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Abstract. A set-valuationof a graphG = (V, E) assigns to the vertices or edgesGof

elements of thpower set2”* of a given nonempty s&tsubject to certain conditions and
set-valuations have a variety of origins. Achargdirked aset-indexerof G to be an

injective set-valuationf : V(G) — 2 such that the induced set-valuatibh : E(G)

~ 2%0on the edges of5> defined by f"(uv) = f(u) + f(v), JuvdE(G) is also
injective, where® denotes the operation of taking the symmetricedifice of the
subsets oK. In particular, he studied variety of set-valuedpis such as set-graceful
graphs, topological set-graceful graphs, set-sdlagraphs, set-magic graphs, etc. In
2006, Acharya and Germina defined the conceptstuidce pattern distinguishing set of
a graph (open-distance pattern distinguishing et graph). LetG = (V, E) be a given
connected simplep( g)-graph with diameted, @ # M < V(G) and for eachu € V(G),

let fu(u)={d(u,v): v €M} be the distance-pattern afwith respect to the marker ddt

If f,, is injective (uniform) then the s# is a DPD-set (ODPU-set) @ andG is a

DPD-graph (ODPU-graph). Following a suggestion magélichel Deza, Acharya and
Germina, who had been studying topological setatiuas, introduced the particular
kind of set-valuations for which a metric, espdygidhe cardinality of the symmetric
difference, is associated with each pair of vestiteproportion to the distance between
them in the graph. Particular cases of set-valoatmf graphs are also being studied in
detail by many authors. In this paper, we give iaftreport of the existing results, new
challenges, open problems and conjectures thadtaend in this area of set-valuations
of graphs.
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1. Introduction
Labelingis a term used in technical sense for naming tdbjasing symbolic format
drawn from any universe of discourse such as thefsaumbers, algebraic groups or the

power set2”* of a ‘ground set’X. The objects requiring labeling could come from a
variety of fields of human interest such as chemidements, radio antennae, spectral
bands and plant/animal species. Further, catedimizabf objects based on certain
clustering rules might lead to derived labels fribra labels of objects in each cluster; for
instance labels andb of two individual elements in a dyadd\{ B} could be used to
derive a labeling for the dyad in a way that cadfiect a relational combination of the
labelsa andb. To be specific,A andB are assigned labeds b from an algebraic group,
whence the dyadA, B} is assigned the labei*b where * is the group operation. Such
assignments are generally motivated by a need timize on the number of symbols
used to label the entire discrete structure so thatstructure could be effectively
encoded for handling its computerized analysis.

In general, graph labelings, where thasic element§.e., vertices and/or edges)
of a graph are assigned elements of a given sstilisets of a nhonempty ‘ground set’
subject to given conditions, have often been mtadvdy practical considerations such as
the one mentioned above. They are also of theatétiterest on their own right. ‘Graph
labeling’ as an independent notion using numbers fivst introduced in the mid sixties.
Most graph labeling methods trace their originne mtroduced by Rosa in 1967 [95].

Even though the study of graceful graphs and gracefoéling methods was
introduced by Rosa [95] the temgnaceful graphwas used first by Golomb in 1972 [69].
Rosa defined @-valuationof a {, g)-graphG as an injectiori from the vertices o6 to
the set {0, 1,...g-1} such that, when each edggis assigned the labd(X) — f(y)|, the
resulting edge labels are all distinct. In a gratkfbeling of a grapks the resulting edge
labels must be distinct and take values 1, 2q...The study of graceful labelings of a
graph is a prolific area of research in graph the®he graceful labeling problem is to
determine which graphs are graceful. Proving atgi@gs or is not graceful involves
either producing a graceful labeling @f or showing thatG does not admit a graceful
labeling. While the graceful labeling of graphgpe&rceived to be a primarily theoretical
topic in the field of graph theory, gracefully ldled graphs often serve as models in a
wide range of applications. Such applications ideleoding theory and communication
network addressing. Bloom and Golomb [27] give #aitkxd account of some of the
important applications of gracefully labelled grapfhat ‘all trees are graceful’ is a
long-standing conjecture known as the “Ringel-Kgbnjecture" [9].

A seminal departure from assigning numbers to @sicbelements of a given
graphs G was made in [3] by suggesting to consider seteglfunctions instead,
motivated by certain considerations in social psiatpy. Interpersonal relationships
depend on personal attitudes of the individualarig social group. When opinions are
expressed by the individuals to others in the grtlup types of interpersonal interactions
get affirmed and/or modified. On the other hanahsaffirmations and/or modifications
in various types of interpersonal interaction ie tjroup could induce change in the
attitudes of the persons in the group. In factyals this revisory socio-psychological

phenomenon that motivated a studyaiél set-valuationsh:V (G) U EG) — 2%, viz.
assignment of subsets of a given set to the bisiveats of a given graph with a variety
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of constraints motivated either by theoretical pipbactical considerations [1]. In this
paper, we give a brief report of the existing resubew challenges, open problems and
conjectures that are abound in this area, of dettians of a finite simple graph.

For standard terminology and notation in graph thebypergraph theory and
signed graph theory not given here, the reader mefey respectively to [72], [34] and
[75]. In this paper, by graph we shall mean a finite undirected graph withowaipk or
multiple edges.

2. Set-valuations
A set-valuatiorof a graphG =(V, E) is simply an assignment of elements of pbever set

2% of a given nonempty ‘ground séf'to the basic elements 6f set-valuations have a
variety of origins [3]. In particular, set-indexef G is defined to be an injective ‘vertex

set-valuation'f :V(G) — 2* such that the induced ‘edge set-valuatioh” : E(G)

~ 2%0on the edges ofs defined by f"”(uv) = f(u) + f(v), DuvOE(G), is also
injective, where @’ denotes the operation of taking the symmetridedénce of the
subsets ofX. Further, G is said to beset-graceful if there exists a set-indexer

f:V(G) — 2% such thatf "E((G)) :={f"(e): eDE(G)} =2* —-{¢@, such a set-
indexer being called set-graceful labelingf G. In [3], it is proved that for every graph
G there exists aopological set-indexefor, a T-set-index&; which is a set-indexer

f :V(G) - 2* such that the familf(V(G))= {f(u): ue V(G)} is a topology onX,
thereby establishing a link between graph theody@mint-set topology.
In [1], a set-indexef of a given grapl =(V, E) is called asegregatiorof X on

Gif f(V(G)N f" (E(G)) =¢ and if, in addition, f (V(G))U f" (E(G)) =2*
then f is called aset-sequential labelingf G. A graph is then calleset-sequentiaif it
admits a set-sequential labeling with respect tnesgetX. Recently, it has been proved

that the patthn o is not set-sequential far €{2, 3} and is set-sequential for every

value of n> 4. In general, the problem of determining set-satjal trees is open [1].
Also, it has been shown th&t is the only set-sequential Eulerian graph [5].

Since, by their very definitions, set-grfatetopologically set-graceful and set-
sequential graphs have exponential orders or simdsit is not hard to see that most
graphs do not fall under any of these classesaghy. Even within the classes of graphs
satisfying the order or size conditions for a graphbe in any of these classes, we
surmise that similar conclusion holds. Hence, @dmees important to have many infinite
families of such graphs towards gaining deepegisinto the properties of these very
special graphs. Special investigations have be#atéd in this area [13,15,16,17,18]; in
one of these, given an arbitrary grdpha method has been described to generate infinite
ascending chains of set-graceful graphs, topoltdgicset-graceful graphs and set-
sequential graphs witlis as aninitializing graph and such that at each stage of
construction the preceding graph is an inducedrsybgof the succeeding ‘host’ graph.

Given any set-valuation of a graBh=(V, E), the hypergraphsH" =(X, f (V)),
f(V)={f(v):vOV}andH® =(X, f“(E)), f”(E)={f"(v):e0E} are called respect-
ively thevertex set-valuation Q\o-hypergrapmf G andedge set-valuatioﬁEf) — hyper

10
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-graphof G; recently these hypergraphs are being studied[¥ 109, 110]).

Next, for any seF CE, let z h(x) stand for any expression
xOF

(h(u,) O h(v,)) T (h(uy, Oh(v,))0 -
whenF is expressed asy v, € E:x € F}. The following result is an analogue of a well
known property of arbitrary networks, call&dchhoff's Voltage LawKVL); the
analogy could be seen by treatid as an additive ‘voltage group’ where the ‘addition
is the binary operation of taking symmetric difiece between any two subsetsxof
Proposition 1.[1] Let G =(V, E) be any graph. Then, for any totat-ssuation

h:VUE—2X and for any cycle C, Z h(x) =@

XJE(C)
Corollary 2. [5] If G =(V, E) is any finite Eulerian graph thenrfany set-valuation
V-2, S 90 =g

xOE
Proposition 3. [1] For any graph G=(V, E) any total set-valuation hZ—2X and any
path P of length at least three, joining verticesnd v, Z h(x) = h(u) O h(v).

