(f(A),f(B))δ ε≤ ⇔ ≤ . 
 
Definition 3.2. Let f be a function from F(R) to F(R). Then f is said to be continuous in 
metric C∞  if 0ε∀ > there exist >0δ such that (A,B) (f(A),f(B))C Cδ ε∞ ∞≤ ⇔ ≤ . 
 
Lemma 3.1. [3] Let a, b, c, d be fuzzy numbers, then  
( ) ( ) ( )D a c, b d  D a, b D c,d+ + ≤ + , ( ) ( ) ( )D a c, b d D a, b D c,d− − ≤ + and 

( ) ( )D ma, mb m D a, b= for m∈\ . 
 
Lemma 3.2. Let a be fuzzy number. Then for any 0θ ≥ we define ( ),aω θ the modulus 

of continuity of a as ( ), max ( ) ( )
u v

a a u a v
θ

ω θ
− ≤

= − . 

The following statements hold: 
i) If 0 then ( , ) ( , )a aθ θ ω θ ω θ′ ′≤ ≤ ≤  
ii) If 0, 0, then ( , ) ( , ) ( , )a a aα β ω α β ω α ω β> > + ≤ +  
iii) 

0
lim ( , ) 0a
θ

ω θ
→

= . 

 
Lemma 3.3. Let a F∈ be a fuzzy number and the mapping  [ ]1 : 0,1a → \ be strictly 

increasing and ( )1 ( )a a t t≤ , for (supp a)t cl∈ furthermore ( )1( ) ,a a α α= for 

[ ]0,1α ∈ and ( ) ( )1 1( ) ( ) 0a a t t a a t≤ ≤ +  for 1 1(0) (0)a t a≤ < , where  

( ) ( )1 10
( ) 0 lim ( )a a t a a t

ε
ε

→
+ = + . 

 
Lemma 3.4. Let a and b be fuzzy numbers then  

i) ( ) 1 1D , ( 0) ( 0) , for 0 1a b a bα α α≥ + − + ≤ ≤  

ii) 1( ( 0)) , for 0 1a a α α α+ = ≤ ≤  
iii) 1 1 1( ) ( 0) ( ) for 0 1a a aα α β α β≤ + < ≤ < ≤ . 

Proof (i) From the definition of metric D we have  

1 1 1 10 0
( 0) ( 0) lim ( ) lim ( )a b a b

ε ε
α α α ε α ε

→+ →+
+ − + = + − +  

                             
[ ]

( )1 1 1 10 0,1
lim ( ) ( ) sup ( ) ( ) ,a b a b D a b
ε γ

α ε α ε γ γ
→+ ∈

= + − + ≤ − ≤ . 
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Proof (ii) Since ( )1( ) , for 1-a a α ε α ε ε α+ = + ≤ , we have 

 ( ) ( )( ) ( )1 10 0
( 0) lim lima a A a

ε ε
α α ε α ε α

→+ →+
+ = + = + = .  

Proof (iii) From strictly monotonicity of 1a  it follows that 

1 1( ) ( ), fora aα ε β ε β α+ < < − ,  

Therefore, ( )1 1 1 10
( ) ( 0) lim ( )a a a a

ε
α α α ε β

→+
≤ + = + < . 

Lemma 3.5. If all the α -level sets of two (continuous) fuzzy numbers are close to each 
other, then there can be only a small deviation between their membership grades. 
 
Lemma 3.6. Let 0δ ≥ and let a, b be fuzzy numbers. If ( )D ,a b δ≤  then  

                          ( ) ( ){ }sup ( ) ( ) max , , ,
t

a t b t a bω δ ω δ
∈

− ≤
\

                                   (3.1) 

Proof: Let t∈\ be any arbitrarily fixed. It will be sufficient to show that  
( ) ( ){ }( ) ( ) max , , ,a t b t a bω δ ω δ− ≤  

If ( )supp  suppt a b∉ ∪ then we obtain Eq.(3.1) trivially. Suppose that  

( )supp  suppt a b∈ ∪ , with no loss of generality we will assume 0 ( ) ( )a t b t≤ < then 
either the following must occur: 
(a) ( )1 1(0), (1)t b b∈  

(b) 1(0)t b≤  

(c) ( )2 2(1), (0)t b b∈  

(d) 2 (0)t b≥ . 
 