XJE(P)

Corollary 4. [5] Let G=(V, E) be any graph, fas2X be any injective vertex set-
valuation of G and u, v be any two arbitrarily givdistinct vertices of G. Then, for no

u-v path P of length at least three, one h% f7(x) =@

XJE(P)
Example5. Let G=(V,E) be isomorphic to a path P=(ugwh, W, ..., 4=v) where k >
1. Suppose G admits an injective set-valuatior42 such thatz f7(X)=¢@ Then,

XJE(P)

by Corollary 4, we get k 2, whence we have@l,Pz,P?’} where P denotes the path
with n vertices (and hence of length n-1).
Example 6. From the way we are able to give an injectivevsgtration of P,, n< 3, a

set-valuation f of the std, | is suggested, which is such thdt” is also injective;

however, note thah= f O f" is not injective.

Observe in the set-valuations of graphs explairteae that the induced set-
valuation are also injective on their own right ahineed not be so in general. This
motivated the following definition.

Definition 7. [1] Let G =(V, E) be a graph, X be a nonempty set2f denote the set
of all subsets of X. Aset-indexerof G is an injective set-valued function

f:V(G) -~ 2* such that the functioh:E(G) - 2* —-{¢ defined by f"(uv)
= f(u) + f(v), DuvOE(G) is also injective.

11
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Definition can be thought of as applicable tonité graphs as well.
Theorem 8. [1] Every graph has a set-indexer.

The infimum of the cardinalities of the sétsith respect to whiclé has a set-
indexer is hence defined to be thet-indexing numbeof G, denoteds(G). Hence, the
problem is actually interesting to fint{G) for any given grapl®, especially whei@ is

finite. For exampleg(K,) = 3.

Theorem 9.[1] Let G be any graph, X be a non-empty set &an¥ (G) - 2* be any
assignment to the vertices of G. Then, the mappiny (G) - 2* defined by~
f(u)=f(u) (=X - f(u)) DuOV(G) is a set assignment of the vertices of G.

Theorem 10. [1] For any (p,q)-graph G, [log,(q+1) |< 0(G) < p-1. where[r |denote
the least integer not less than the real number r.

Remark 11.[1] |E(@G)< 2*/ -1 and hence V(G)-1=[log, E(G)+1]. Clearly,
a(Kn)zn—l for1<n<5.

Theorem 12. [10] If G is a (p, q)-graph with p 6 thens(G) < p—2 and this bound is
attained byK and K.

Corollary 13. [10] If G is a graph withs(G) = |V(G)|-1 then |V(G)K 5.

Lemma 14. [10] If fis a set-assignment to the verticekaf for n> 3 such thatf © is

injective then, f is also injective.

Another motivation from social psychology to studgsignment problems on
graphs comes from voltage graphs (or gain netwdr{s)A voltage graph(gain graph
is an ordered triple@, M, s) whereG is an undirected grapW is an arbitrary algebraic
group, called the voltage group, asits a function assigning elementshMfto the edges
of G such thats(u, v) s(v, u) = g, the identity element d¥1, and each edgev of G is
regarded as a symmetric pair of anasvj and §, u); sis called a voltage assignment of

G. If in particular wherM is taken to be the grouM  of all n-dimensional vectors of

+1's and -1's under ordinary componentwise multigtion; then the voltage assignment
Sh is called am-signing ofG. A particular case is the signed graph introdumgétarary

[73]. We can interpret an-signingsl,| of a graphG = (V, E) as an assignment of subsets
of a setZ ={z, z,,---z,} to the elements as follows: There is a natural torene
correspondence/ :2° — M obtained by setting/(A) = (a,, a,,+,a,) for A02?

such thata, =+1,if z OA anda =-1,if z OA, for eachi € {1, 2,...,n}. The
interested reader may refer to [4] for more results

3. Set-graceful graphs
Recall that a grapB=(V,E) is said to beset-graceful[1] if there exist a seX and a set

indexer f :V(G) — 2% such thaff " (E(G)) = 2* —{¢@; and Acharya [1] called the

12
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minimum size of the seX with respect to whicl® is set-graceful the set-graceful index

v(G).
Following are some fundamental resultsetrgraceful graphs:

Theorem 15. [1] If G is a set-graceful (p, g)-graph witiG) = m then, q=§"—1 and p<
g+1.

Theorem 16.[1] Every set-graceful graph G with q edges and riwest can be
embedded in a set-graceful graph, with q edgesggiidvertices.

Theorem 17. [1] Every connected set-graceful graph with q edgebcairl vertices is a
tree of order pzf1 and for every natural number m such a tree exists.

Theorem 18. [105] For any integer n® 2, the path Bm with 2™ vertices is not set-
graceful.

Theorem 19. [1] A necessary condition for a graph G =(V, E) tovda set-graceful
labeling with respect to a set X of cardinalitysrthat it be possible to partition V(G) into

two subsets é/and v, such that the number of edges joining the vertafe¥, with

those ofy, is exactly2"™.

If a (p, g)-graph is set-graceful thegp= 2™ —1 for some positive integen. This
implies foralmost all graphsf orderp, and hence almost all graphs are not set-graceful.
Further, for every positive integen, there exists a set-graceful graph of sige 2™ - 1.

However, not all§, g)-graphs withq = 2™ —1 are set-graceful as, for instance, it is not

difficult to verify that the complete grapK, is not set-graceful. More generally the
following more results are well known.

Theorem 20. [1] If K, is set-graceful ang/(K,) =m thenn = %(1 +/2m¥3 = 7).
Theorem 21. [89] The complete graphdﬁs set-graceful if and only if 8{2,3,6}.

Theorem 22. [89] A necessary condition for a complete graqptt( be set-graceful with
respect to a set X is that (n—2) is a perfect sguar

The condition is not sufficient &, is not set graceful.

Theorem 23. [89] The cycle G is set-graceful if and only if nB-1 for some integer m
>2.

Acharya [1] considered special Eulerigincuits which yield a set-graceful
labeling of the cycle of length 31 1 and called such Eulerian circuits Dfn*
successful ones and others as unsuccessful ancheded the following problem.
Problem 24. [1] Determine (at least one) successful Eulerian ciscun D,* if they exist.

13
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Lemma 25. [1] There is a unique cycle of length 2 iﬂ*D

Lemma 26. [1] In any successful Eulerian circuit in® (x, A), (A,4), and %, 4), 4,
A) cannot occur in that order for anyAA.

Lemma 27. [1] There exists an Eulerian circuitin Dy such that for every ¥ A both
the arc pairs (x, A), (A) and &, 4), (4, A) do not occur simultaneously.

The following conjecture of Acharya [1] is yet te bettled.

Conjecture28.[1] In Dy all Eulerian circuits are successful if and orityn=2.

Theorem 29. [1] Let G be any graph and u be any vertex of G. Tloerany set-

assignment f:V(G)»ZX to the vertices of G there exists a set—assignﬂnm(G)—QX to
the vertices of G such that h(wrnd f” =g".

Corollary 30.[1] Let G be any graph arfd, (G) denote the set of all optimal set-
indexers f of G with respect to a set X such that=Z for some ue V(G). Then,
O, (G) is non-empty.

Theorem 31.[1] If f:V(G) — 2*is an optimal set-indexer of a graph G then
Uve FU)=¢

Theorem 32. [1,13] Every connected set-graceful graph with q edgescirl vertices

is a tree of order pzﬁ‘ and for every natural number m such a tree exists.

In fact the star KLZ"—l was the graph used in the proof of Theorem 32 On

takes setX with [X| = n, assignsp to the center of the star and all the nonempty
remaining subsets of are then assigned to the remaining vertices o$tifuein a one-to-
one manner. In fact, one may not limito be finite in the labeling whence described
work shows that the star whose center has ordéehigfinite degree than the order of
the setX with respect to which one obtains the gracefulvsdiation.

Theorem 33. [13] If a tree is set-graceful with respect to a satfXardinality m, then
its order is 2"

It is important to note here that not every treerfer 2" need be set-graceful as,
for instance, it is not difficult to verify thateépath P, of length 3 is not set-graceful.

Theorem 34. [13] For any integer & 2 the pathP,, is not set-graceful.

Following conjecture appeared in [13].

Conjecture 35. For every natural number n, there exists a setgfal tree of diameter
n-1.

This conjecture is proved for= 1, 2, 3 and 4 in [13].

14



Set-Valuations of Graphs and their Applications-ukv@&y

Theorem 36. [89] For any natural numbaen, CZ”—l is set-graceful.

If 5, denotes the diameter of the cyo®, , thend, =d,_, +2* whence,
diam(C,._) = L(Z“ —1)/2J for any integen > 2. Thus we have, for any integerof

the form L(Z2 -1/ ZJ for some natural numbex there exists a set-graceful graph of

diametem.
It is interesting to note that every set-graceful d)-graph G = (V, E) with
respect to a seX of cardinalityn can be embedded in a set-gracefil( g)-graphH.

This may be achieved as follows. Lfebe a set-indexer dB. Then 2* - f (V) has

m(G) = 2" - p elements each of which does not appear as asighad to a vertex in
(G, f). Then adjoinm(G) isolated vertices t&G and assign to them the sets from

2% — (V).

Mentioned below are some of the important results set-graceful graphs
appeared in [15, 86, 94].
1. If His a set-graceful graph withedges{ > 1) andn + 1 vertices then the join &f

andK n is set-graceful if and only ifn=2" -1, n, ON.

2. If Sn denote the star with"21 spokes anth=2" -1, for n, N, then the join
S, + Kmis set-graceful.

3. P, +Kn is set-graceful ih< 2 andm=2" -1, for n, ON.

4. P, +Km is not set-graceful for alln#2%, and for all m# 2% -1 for

X, >2, X,X, ON.

P, + K m is not set-graceful fon = 22 andm=2" -1 for n, OON.

Let T be a caterpillar with the patR, havingV(Pm)={Vvi, \%,...,.\}. ThenT is set-
graceful with respect to a set of cardinalityf d(v;) = 2! + 1,1 <i<m—1.

7. LetT be a caterpillar with the pati, and letV(K,) ={v;, v,} . ThenT is set-
graceful with respect to a set of cardinalityif d(v,)=2""+1 and d(v,)
=2""-1.

8. Let X be a set with{] = m. A uniform binary tree with one pendant edge adaled

the root vertex havingrﬁ—l edges is set-graceful.
9. The splitting grap!® (G) of a set-graceful grap® is not necessarily set-graceful.
10. S'(B,) is not set-graceful for ai.
11. LetG be a p, g-graph.S(G) is not set-graceful fon= 0, 2, 3 (mod 4). Further the
only possible values fag so thatS(G) could be set-graceful are 21, 85, 341, ....
12. K35 is not set-graceful.
13. Let G be a set-graceful graph. Then teeonaof Gr andKy, that is, Gr © K4 is set-

graceful ifG¢ is the full augmentation .

15
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In [1] it has been proved that any graptcan be embedded in a set-graceful graph;
further, he showed that every set-gracefulgj-graphG =(V, E) with respect to a set of
cardinalityn can be embedded in a set-gracedwil(, q)-graphH, where by armbedding
of G one means identifying an induced subgrapliithat is isomorphic t@&. Such a
‘host’ graph H of G together with its set-graceful labeling is conside asfully
augmentedFully augmented set-graceful graph of a set-duhdp, g)-graphG can be

obtained by adding ”&p isolated vertices with labels as those subsets thiat are not
present as vertex labels in the set-graceful labejiven orG.

If G is a set-gracefulp( g)-graph, thenG, will denote thefull augmentatiorof a

set-graceful labeling of G in the sense thab,; containsG as an induced subgraph and

f taken in its extended form as the set-gracefudliag of H =G + K m defined therein

(i.e.f restricted to the vertices @f is the original set-graceful labeling @). Given any
set-graceful @+1,g)-graph H, there exists an infinite ascending chain

H=H,OH,0H, O--- of set-graceful graphsH,, H,,--- such thatH, is an
induced subgraph dfl,,, for every nonnegative integeand H, is a fully augmented

connected graph of ord&(H,) =q-i+1+ ZZ”r, for everyi > 1. Acharyaet al.
r=1

[15] proved that every graph can be embedded irtormected set-graceful graph and
the problems of determining the clique number, ithdependence number and the
chromatic number of a set graceful graph are NPpbet®. For more results on set-
graceful graphs, the interested reader may refgt, 8, 5, 10, 13, 14, 15, 16, 18, 78, 86,
94].

Motivated from the following theorem of Acharya, tfeen defined the concept of
topologically set-graceful graphs.

Theorem 37. [1] For every graph G, there exists a set-indexerV(G) — 2* such
that the family f(G) = {f(u):&V(G)} is a topology on X.

3.1. Topologically set-graceful graphs

Acharya proved in [1] that for every grapls, there exists a set-indexer
f :V(G) — 2 such that the famil§(f(G) = {f(u):ue V(G)} is a topology orX, called

a topological set-indexefor, atop-set-indexein short) ofG with respect toX, thereby
establishing another interesting link between tteoty of graphs and point-set topology,
the earlier known such link being a one-to-one espondence between the set of all
transitive digraphs on a given 3¢tand the set of all topologies &f) pointed out byE.
Sampathkumar and Kulkarni [99]; hence, it woulddfemuch independent interest to
investigate the inter-linkage between the notiohsop-set-indexers of a graph and of
transitive digraphs. Further, in [1] it is showratHor a finite graphG, the top-set-
indexing numbeof G, denoted(G), is the smallest cardinality of a sétvith respect to

16
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which G admits a top-set-indexer and any such top-setxard@lenotedo; ) of G is
said to beoptimal if f ”(E(G) =2* —{¢ . It is obvious that, in generat’(G) <
t(G) < g, (G).Further, Acharya [3] calle& a topologically set-gracefu{or, top-set-
gracefu) graphif G satisfieso, (G) =t(G) and any optimal top-set-indexer of such a

graph is aop-set-graceful labelingf G. In general, ifG is a graph and is a top-set-

indexer ofG then the grapl® together witt, denotedG ' , is said to béopologisedby f
(or, ftopologisesG). Also, iff is a top-set-indexer @& then the members ofp§ U f
(V) are said to b&openand those subsets Xfthat are not iri(V) are said to béclosed
in the topological sense.

Given a topology on a nonempty se&, let G, denote the class of all grap@s=

(V, E) that admit a set-indexef :V(G) - 2* of G such thatf(V) = t; G is then a

realization of 1. Construct a star whose vertices represent thebmenoft in a one-to-
one manner, with the center labelled by the empty@sand all the other (pendant)
vertices labelled by the nonemptyopen sets; thusl,<1 M_legT . We shall callt

gracefulif a realizationG of 1 is set-graceful. (See [13,17,86,94])
By definition, for a top-set-graceful gragh = (V, E) together with a top-set-

graceful labelingf :V(G) - 2%, {¢ O f (V) forms a topology oiX. Hence, it is of

interest to see precisely for which class of gratitese two definitions coincide. The
following result answers one of the conjecturesediby Acharya [1, 3].

Theorem 38. [15] The complete grapk, is set-graceful if and only if &{1, 2, 3, 6}.
The following answers the same question for T-sateful complete graphs.

Theorem 39. [15] The complete graph, is topologically set-graceful if and only if<s
3.

Theorem 40. [15] Every graph can be embedded in a connected tojalbg set-
graceful graph.

Theorem 41. [15] Let G be a graph. Then there exists an infinite usege
(H=G,,:--G,,:-) of connected topologically set-graceful graps, where H
contains G as an induced subgraph a@dcontainsG, ; as an induced subgraph for all
integers i> 2.

Since almost all labelled graphs are not topoldlyicset-graceful it might be
fruitful to find some classes of graphs which asétopologically set-graceful. Following
are some of the classes of graphs which come thiderategory.

Theorem 42. [17] The cycleC, is topologically set-graceful if and only if n=3.

It is not possible to have a graceful topology Wh open sets on a st of
cardinalityn + m, for n, m € N, whereN denotes the set of natural numbers. A topology

with 2" open sets is a graceful topology of a gr&aifiand only if the size o6 is 2"-1.
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Lemma 43. [15,17] The n-dimensional cub®,,, n >1, is not T-set-graceful.

For a T-set-gracefulp( g)-graphG, we havep =2' + 2*" —landq = 2* -1,
for somek andl. Hence, the gri®,, x B, form, ne N andcC,, x C, form, ne N are not
T-set-graceful. Similarly, ifG, is a T-set-gracefu(p,, g,) -graph andG,is a T-set-
graceful (p,, g,)-graph thenG, +G, and G, G, are not T-set-graceful and if
G xG, is T-set-graceful thepl andp2 are both odd.

Lemma 44. [15,16]An r-regular graph is not T-set-graceful foer0,1,3 (mod 4).

Hence, ifG is anr-regular T-set-graceful graph thes 2 (mod4). The converse
of this result is not true. For instance, if = 2 then, by Theorem 42, no cycle
C,, n=4, is T-set-graceful. Next, for any integer6 <r = 2 (mod4) we hav,
which is not T-set-graceful.

Problem 45. [15,16]For 6 <r = 2 (mod 4), determine the class of r-regular T-set
graceful graphs.

Further, we have the following conjecture.

Conjecture 46. [15,18]Every graph G can be embedded as an induced sphgnaan
r-regular T-set-graceful graph for any integer rathsatisfies r = (k+2) (mod 4) for
some nonnegative integer k.

Theorem 47. [17, 94]For trees, the notion of set-gracefulness and thtéon of top-set-
gracefulness are equivalent.

The following most fundamental result mimics a waibwn result ofP. Erdos
quoted by Golomb [69]. Towards this end, we neecktall the result due to Harary [72]

that the number of labelled trees witlertices ispp_z.
Theorem 48. [17, 94]Almost all finite labelled trees are not top-se&geful.