In case of (a) from Lemma 3.3 (with ( ), ( )b t a tα β= = ) and Lemma 3.4 (iii) it follows  
that ( ) ( )1 1 1( ( ( ) 0)) ( ), for t a ( ) ( ) 0a a b t b t a t a b t+ = ≥ ≥ + and 

( ) ( )1 1( , ) ( ) 0 ( ) 0D a b a b t a b t≥ + − + . 

Therefore, from the continuity of a, we get  
( ) ( )1 1( ) ( ) ( ) ( ( ) 0) , ( ( ) 0)a t b t a t a a b t a t a b tω− = − + = − +  

( ) ( ) ( )( ) ( )1 1 1, ( ( ) 0) , ( ) 0 ( ) 0 ,a t a b t a b b t a b t aω ω ω δ= − + ≤ + − + ≤ . 

In the case of (b) we have ( ) 0b t = from lemma 3.4(i) it follows that 

( ) ( ) ( ) ( )1 1 1 1( ) ( ) ( ) 0 ( ) (0) , (0) , (0) (0) ,a t b t a t a t a a a t a a b a aω ω ω δ− = − = − ≤ − ≤ − ≤ . 
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4. Continuity and Stability Property of Composition 
 
Definition 4.1. (Fuzzy Interval) A fuzzy interval A is a fuzzy quantity with a continuous, 
finite-supported, fuzzy-convex and normalized membership function [ ]A : 0,1 .µ →\  In 
this study the family of all fuzzy intervals have been denoted by F. Fuzzy Interval are 
often used to represent linguistic variable. An alpha-level set of a fuzzy interval A is a 
non-fuzzy set denoted by  

[ ] { } ( ] [ ] ( )A A( ) for 0,1 and supp for 0A t t A clα αµ α α µ α= ∈ ≥ ∈ = =\ . 

Definition 4.2. A function [ ] [ ] [ ]T : 0,1 0,1 0,1× → is said to be a triangular norm (t-norm 
for short) if T is symmetric, associative, non-decreasing in each argument, and 
( ) [ ]T ,1 0,1x x x= ∀ ∈ . 

Theorem 4.1. [7] Let 0δ ≥ and T be a continuous triangular norm, and let P, P′be fuzzy 
intervals. If D(P,P ) δ′ ≤ then  

                                     { }( )sup ( ) ( ) max ( ), ( )Q Q T P P
y

y yµ µ ω ω δ ω δ′ ′
∈

− ≤
\

 

where ( ) and ( )P Pω δ ω δ′ denotes the modulus of continuity of P and P′  at δ . 
It should be noted that the stability property of the conclusion Q with respect to 

small changes in the membership function of the observation P in the compositional rule 
of inference scheme is independent of the relation R (its membership function can be 
discontinuous). 

Since the membership function of the conclusion in the compositional rule of 
inference can have unbound support, it is possible that the maximal distance between the 
α − level sets of Q and Q′ is infinite, but their membership grades are arbitrarily close to 
each other.  
 
Theorem 4.2. [7] Let R be continuous fuzzy relation and let T be a continuous t-norm 
then Q is continuous and ( ) ( )( ) , for each 0Q T Rω δ ω ω δ δ≤ ≥ . 

It should be noted that the continuity property of the membership function of the 
conclusion Q in the compositional rule of inference scheme is independent of the 
observation P (membership function can be discontinuous).  

The next theorem shows that the stability property of the conclusion under small 
changes in the membership function of the observation holds in the discrete case, too. 
 
Theorem 4.3.  [7] Let T be continuous t-norm. If the observation P and the relation 
matrix R are finite, then ( ) ( )( ), ,TH Q Q H P Pω′ ′≤  
where H denotes the hamming distance and the conclusion Q and Q‘ are computed as  

( )
1, ,

( ) max ( ), ( , )Q j P i R i ji m
y T x x yµ µ µ

=
=

…
, ( )

1, ,
( ) max ( ), ( , )Q j P i R i ji m
y T x x yµ µ µ′ ′

=
=

…
 

for ( ) ( ) { }11, , ,supp supp , ,Q Q nj n y yµ µ ′= = =… … and 
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( ) ( ) { }1supp supp , ,P P nx xµ µ ′= = … . 
The proof of this theorem is analogous to that of theorem 4.1. It should be noted 

that in the case of ( ) { }, min ,T u v u v= (4.1) yields ( ) ( ), ,H Q Q H P P′ ′≤ . 
Theorems 4.1 and 4.2 can be extended to the compositional rule of inference with 

several relations: 
 

Observaion : X has property P X has property P′  
Relation 1 : X and Y are in relation W1 X and Y are in relation W1 
... ... ... : ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 
Relation m : X and Y are in relation Wm X and Y are in relation Wm 
Conclusion : Y has property Q Y has property Q′  
 
According to Zadeh’s compositional rule of inference, Q and Q′ are computed by sup-T 
composition as follows 

                             ( )
1

m

i
i

Q P W
=

= D∩ , ( )
1

m

i
i

Q P W
=

′ ′= D∩                                          (4.1) 

Generalizing Theorem 4.1 and 4.2 for the single relation, it can be shown that if the 
observations are close to each other in the metric D, there can be only a small deviation in 
the membership functions of the conclusions even if there are several relations. 
 