By virtue of Theorem 47 and the fact that all trees are covered by the class of
labeled trees, we have the following interestinguliewhich is somewhat surprising in
view of quite a contrasting analogue of it in thedry ofgraceful graphs

Corollary 49. [17] Almost all finite trees are not top-set-graceful.
In fact, there do exist exponential order trees @ina not even set-graceful. For
example, it is known that the pat, for n=> 2 is not set-graceful (see [10, 78]) and

hence cannot be top-set-graceful. On the other,tmndmber of exponential order trees
are known to be set-graceful (e.g., see [3, 1072]),

Thus, it becomes quite interesting to determinedhass of set-graceful trees.
Further, which of them are top-set-graceful?

Conjecture 50. [17] There exists a ‘good’ characterization of (toptjgeaceful trees.

Given a topology on a nonempty s, let G, denote the class of all grapBs
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=(V, E) that admit a set-indexef :V(G) - 2% of G such thaf(V) = t; G is then a

realizationof t. Further, the topology is calledgraceful topologyif a realizationG of t
is set-graceful.

Lett be a graceful topology on the s¢twith [X|] = n. Takei € X. Then, the
realization oft has an edge of labeX\{i}. Correspondingly, there exist two seﬁpand

B; in t so that A O B, = X\ {i}. Then, it is necessary that 4 n B, # ¢, then
A nB ={i}0r, andif AnB =¢,then A OB =A0B =X\{i}dr.
Accordingly, letly and I, be defined as follows:l, ={i0X:A n B, #¢,
I, ={i0X:A nB =@ Then for everyill,,{i}07 and for every jOI,,
X\{j}Uz. For any graceful topology with respect to a set, | is nonempty, since
otherwise, ifl; is empty then for everyi UX, iUl ={i0X:A n B =¢, ieX

whenceX \ {i} €t. But sincer is a topologyU?=! X{i} = {n} € 7, a contradiction.

Hence, every graceful topology on an aalilyy given nonempty seX contains at
least one singleton set.

Hence, it is natural to ask whether we datermine the number of singleton sets
that are necessarily to be inso thatr is a graceful topology. The following theorem
gives a complete answer to this question.

Theorem 51. [17] A topology Tm in which there are exactly m singleton sets

A, A, A, is a graceful topology if and only if it contaimadl supersets and all
subsets ofA U A, O---0A,.

Corollary 52. [17] The minimal cardinality of a graceful topologyntaining k singleton
n-k
-1.

sets, on a set of cardinality n i§+2
Theorem 53. [17]Ifl >1and 2' + 2" —1=S, then there exist graceful topologies
with cardinalitiesS, S+2' -1, S+2', S+2*-1, S+2%...,S+2" -1.

Theorem 54. [17] Let X be a set of cardinality n amﬂ be the discrete topology on X.

-1("-1) izat
Then, at most labelled set-graceful realizations q{ can be constructed.

Corollary 55. [17] There exist graceful topologies with cardinalitwhere X n< 27.
Theorem 56. [17] Let X be a set of cardinality n anﬂ be the discrete topology on X.

-1("-1) izat
Then, at most labelled set-graceful realizations q{ can be constructed.
Corollary 57. [17] Let, be a graceful topology on X. Thqn 7 can be partitioned into

2"-1 equivalence classes.
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Further, in view of Corollary 57, Acharyet al. pursued their study in finding
newer classes of top-set-graceful graphs and ainsihirit, established some such classes
of graphs. Of course, still there could be sped@tses of top-set-graceful graphs whose
characterizations turn out to be NP-complete.

Theorem 58. [17] The number of distinct graceful topologies on aXéeif cardinality n
is2" —1.

As well known, two topologie$:L andr2 on X are isomorphic if there exists a

bijectionf: X—X such thalD\EI1 if and only iff(A)ETz.

Theorem 59. [17] Almost all labelled graphs are not top-set-gratefu

The next result gives an infinite class of finitepghs, which are not trees, that
are top-set-graceful.

Theorem 60. [17] K, +Ki is top-set-graceful with respect to X of cardityain if and

onlyift=2""*-1.
By atopologically full augmentationf a set-graceful labeling of a graph we
mean the number of isolated vertices that neecktadaled tds such that by assigning

distinct nonempty subsets fro®* \ f(V(G)) to the isolated vertices the resulting

extensionF of f to the soagumented graplt*is its top-set-graceful labeling. More
results may be found in [1, 15, 16, 17, 86, 94].

3.2. Topogenic graphs
Let X be any nonempty sefj(X) denote the set of all topologies ®rand let 1€ J(X).
We shall say thatis ‘graphical’ [19] if there exist a grapB = (V, E) and a set-labeling

f:V(G) — 2" of G such that f(v)O f“(E)=r, where f"(E): = {f" (e
:e[JE}. Construct a grapt = (V, E) with vertex se¥ such thatf : V—r1 is a bijection

and edge séf = {{ A, B}: A, B € tandAN B=p}.
Then, by the very definition of a topology Xn

UVOE « f(un f(W=@pe- 7 (v)="~fu)d f(v)

=fOf(v)-(f(u)n f(v))=~f()O f(v)Or. Sincef is a bijection, it is easy
to see thatf (V) O f “(E) =7. Thus, we have

Proposition 61. [19] Every topology on a nonempty set X is graphical.

This motivated us to initiate a study of the follog/rnew notion.

Definition 62. [19] A graph G= (V, E) is topogenic with respect toanempty ‘ground
set’ X if it admits a topogenic set-indexer, whiha set-indexerf :V(G) - 2* such
that f(V) 0O f"(E) =1, is a topology on X.

Theorem 63. [19] For every positive integer n, there exists a cotewtopogenic graph
of order n.
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Consider a topogenic set-indexéfV) 0 f " (E) =1, of a p, g)-graphG = (V,
E) and ler, = f(V) O f”(E). The number of distindtopen sets, viz.|,rf|, is called

the topogenic strengthl9] of f over G and if G is finite, the minimum (respectively
maximum) of|rf| taken over all possible topogenic set-indexers G is denoted

¢°(G) (respectively¢*(G)). Because of the injectivity of and f " we must have
¢°(G) < | fv)yo f" (E)| < ¢*(G) < p + g —k,wherek is the number of vertices &
that are adjacent to the vertexfor which f(w)=@ (such a vertexv exists sincer; is a

topology onX). Moreover, p < ¢°(G) . Further, sincepl f 7 (E(G)), q<¢°(G) -1
or, equivalently,q+1< ¢°(G). Thus, for a topogeni(,g)-graphG, p<¢°(G) and

q+1<¢°(G). (See [19, 57, 58].)
Since a non-set-graceful graph may still be topmgenwe need to examine
whether K ,, which is not set-graceful as such (cf.: [10])tdpogenic. We shall indeed

see thatK, is not topogenic. In [57] it is proved th#t,, K., K, are not topogenic. In
fact Germineet al. [57] proved the following theorem.

Theorem 64. [57] K, p[0{1,236} are the only set-graceful complete graphs that are
(gracefully) topogenic.

However, as observed above, non-set-graceful graphisi be topogenic, even
gracefully topogenic. Therefore, it would be of gmial interest to determine such
complete graphs.

Conjecture 65. [57] For every integerp > 7,K  is not topogenic.

Finiding the total number of labelled topologiEs) one can define on a s¢tof
cardinalityn is still an open question. Also, there is no kn@imple formula givingl(n)
for at least some specific values rof For small values ofi, T(n) may be found; for
example,T(1) = 1,T(2) = 4, andl(3) = 29. Fom > 4, the calculations are complicated.
The topogenic indeX19] of a graphG is defined as the least cardinality of a
ground sek such that there is a topologyn X which acts as a topogenic set-indexer of
a graphH having the least order and contain®@@s an induced subgraph; this number is
denoted a%’(G). If G is a topogenic graph thén(G) is just the least cardinality of a
ground sek such that there is a topologyn X which acts as a topogenic set-indexer of
G. Topogenic graphs are studied in [19, 57, 58, B&.list some of the results.
1. The staiK; ,n_; is gracefully topogenic for any positive integer
2. Every graph can be embedded as an induced subgfaphgracefully topogenic
graph.
3. The totally disconnected graph, which is charazgetriby the relationd/ # @ andE
=@, is topogenic.
4. The complete bipartite gragfy, ,, is topogenic for all positive integensandn.

5. The complete tripartite grapK, , , is topogenic for all positive integemsandn.
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3.3. Bi-set-graceful graphs

Definition 66. [94] A graph G is said to be bi-set-graceful if both @ddts line graph
are set-graceful. The Line graph of G, denoted {)Lhas E(G) as its vertex set with
two vertices of L(G) are adjacent whenever the esponding edges of G are adjacent..

Proposition 67. [94] A uniform Binary tree H’with one pendant edge added at the root
vertex having 21 edges is bi set graceful if and only 2.

Proposition 68. [94] Star S with 2-1 spokes is bi set-graceful if and only i€2.