Theorem 4.4. [8] Let 0δ ≥  and T be a continuous triangular norm, and let P, P′be 
continuous fuzzy intervals. If D(P,P ) δ′ ≤ then       

                             { }( )sup ( ) ( ) max ( ), ( )Q Q T P P
y

y yµ µ ω ω δ ω δ′ ′
∈

− ≤
\

                        (4.2) 

where ( ) and ( )P Pω δ ω δ′  denotes the modulus of continuity of P and P′  at δ . Q and Q‘ 
are computed by Eq(4.2). 
 
Theorem 4.5. [8] Let Wi be continuous fuzzy relation, i=1,...,m  and let T be a 
continuous t-norm, then Q is continuous and ( ) ( )( ) , for each 0Q T Rω δ ω ω δ δ≤ ≥  

 where  ( ) ( ) ( ){ }1
max , ,

mw wω δ ω δ ω δ= … . 

The above theorems are also valid for multiple fuzzy reasoning (MFR) schemes: 
 

Observaion : P P′
Implication 1 : 

1 1P Q→  1 1P Q′ ′→  
... ... ... : ... ... ... ... ... ... 
Implication  m : 

mP Qm →  mP Qm′ ′→  
Conclusion : Q Q′  

 
where Q and  Q′  are computed by sup-T composition as follows 
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1

m

i i
i

Q P P Q
=

= →D∩   ,   
1

m

i i
i

Q P P Q
=

′′ ′ ′= →D∩  

                   i.e. ( )1, ,
( ) sup ( ), min ( ) ( )

i iQ P P Qi mx R
y T x x yµ µ µ µ

=∈
= →

…
 

                      ( )1, ,
( ) sup ( ), min ( ) ( )

i iQ P P Qi mx R
y T x x yµ µ µ µ′ ′ ′ ′

=∈
= →

…
. 

Then the following theorem holds: 
 
Theorem 4.6.  [8] Let 0δ ≥ , T be a continuous triangular norm, and let P, P′ ,Pi , Pi′ , Qi, 

iQ ′ , i=1,...,m, be fuzzy intervals and let →  be continuous fuzzy implication operator.  

If { }1, , 1, ,
max D(P,P ), max D(P ,P ), max D(Q ,Q )i i i ii m i m

δ
= =

′ ′ ′ ≤
… …

 

then  { }( )sup ( ) ( ) max ( ), ( ( ))Q Q T
y

y yµ µ ω ω δ ω ω δ′ →
∈

− ≤
\

 

where { }( ) max ( ), ( ), ( ), ( )
i i i iP P Q Qω δ ω δ ω δ ω δ ω δ′ ′=  and ω→  denotes the modulus of 

continuity of the fuzzy implication operator. 
 
Theorem 4.7. Let →  be continuous fuzzy implication operator, let P, P′ ,Pi , Pi′ , Qi , 

iQ ′ , i=1,...,m, be fuzzy intervals and let T be a continuous triangular norm. Then Q is 

continuous and  ( )( ) ( ( )) for each 0Tω δ ω ω ω δ δ→≤ ≥ , 

where { }( ) max ( ), ( ), ( ), ( )
i i i iP P Q Qω δ ω δ ω δ ω δ ω δ′ ′=  and ω→  denotes the modulus of 

continuity of the fuzzy implication operator. 
From ( )

0
lim 0
δ

ω δ
→

= and theorem 4.6 it follows that  

sup ( ) ( ) 0Q Q Q Q
y

y yµ µ µ µ′ ′∞
− = − → ,  D(P,P ) 0, D(P ,P ) 0,i i′ ′→ →  

and D(Q ,Q ) 0, 1, ,i i i m′ → = … , gives the stability property of the conclusion under 
small changes of the observation and rule. 

The stability property of the conclusion under small changes of the observation 
and rule guarantees that small rounding error in digital computation and small error in 
measurement of the input data can cause only a small deviation in the conclusion. 
i.e. every successive approximation method can be applied to the computation of the 
linguistic approximation of the exact conclusion. 
 