Proposition 69. [94] The complete graplK,, on n vertices is bi set-graceful if and only
if n<3.

Theorem 70. [94] An r-regular connected (p, q)-graph G is bi seaggful if and only if r
= 2 and g=2"-1 for some reN.

4. Set-sequential graphs

A graphG is said to be set-sequential [1] if there existbaempty seX and a bijective
set-valued functiom:V(G)uE(G)—>2x— {@ such thaf(uv) = f(u) @ f(v) for everyuv €
E(G). We quote here some of the interesting results.

Theorem 71. [1] If G = (V, E) is a connected set-sequential (p,@pdp, then G+ is

set-graceful.

Thus, one has the following straight forward resgi¥ing a necessary condition
for a (p, g)-graph to be set-sequential.

Theorem 72. [1] If a (p, q)-graph is set-sequential, then p+dgﬂ, for some positive
integer m.

Corollary 73. [1] No (p, g)-graph with p+ag=0 (mod 2) is set-sequential.

Theorem 74. [21] If G is set-graceful theits [ K is set-sequential for some positive
integer t.

For every positive integem, there exists a set-sequential )-graph with

p+q=2m—l. For instance, take the star= K, ,m-1_; and assign the non-empty subsets
of the seX = {1, 2, 3,...m} as follows: AssignX to the central vertex and assign the first
2™ -1 nonempty subsets oOf in their natural lexicographic order to the pertdan
vertices ofG in a one -to-one manner. It is easy to verify thi assignment results into
a set-sequential labeling &. The converse is not true as, for instance, thie pf of
length 3 shows. Using the fact that by the adjamctf one new vertew with @ as its
label to a set-sequentially labelled grapland then makingy adjacent to all the vertices
of H yields a set-graceful graph as also a necessawitmn for a graph to be set-
graceful [1] and the following result gives a neszeg condition for a graph to be set-
sequential.
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Theorem 75. [77] If a (p, qQ)-graph G has a set-sequential labelvith respect to a set X
of cardinality m> 2 then there exists a partition of the vertex\§&) of G into two non-
empty sets A and B such that ¥AB| and the number of edges joining vertices ofith

those of B is exactl2™ " —|B] .

Acharya and Hegde [10] have given the followingjeoture, which was later on
disproved by Hegde [78].

Conjecture 76. [10] For every integer nx 2 such that m=3"3_7isa perfect square,
the complete grapltk,, of ordern = %[\/W — 1] is set-sequential.
Theorem 77. [77] The complete graph H<is set sequential with respect to a set X of
cardinality m> 2, if and only if n = 2 and 5.

Acharya and Hegde [10] conjectured that 'No pamis set-sequential for any
integerm> 2', which was later on disproved in [88].
D§1

Theorem 78. [14] A star K, _ is set-sequential if and only if p=

n>2.

1p -1 for some integer

Theorem 79. [60] Binary trees are not set-sequential.
The following problems are open.
Problem 80. [1] Characterize set-sequential graphs, in particulet-sequential trees.

Problem 81. [1] Given a set-graceful graph G, does there existoanected set-
sequential graph H such that G is an induced suplgraf H?

An immediate observation from the very definitientinat a necessary condition
for a @, g)-graphG = (V, E) to admit a set-sequential labeling s+ q+1=2" for
some positive integem [10]. But the following embedding regarding safential graph
gives the NP-completeness of determining the cliqumber and the chromatic number
of a connected set sequential graph.

Theorem 82. [15] Every (p, q)-graph of order p 5 can be embedded into a connected
set-sequential graph.

Let G be the 'host™ graph ard the embedded graph and, if the chromatic
number and the cligue number @fare> 3, then the chromatic numbgH) = »(G)+1
and the cligue numben(H) = o(G)+1. Therefore, the problems of determining the
chromatic number and the cligue number of a comgestt sequential graph are NP-
complete [15].

Following result describes a method of constructingascending chain of set-
sequential graphs for an arbitrarily given gr&pbontaining it as an induced subgraph.

Theorem 83. [15] Let G be any graph. Then, there exists an infiediguencé{ = (H =
G4, Gy, ...) of set-sequential graphs where H contains G agdaced subgraph andiG

containsG;_, as an induced subgraph for all integers 2.
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For ore results on set-sequential graphs the reéadefer to [1, 5, 10, 13, 14, 15,
16, 18, 77, 86, 94].
4.1. Set-sequential topogenic graphs
Let G= (V, E) be any graph and be any set. A set-indexépf G is called a segregation
of X on G if the sets f(u): u € V(G)} and { f " (€) : e E(G)} are disjoint and if, in
addition their union is the s&(X) = t—@ for some topologyt on X, thenf is called a
sequential topogenic labelingf G [59]. A graph is calledsequential topogenid it
admits a sequential topogenic labeling with respgecsome setX. The sequential
topogenic index(G) of a graphG is the least cardinality of a 9¢twith respect to which
G has a sequential topogenic labeling. Further,fifV n E - 2* is a sequential

topogenic labeling ofc with [X| = y(G) we callf an optimal sequential topogenic
labeling of G. Germinaet al. [59] proved many classes of topogenic graphs sisctine

complete bipartite grapiK . is sequential topogenic for every non-negativegets
m,n.

n

In [59], it is proved that any arbitrary gra@ican be embedded as an induced
subgraph of a set-graceful (set-sequential, topoddly set-graceful, topogenic,
sequentially topogenic) graph which is set-gracéfdt-sequential, topologically set-
graceful, topogenic, sequentially topogenic) andlisd the complexity in determining
the various parameters like chromatic number, eligumber, independence number,
domination number etc. of set-graceful (set-sedakntopologically set-graceful,
topogenic, sequentially topogenic, bitopologicabahs.

5. Set-magic graphs

A graphG is said to beset-magidf its edges can be assigned distinct subsetssef 4

such that for every vertaxof G union of the subsets assigned to the edges irtcaden

is X, such a set assignment to the edgé&s béing called aet-magic labelingf G[1].
Following are some interesting results on set-mgmaphs.

Theorem 84. [3] For any finite graph G having a set-magic IabeIth;‘;(G)—»ZX we

must have}E(G)| < 2% which gives(log, [E(6)]] < |X|. Hence, if m=m(G) denotes the

least cardinality of a set with respect to which Has a set-magic labeling then,

[log, |E(&)]] < m(G).

Lemma 85. [102] Consider any integer ;2 and let m{1,2,...,m}. Order the set® by

putting A<B for distinct AR if and only if either |A|<|B| or |A|=|B| and

min(A-B)<min(B-A). LetA, A,,---,A,, be the increasing sequence obtained in

accordance with the ordering relating < defined abo Then for each,1<i < 2mt

one has AEm-A where pzin—i+1. That is, A and Ap are complements of each other

p
inm

Problem 86. [10] Determine the graphs, finite and infinite whichnat set-magic
labeling f such that |f(e) = |f(e")| for any twogsbk e, €' in the component of G.
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Theorem 87. [102] For every integer e 3, m(W;,) = 1 + [log, n|.

Theorem 88. [102] There exists a connected infinite graph G =(Vwih a set-magic
labeling g with |g(e)| <o for each e E(G).

Theorem 89. [104] An infinite graph G has a set-magic labeling flstitat |f(e)| <o for
every ecE(G) if and only if d(u) = |V(G)|V'u eV(G).

Another interesting class of set-magic labeling,[0® a (finite or infinite) graph
G are thosef : E(G) — 2* with the property thaf f (€) :e[JE,} is a partition ofX

for eachu € V(G). Such a set-magic labeling may be calfattitioning set-magic
labeling of G, and a graplG which admits such a set-magic labeling may beedall
partition set-magic

The class of partition set-magic graphs is a sgkatd multicolorable graphs. A
graphG = (V, E) is said to bemulticolorable if it admits a multicoloring, which is
essentially a set-assignmérE(G)—»Zx such thaf f (e) : e E,} is a partition ofX for

eachv € V(G). Thus, an injective multicoloring is same as atifianing set-magic
labeling and vice versa.

Alternatively, we may regard ammulticoloring of a graphG as assignment of
one or more colors from the color sét={X,, X,,---,X,} to the edges d& so that

at each vertex of G every color appears on exactly one edge incidemt Bquivalently,
an n-multicoloring of a graplG = (V, E) may be thought of as assignmantf n-tuples

from the involutory groupM , to the edges d& and for each € n, exactly one of the-
tuples as assigned to the edgesHn hasa —1 entry at theith coordinate. Thus, the
following holds, Myeg A(x) =1 Vu € V(G) (I = —1).

In general, ann-assigning k:E(G)—»Mn is called anodd n-signingif it

satisfiedl ez A(x) =1 Yu € V(G) (I = —1), [1] that is an odd number of-tuples
assigned by to the edges iEu have a -1 entry in theirth coordinate for eacien and

for each ueV(G). In terms of then-tuple representationy of set of assignments
Myep, A(X) =I VueV(G)(I=-1)is equivalent to the set theoretic condition

zeruw‘l(x(x)):x VUEV(G).
Theorem 90. [34] Let G be a simple graph. Then a regular multigraghcan be

obtained from G by edge multiplication (i.e., regment of some edges by several
parallel edges) if and only if for every independsest S of vertices in G we have,

MINES)I S|
(iIN(S) = [SEN(N(S)) = S.

Theorem 91. [34] A simple graph G = (V, E) has a multicoloring iicaonly if some
regular multigraph H = (V, F) obtained from G bygesdmultiplication satisfies:
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m, (S,V = S) 2 A(H) for every ScV(G) with |S| odd where for a graph K, and for any
two sets A,B of vertices &fn, (4, B) denotes the number of edges in A and the other in
B.

Definition 92. [1] Let H be a multigraph and(H) denotes the minimum of the vertex
degreed,, (u) in H. Acharya called H a uniform degree par{tyr u.d.p) multigraphf

the degrees of the vertices of H are of the samityp8l is said to be odd (or even) if the
number of vertices in H is odd(even). A spanniriggeaph of H in which the degrees of
the vertices are all odd is called add degree factor df.

Lemma 93. [10] If H is a multigraph having an odd degree factben, H is an even
graph.

Acharya [1] definednultigraph H is odd degree factoralifat can be written as
the edge disjoint union degree factok$;, H,,--- and the collectiof H,} is then called

an odd degree factorization. He [1] also definezdntlultiplication index of Glenoted by
k(G) as the least integerfor whichG has am-multicoloring. If G is not multicolorable
thenk(G) = «. He proved a necessary condition for a gr&to have a generalized
multicoloring (see [1]) and conjectured the follogi

Conjecture 94. [10] The conditions (i) All the vertex degree ia Have the parity of n,
and (ii) Hg has an odd degree factorization, are sufficient dograph G to have a
generalized multicoloring.

k(G) =2 A* (G) =2 A(G), where A(G) denotes the least integefor which at-
regular multigraph can be obtained fr@rby edge multiplication. 16 is a graph having
a generalized multicoloring then an odd degreeofable multigrapiH may be obtained
by the edge multiplication. Hence, Iét* (G) denote the least of the minimum vertex
degreesd(H) of the degree factorable multigragh obtainable fromG by edge
multiplication, and letk , (G) denote the least integefor whichG has a generalized
multicoloring; and he calledk (G) the generalized multicoloring index @& and

K 4(G) = o if G has no generalized multicoloring;, (G) = 0* (G) = 4(G) .

Definition 95. [10] Given a set-assignment h:V(&ZB(G)—»ZX to the elements of a
graph G = (V, E) its nornﬂh” is defined as the numbwn” = mivaDE|h(X)|

Remark 96. [10] Put/h] , = mim |h(u)|, [h] ¢=mim. [h(e),

then h is a set-magic labeling of G whenever
(i) the restriction map h/E is injective, and
(i) MNocE h(e)=h(u)=X for each &V(G).

u
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If OSW(G) denotes the set of all optimal set-magic labalinith respect to the
set X of a set-magic graphG then the set-magic numbe|G|rlndefined by
IGlmzma)%eOSle(G)lhlE' Also, an optimal set-magic labelihgwith |h|E=|G|rn is said

to be extremal [1]. Any twcgl,gzeOSl\/k(G) are said to be equivalent [89], written
91~9% if there is a permutatiom of X, and an automorphisny of G such that
gl(uv)=1cg2(w(u)\|/(v))VUveE(G). A set-magic grapl® is said to be uniquely set-magic
[10] if 91~9% for each paigl,gzeOSl\/B((G).

Theorem 97. [10] For every integer r» 2, there are only a finite number of graphs G
for which m(G) = n.

Sedlacek [102] claimed that a gra@his set-magic if and only & has at most
one vertex of degree one, which was easily disgtdwethe argument thahft2 has two

vertices of degree one; but it is set-magic. Vilayaar [105] proved the following result.

Theorem 98. [105] A graph G is set-magic if and only if it has atshone pendant
vertex.

Problem 99. [105] For a set-magic graph G, find the best possibleaufpound m(G).
Theorem 100. [105] For a infinite graph G the following are equivaten

1. G has set-magic labeling f such that |f(e)}e<

2. G has set-magic labeling f such that |f(e}|for all e €E and [f(e)| = |f(e")| whenever
e and e' are edges in the same connected compoih@nt

3. Fork €N, G has a k-magic labeling.

4. G has 2-magic labeling.

5. For all veV(G), deg(v) = |V|.

Theorem 101. [105] If an infinite graph G has a set-magic labelingliich satisfies the
condition |f(e)| <o for all e €E then deg(v) = |V| for all € V(G).

Theorem 102. [105] Any infinite graph G has a set-magic labeling fiahhsatisfies the
condition deg v = |V| for all \e V(G), has a set-magic labeling satisfying |f(e} for all
e €E(G).

Theorem 103. [105] For an infinite graph G = (V, E) the following asgjuivalent

1. G has a set-magic labeling f such that |f(e)}p<or all e €E.

2. G has a set-magic labeling f such that |f(e}p €or all e € E and |f(e)|=|f(e")]

whenever, e, €' are edges in the same connectguboamt of G.

3. G has a set-magic labeling satisfying |f(e)|for all e € E(G), wherey is a positive
integer.

. G has a set-magic labeling satisfying |f(e)|=2 &ire € E(G).

. Deg(v)= |V| for all ve V(G).

(G2l

6. Distance-patternsof verticesin a graph
Let G = (V, E) be a given connected simpfgd)-graph,@# M < V(G) andu € V(G).
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Then, theM-distance-patternof u is the setf,, (u) ={d(u,v):vOM}. If f, s

injective then the séil is a distance pattern distinguishing set (DPD-ae6G andG is a
DPD-graph [6,48]. By Acharya [6, 48] while defigitthis new concept, following were
the problems identified.

Problem 104. [48] For what structural properties of the graphthe functionfy is
injective (or respectively uniform)?

Problem 105. [48] Characterize DPD-graphs having the given DRiber.

Problem 106. [48] Which graphsG have the property that evekysubset oV (G) is a
DPD-set ofG. Solve this problem in particular whén= p(G)?

Problem 107. [48] Which graph$s have exactly op(G)-set ?

Problem 108. [48] For which values of it is possible to extract a properdistance
coloring of a given grapts using a distance-pattern function as a listingadérs for the
vertices?

Problem 109. [48] Given any positive integés, does there exist a graghwith p(G) =
k?

Acharya [6, 48], while sharing his many incisivetlghts during our discussion
in June 2008, introduced a new approach, namebltamte neighborhood pattern
matrices (dnp-matrices), to study dpd-graphs, kmi¥s.

For an arbitrarily fixed vertex in G and for any nonnegative integerwe let
N,[u] ={vOV(G):d(u,v) = j} . Clearly, No[u]={u}for all ueV(G) and N;[u] =
V(G) —V(C,) wheneverj exceeds the eccentricigfu) of u in the component, to
which u belongs. Thus, iG is connected then);[u] = @ if and only ifj>e(u). If G is a
connected graph then the vectors

U =(NGlUll N[ NI .. N U

associated witlueV(G) can be arranged aspa(dG+1) nonnegative integer matrDG

given by
1 |N1[V1]| |N2[V1]| |N3[V1]| 0 0
1 |N1[V2]| |N2[V2]| |N3[V2]| |N9[V2]| 0 0
1NV NIV [Ny, o 0 0 [Nyl ]
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wheredG denotes the diameter Gf we caIIDG thedistance neighborhood pattefor,
dnp) matrix of G.

In general, for an arbitrarily given nonempty sukldgeof vertices inG, the M-
dnp matrix DG'VI of G is defined by replacinglj[vi] by NjM[vi] for all indicesj and for
all verticesvieM in the above dnp-matrix. It is important to noterén that all the

parameters, like the eccentricitie&;) and the diameter, are then to be with respect to
themarker seM. Thus, DGM would be a nonnegati\px(dG+1) matrix. We will denote

by D*GM the (0,1)-matrix obtained frorﬁ)G'vI by replacing all its nonzero entries by 1.

In an at tempt to solve these problems many relBeesq 25, 26, 28, 29, 31, 32,
33, 48, 50, 54, 55, 56, 61, 62, 65, 66] studidtkint concepts of distance pattern of
vertices in a graph.
6.1. Distance patter n distinguishing (DPD-set) of a graph
Let G = (V, E) be a given connected simpled)-graph with diameted, ® # M € V(G)
and for eachu € V(G), let f,, (u) ={d(u,v) :vOOM} be the distance-pattern ofwith

respect to the marker sbt. If f,, is injective then the séil is a distance pattern

distinguishing set o6 andG is a DPD-graph [48, 6]. For a given connected &ngm
g)-graph,G = (V, E) and an arbitrary nonempty subsatc V(G) of G and for eactve

V(G), define NJM[u] ={vOM :d(u,v) = j}. Ther(dG+1) nonnegative integer matrix
DY = (|N}‘”[vi]|) is called theM-distance neighborhood pattern (or, M-dnp) matfi&o
Many interesting results are established in [25, 38 55, 56, 62]. Some of them are
listed below.