5. Adaptive Fuzzy Rule Based Scheme with Application 
A system that uses fuzzy rule based scheme with other systems is called adaptive fuzzy 
rule based scheme.  Adaptive fuzzy rule based scheme can be defined as follows  

: F×G Dµ →  
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such that ( )
f or g; if f=g

d= f , g =
noaction ; otherwise

µ
⎧
⎨
⎩

 

where µ  is adaptive fuzzy rule based scheme, f F∈ a generalized decision obtained 
from fuzzy logic based system, g G∈  is a decision obtained from using technical 
indicators or other strategy and d D∈  is final decision. 

5.1. Work Description  
The Fuzzy rule based scheme analyses past quantity and price of stock. It generates a 
decision on whether the analysed stock should be bought, be held on to, or be sold. This 
decision is incorporated with classical indicators to take the final action, which stocks 
should be bought, sold or hold on. 

5.2. System Structure 
The system structure identifies the fuzzy rule based scheme so called fuzzy logic based 
inference flow from the input variables to the output variables. The fuzzification in the 
input interfaces translates crisp inputs into fuzzy values. The fuzzy inference system 
takes place in rule blocks which contain the linguistic control rules. The outputs of these 
rule blocks are linguistic variables. The defuzzification in the output interfaces translates 
them into analog variables.  
 
The following table 1 shows the statistics of variables and rule blocks. 

Input Variables 2 
Output Variables 1 
Rule Blocks 1 
Rules 9 
Membership Functions 9 

Table 1. Statistics 
 
The whole structure of this fuzzy system including input interfaces; rule blocks and 
output interfaces have been shown in Fig.1. The connecting lines symbolize the data 
flow. 

 
 
 

 

Figure 1. Structure of Adaptive Fuzzy Rule Based Scheme 

5.3. Variables and Parameters 
Linguistic variables are used to translate real values into linguistic values.  The possible 
values of a linguistic variable are not numbers but so called 'linguistic terms'. 

Generalized Price 

Generalized Quantity 

Rule Block 
If‐Then 
MinMax 

Composition

Decision 
(Buy, Hold, Sell) 

Classical System

Action 
Buy, Hold, 
Sell, and  
No Action 
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Linguistic variables have to be defined for all input, output and decision 
variables. The membership functions are defined for linguistic variables. 

The following table 2 lists all variables of the system.  
L/Variables Fuzzy Numbers Parameter Fig. L/Variables 
gPrice 

(Low, Medium, High) 

Z-Shaped for Low price Z (-0.85, -0.20) 

Triangular for Medium price T (-0.62,0 ,0.1) 

S-Shaped for High price S (0.05,0.6) 

gQuantity 

(Low, Medium, High) 

Z-Shaped for Low quantity Z (-0.96,0.52) 

 

Triangular for Medium quantity T (-0.15, 0, 0.1) 

S-Shaped for High quantity S (0.075, 0.95) 

gDecision 

(Buy, Hold, Sell) 

Buy for Triangular  T (-1, -0.25,0.1) 

 

Hold for Triangular T (0,0.25,0.5) 

Sell for Triangular T (0.35,0.75,1) 

Table 2.  Linguistic variables and parameters 

5.4. Generalized Price and Quantity 
Generalized price and quantity of any stock are introduced by the equation 

                                          , ; 0,t t d
t t

t

x x
X x t

x
−

= ≠ ∀ ∈`                                         (5.1) 

Here ,t dx is the moving average of order d. Prices and quantities of stocks are transferred 
to generalized prices and quantities by the Eq.(5.1). Fig.2 shows the generalized price and 
quantity of a stock. 

 

Figure 2. Generalized price and quantity of a stock 
 

5.5. Rule Blocks 
The rule blocks contain the control strategy of a fuzzy logic system. Each rule block 
confines all rules for the same context. A context is defined by the same input and output 
variables of the rules. 

The rules ‘if’ part describes the situation, for which the rules are designed. The 
‘then’ part describes the response of the fuzzy system in this situation.  
The processing of the rules starts by calculating the 'if' part. The operator type of the rule 
block determines which method is used.  The following table 3 shows the nine rules in a 
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rule block that combines the generalized price and generalized quantity to obtain a 
generalized decision. This rule block has been obtained according to the price and 
quantity spread analysis. 