1. Forany p, g)-graphG, V (G) is a DPD-set if and only & is isomorphic toK; .

2. LetG be any graph having a DPD-$4t Then, any vertex db is adjacent to at most
two pendent vertices. Further@fhas a vertex with exactly two pendent vertices
adjacent to it then, exactly one of them belongd .to

3. If a blockG of orderp > 3 has a DPD-sé¥ then,G is not complete and 8 [M| <
p-1.

4. There is no DPD-graph of diameter two, exdept

5. LetG be a p, g)-graph. Then for any positive intederl <k < p-1, G is k-DPD-set

uniform if and only ifG UK, or G OK,.

6. For any grapl, o(G) = 1 if and only ifG is a path.
7. A treeT of order p> 2 has a DPD-set of cardinalipr1 #2) if and only ifT is

isomorphic to a path or to the tree consistinghefpathP, := (v,, v,,V,,V,, Vg, Vs)
with one other vertew that is adjacent t&, or v,.

8. EverypattP, = (v,V,, Vs--,V,), N=24 hasaDPD-seM =(v,,V,,,,V.,5)
for every fixedi, 1<i < n-3.
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9. LetT be any caterpillar with distance between any teodant vertices greater than
two. ThenT has a DPD-set.

10. In any graphG, a nonemptyM < V(G) is a DPD-set if and only if no two rows of
D*GM are identical.

11. For any DPD-grapl possessing a nontrivial DPD-set, all the nonzetdes in the

first column of DGM are unity and their number is less than the nurabesws.
12. Let G be a graph with DPD-s&f and theM-DNP matrix DG'VI is such that the rows

of D*GM are the elements of a basis of the Euclidean sR&c&henG = PB,, a path
onn vertices.

6.2. Open distance pattern uniform (ODPU)-sets of graph

We [48] can also associate with each vetef a graphG = (V, E) its openA-distance
pattern (or, ‘ODP’ in short) f2(u) ={d(u,v):vOOA,u#V} and intend to study graphs

in which every vertex has the same open distantterpawe call such grapheDP-
uniform graphs(or, simply, ‘ODPU-graphs’), where theet-valued functior{or, set-
valuation f:is called theopen distance pattern uniforer, aODPU-) functionandA

is called arDDPU-setof G. ODPU-numberof a graphG, denoted;(G), is the minimum
cardinality of an ODPU-set iG; if G does not possess an ODPU-set then we postulate

that ¢(G)=0. Following are some interesting results we dasgtablish on ODPU graphs
(see [48]).

. AtreeT has an ODPU-sét if and only iszPz.

1

2. In any graplG, if there exists an ODPU-skt, thenM < C(G).

3. If G has an ODPU-sét then max{ f,) (W)} =|f) (V)| =r(G) DvOV(G).

4. Let G = (V, E) be any graph ancV. Then,M is an ODPU-set if and only if

max{ (W)} =| £3(v)| =r(G)for all v € V(G).

There is no graph with ODPU-number three.

A connected grapks is an ODPU-graph if and only if the centefG) of G is an

ODPU-set.

7. Every ODPU-graplt satisfiesy(G) < d(G) <r(G)+1.

8. A graph with radius 1 and diameter 2 is an ODPshri&and only if there exists an
M c V(G) with M | > 2 such that the induced subgrafh) is complete and any

vertex in{G-M) is adjacent to all the vertices Mt
9. For any ODPU-grapks, every ODPU-set i is a total dominating-set @.

o u
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10. For every integen > 3 there is a grap8 with ODPU-numben + 2. We have proved
that 3 cannot be the ODPU number of any graph. &lefuz an ODPU-graph, the
number three is forbidden as the ODPU-number. Thuand 3 are the only two
numbers forbidden as ODPU-numbers of any graph. gsaphG (may or may not
be connected) with every vertex having positiverdegnd no vertex has full-degree
can be embedded into an ODPU-graptwith G as an induced subgraph ldf of
order Y(G)| + 2 such tha¥/(G) is an ODPU-set of the graph

11. A bipartite ODPU-grapltc = ( XUY, E) with the bipartition ¥, Y} of its vertex seV
has ODPU-number 4 if and only if the 3ehas at least two vertices of degréfeand
the setY has at least two vertices of degrék |

12.Let H be a connected graph with radius > 2. Then the new graph
K = H[G4, G5, ..., G,] has the same radius and diameter as thidt of

13. Given a finite integen # 1,3, any graplc can be embedded in an ODPU-graph
with ODPU-numben andG as an induced subgraphtdf

Some of these results may be found in [33]. Foltgaproblems are open [48].

Problem 110. In an ODPU-graph G, what is the maximum order ofddlection of
pairwise disjoint ODPU-sets?

Problem 111. Characterize a graph that possess an ODPU-seubth ghatM) is a
block.

Problem 112. Characterize graphs in which every total domingtiet is an ODPU set.

6.3. Distance-pattern segregated (dps) graphs

Let G = (V, E) be a p, g) graph. Given an arbitrary nonempty sulidestf vertices inG,
each vertexi in G is associated with the sef,, (u) ={d(u,Vv) : vO1 M}, where d(x, y)
denotes the usual distance between the vertiaesly in G, called theM-distance pattern
of u. G is called adistance-pattern segregate@r, in short, dps) graph iffh',I is
independent of the choice 0 M and injective set-valued function when restridted
the setV — M. The seM is calleddistance-pattern segregatir{gps)setfor G. The graph
G itself is adps-graphif G admits a dps-set. The least cardinality of dpsrsétis called
dps-numberdenoted by (G). We have proved many results on dps-graphsdase
number of a graph (See [26, 28, 32, 48]). Soméarhtare listed below:

(1) Compute grapK, is a dps-graph having a dps-set of cardinality.

(2) If T is isomorphic to either stak , or K; ., Or a graph obtained by subdividing at
most two legs oK x4+, or one leg ofK; y, thena(T) < k.

6.4. Complementary distance pattern uniform (CDPU) graph
ConsiderM be any non-empty subset ¥{G). For each vertexi in G if the distance

patternf,, (u) is independent of the choice wkE V-M, thenG is called a complementary

Distance Pattern Uniform (CDPU) Graph, the Mets called the CDPU set. The least
cardinality of CDPU set irG is called theCDPU numberof G, denoteds(G). Listed
below are some results under CDPU-graphs (Sef&&9, 32, 33, 48].

(1) Every self centered graph of orgielnas a CDPU séfl with M| < p-2.
(2) If G is a self-median graph of orde(2n-13), n> 8, thens(G) < 2n(n-7).
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(3) LetG be a graph witlm vertices. IfG is a self centered graph, ther<ls(G) < n-2.
IfG is not a self centered graph, theg 16(G) < n-r, wherer is the number of

vertices with maximum eccentricity.

(4) A graphG haso(G) = 1 if and only ifG has atleast one vertex of full degree.

(5) For allintegersa, 2a, 2---a, 22, 0(K =n.

a;,0,, 0, )

(6) o(C,)=n-2, if nis odd an@r(C,, ) =g, if N> 8 is even.
(7) o(G +K w) <M, if G has no vertex of full degree.

Following problems are open.
Problem 113. Characterize graphs G in which every minimal CDB&is independent.

Problem 114. What is the maximum cardinality of a minimal CD&&1 in G?
Problem 115. Determine whether every graph has an independBftlGset.
Problem 116. Characterize minimal CDPU-sets.

Problem 117. For any graph G find good bounds #(G).

We [48,54] also studied Independent CDPU grapthéfe exists an independent
CDPU set) forG. We identified many classes of independent CDPHplygs and
calculated the independent CDPU (ICDPU) numbefadbus classes of graphs.

6.5. Distance-compatible set-labeling (dcsl) graphs
A distance-compatible set-labeling (dcis)an injective set-assignmeii(G)—2*, X a
nonempty ground set, such that the correspondingduced function

t7:V(G)xV(G) ~ 2* ~{g} defined by f “(uv) = f (u) + f (v) satisfies f * (u,v)|
=Kyyd(u,v) for all distinctu,ve V(G), whered(u, v) is the distance betweanandv

and k) is a constant is adcsl-graphif it admits a dcsl. FurtheG isintegrally dcsl
if all the proportionality constantk(xvy) are integers and such a dcsl®fs referred to
as anintegral dcslof G. A dcslf of a graphG is k-uniform dcslif the constants of

proportionality are all equal tk; G itself is ak-uniform dcsl graphf it admits ak-
uniform dcsl The minimum cardinality of a ground s€such thatcG admits a 1-uniform

dcsl graph is called the 1-uniform dcsl indéx of graphG. We have identified many

classes ok-uniform dcsl graphs fork > 1 and also studie,(r)-arithmetic dcsl graphs
and characterized,(r)-arithmetic complete dcsl graphs and also proved &ll trees
admit 1-uniform dcsl. We also established the iatahip betweelk-uniform graphs and

|, graphs and found thiagtuniform graphs are generalizationlgfgraphs. The topic is of

special interest for further investigation becaakés applications in cryptography and
signalling problems. We also studied the hypergmapimection of dcsl graphs. (See [29,
31, 33, 48, 50, 54]. Many conjectures and opeblpros have been identified for further
investigation.
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Conjecture 118. If a graph contains an odd cycle as an inducedysagth then it is not
1-uniform dcsl.