Rule Block IF THEN 
Rules: Ri price quantity gDecision 

R1 low low Buy 
R2 low medium Hold/No Action 
R3 low high Buy 
R4 medium low Hold/No Action 
R5 medium medium Hold/No Action 
R6 medium high Buy 
R7 high low Sell 
R8 high medium Sell 
R9 high high Sell 

Table 3. Rules of the Rule Block 
5.6. Operators 
The fuzzy composition eventually combines the different rules to have a single 
conclusion. Minimum T-norm for if block, Mamdani for Implication and Maximum S-
norm for Aggregation are used. Centroid defuzzification method has been applied to get 
crisp output.  Different implication operators that may be used purposefully for a fuzzy 
rule based system [3].  
 
5.7. Action 
The generalized decision obtained from fuzzy rule based scheme is combined with ADX 
and Bollinger band indicators. ADX and Bollinger are technical indicators which are 
used for stock analysis [3,4].  If both systems agree at certain threshold action is taken to 
buy, sell, hold or no-action taken. 
 
5.8. Data Description 
Daily stock trading data of DSE (Dhaka Stock Exchange) have been collected from the 
website of stockbangldesh.com. Which contain opening, closing, high, low and quantity 
of stocks traded in a particular day. Data taken from DSE are used to convert generalized 
price and quantity Eq. (5.1). This generalized data are then fuzzified by fuzzy numbers.  
Table 2 shows the parameters of generalized prices and quantities. One of the most 
difficult tasks is to set the value of parameter of membership function. A statistical study 
has been made by taking more than 100 records of each company. The parameter value is 
accepted by the experts and general traders.   Theorem 4.1, 4.2, 4.3, 4.6 and 4.7 claim that 
small changes or deviation of membership function, that is, the parameter value results in 
small change of conclusion.  
 
5.9. Fuzzy Indicators 
The set of defuzzified values are used for making decision to buy, hold or sell. 
Defuzzified process supplies the crisp value that is adapted with ADX and Bollinger 
indicators to take final decision for action.  Using Adaptive Fuzzy Rule Based Scheme 
some stock index have been analyzed and very impressive outcome was found.  
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6. Results 
Adaptive fuzzy rule based scheme have been implemented in some stock index.  After 
having a buying decision stop loss, target profit and maximum holding day have been set.  
Table 4 shows few data that have been analysed by Adaptive Fuzzy Rule Based Scheme.  
 

Table 4. HPR (holding period return) of some stock index 
 

 
 
Figure 3. Decison (output) of the generealized prices and quantities of a stock input 
taken: gP=[-1 0 1 -1 -1 0 0 1 1] and gQ=[-1.5 0 1 0 1 -1.5 1 -1.5 0]. 

Stock Index Date Buy Stop 
Loss 

Take 
Profit 

Holding 
Duration 

In day 

Date: 
Sale/Short 

HPR 
(Holding 

period 
return) 

Zahintex 30/6 28 -4 8 9 8/7:36 28% 

GP 30/6 180 -10 20 10 15/7:   225 25% 
KeyaCosmet 27/6 28 -3 6 9 7/7: 35 25% 

Midasfin 9/6 30 -4 8 9 18/6: 40 33% 
Lankabanfin 9/6 43 -3 6 10 18/6:55 27% 

EnvoyTex 9/6 42 -5 10 9 20/6:  51 21% 

Gpishpat 27/5 43 -4 8 9 6/6: 49 13% 

Lafsurceml 27/5 31 -3 6 9 6/6: 34 9% 

Mpetroleum 25/5 175 -10 20 9 6/6: 193 10% 
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Figure 4. Buying and sellling state of geneeralized price and quantity of analyzed stock. 
 
6.1. Conclusion 
Many strategies are used for stock trading [4]. A trading system that always meets the 
trader’s expectation is hard to find. It is observed from Fig 3 that Adaptive fuzzy rule 
based scheme provides clean decision to buy, hold and sale.  Table 4 describes the 
implemented result of this scheme that is very impressive.  Fig 4 describes adaptive fuzzy 
rule based indicator that describes the region of buying and selling position.  

Many stock data have been analyzed to compare the adaptive system by using the 
Amibroker and Matlab software package. The analysed result claims that the signal and 
result processed by adaptive fuzzy rule based scheme agrees with the result of technical 
indicators RSI, Stochastic [4,9-11]. It can be claimed that trading system with Adaptive 
fuzzy rule based scheme will provide satisfactory result. Automated trading system with 
adaptive fuzzy rule based scheme would have been a demanding toolkit for the investors.  
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