Problem 119. Prove or disprove: For n> 4, no graphC, has a 1-uniform dcsl f such
that f(u) = Zfor someu I C,.

Problem 120. Prove or disprove: There exists a unicyclic graplwith its unique cycle
having odd length such that f(upfor some ueV(G), where f is a 1-uniform dcsl.

Problem 121. Prove or disprove: If a graph G has an odd cydeaa induced subgraph
then G does not admit a 1-uniform dcsl.

Problem 122. For any even integer n 4, consider any 1-uniform dcsl f:V(G)ZX. It
defines a hypergraphﬁvzfz(x,fn) where En:{f(vi):lsiSn}. What properties of

hypergraphs can be identified in{f with the characteristics of the cyclen’E:
What is its cyclomatic number?

6.6. Bi-distance pattern uniform graphs
A graphG=(V, E) is Bi-Distance Pattern Uniforn{Bi-DPU) if there existdM < V(G)
such that théVl-distance patterrfy,(u) = {d(u,v): v € M} is identical for alluin M and

fyy (V) is identical for alvin V\M. The seM is called &Bi-DPU set. More details are
found in [66] and [67].

6.7. Open distance pattern coloring of a graph
Given a connectedp( g)-graph G =(V, E) of diameterd(G), 8+ M < V(G) and a
nonempty seK = {1,2,3,...d(G)} of colors of cardinalityd(G), Ietf(l\)/I be an assignment

of subsets oK to the vertices o, such thath? (W={d(u,v): ue M, uAv} whered(u,v) is
the usual distance betwearandv. Given such a functiorfhfl’ for all vertices inG, an
induced edge functiorf,, of an edgeuvO E(G), f,, (uv) = f (u) O f(v). We call
fh;) an M-open distance pattern coloring of G, if no twoaaent vertices have same

fh;) and if such aM exists for a grapks, thenG is called arM-open distance pattern
colorable graph. Th#-open distance pattern edge coloring number ofaphyB is the
cardinality of fw? (G), taken over allMc V(G), denoted by (G) (see [65]).

7. Set-valuations of digraphs

Given a simple digrapb = (V, 4) and a set—valuatichV—»ZX, to each arcyyv) in D we
assign the sef(u)—f(v). A set-valuatiorf of a given digraphD=(V, .3) is aset-indexeiof
D if both f and its ‘arc-induced functiongf, defined by lettinggs(u,v) = f(u) —

f()for each arc v) of D, are injective. Furtherf is arc-bounded [22] if
‘gf (u,v) ‘ <|f(v)], for each(u,v) O A.
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Lemma 123. [22] The out-degree od(v) of any vertex v in a setxadealigraph (D,f) is
at most FV)I,
Theorem 124. [22] Every digraph admits a set-indexer.

The following problem is open [22].

Problem 125. What is the least cardinality of a ground set Xhwiéspect to which a
given digraph D admits a set-indexer?

If »'(D) denotes the least cardinality of a groundXsetith respect to which the
given digraptD admits a set-indexer then from the proof of Theorene can infer that

o/(D) < MD)U A (D). ()
It would be interesting to determine digrafihdor which equality is attained in
(2). The question whether the bound in (2) couléhiggroved in general is open.
Note that any set-indexdrof a digraphD=(V, .4) has the property tha{gf (u, V) |

=|f(u) - f(v)|<|f (V)| for any arc ¢v), but|g(u, v)| could be equal to or larger than,
[f(v)|. Thus, for any given digragb=(V, .4) and for any arc-binding set-indexere have
|9 (u,v) [ min{] f(u)[| f(v)|-1} forevery (Ve 4 ©)

The following problems arise [22].

Problem 126. Characterize digraphs D=(\) that admit arc-binding set-indexers f such
that

19 (U, V) [= min| f(u),| f(v)[-1} forevery (e 1 (4)

Problem 127. What is the least cardinality of a ground set Xhwiéspect to which a
given digraph D admits an arc-binding set-indexer?

Definition 128. A set-indexer f of a given digraph D=(\3) is arc-binding if
|gf (u,v) | <|f(v), for each (u,v)O A.

Theorem 129. [22] Every digraph admits an arc-binding set-indexer.

ab(

If ®(D) denotes the least cardinality of a groundeiith respect to which the given

digraphD admits an arc-binding set-indexer then from thaopiof Theorem one can
infer that
wW*(D) < 2n, wheren = V(D)) (5)
It would be interesting to determingrdphsD for which equality is attained in

(5). Again, the question whether the bound in @)Id be improved in general is open.
In any case, we have

w (D) < w?(D) for any digraptD (6)
Problem 130. [22] Characterize digraphs D for which equality holdg6).
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For digraph® of ordern, the inequalities (5) and (6) can be put togetiser
w(D) < w*(D) < 2n (7)
Another problem that naturally arises is the foliogv

Problem 131. Find a 'good’ lower bound fow'(D).

8. Set-valuations of sidigraphs
Given a simple signed digraf@¥(V, 4, o) and a set-valued function, in general called a
set-valuationassigns a subset of a nonempty ‘ground>$&d’ each element (i.e., a

vertex and/or an arc) & In particular, a set-valuatidhiv—2% is called avertex set-
valuationof § a set-valuatiorg:jal—»ZX is called anarc set-valuationof S and a set-
vaIuationh:VU;l—»ZX is called aotal set-valuatiorof S Further, an injective vertex set-
valuationf:V—2X is called avertex set-labelingf S if the induced arc set-valuation
gf:ﬂ—>2x defined by lettingg(u, v) = f(u) — f(v)for each g, v)€A satisfies for each

uv) O 4, o(u,v) = (=D """ Furthermore, a vertex set-labelihgf Sis called a
vertex set-indexeif g is also injective. This note attempts to answer glestion

whether every signed digraph admits a vertex $etlilag (set-indexer). Several open
problems are posed and new directions of studyhefriotion and its applications are
suggested in [8]. We list here some of the opeblpros cited in [8].

Problem 132. [8] Characterize graphs G that satisfy equality in (3)

Problem 133. [8] Characterize canonical signing of the vertex séelings (VSVC) of
signed digraphs.

Problem 134. [8] Characterize finite sequences of integers thatdgree sequences of
signed digraphs.

Markingof a signed digrapls=(V,E,c) is simply a functionu:V—{-1,+1}. It is
degree-compatibld it satisfies

HV)=-1- d(v)<0, vOV (10)
andcanonicalif
HUV)=-1« 07 (V) =1(mod2),vOV (12)
Definitions (10) and (11) motivate one to reg&rasdegree-canonicaf
d(v) <0 < 07 (v) =1(mod2),vIV (12)

Problem 135. [8] Does every degree-canonical signed digraph admitestex set-
labeling?
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Acharya in his paper [8] comments that if a sigaégraph does not admit a
vertex set-labeling then it must be an unbalanéged digraph. It also implies that no
connected unbalanced signed graph admits a veetebat®ling; note, however, that it
does not preclude the possibility of having weatdynected signed digraphs, balanced
as well unbalanced ones, that admit vertex setitaj®e Thus, he [8] raises the following
problems.

Problem 136. [8] Characterize signed digraphs that admit vertexiabelings.
The following conjecture, if true, will pose serabstacles towards solving Example 5.

Conjecture 137. [8] Every signed digraph can be embedded as an indsutegraph in a
signed digraph that admits a vertex set-labeling.

9. Linear hypergraph set-indexer (LHSI)
For a graplG = (V, E) and a non-empty s&t alinear hypergraph set-indexéLHSI) is

afunction f:V(G) - 2* satisfying the following conditions: (f)is injective (ii) the
ordered pair H, (G) = (X, f(V), wheref(V)={f(v): ve V(G)}, is a linear hypergraph,
(i) the induced set-valued functidi’ : E(G) — 2* , defined by f"(uv)=
f(u) O f(v),0uvDE is injective, and (V)Hse(6) = (X, fO(E)), wheref " (E)
={f" (e):elE}, is alinear hypergraph. Recently these hypergraphadeing studied
(e.g., see [20,107,109, 110)).

Theorem 138. [20] Let G = (V, E) be a (p, q)-graph and let tfe:V(G) - 2* be an
LHSI of G. Let u be any vertex of G with its vedegree d(u¥ 2. Then, |f(u)k 3.

Theorem 139. [109] Let G = (V, E) be a graph and It :V(G) - 2% be an LHSI of
G. Let u be any vertex of G with d@t. Then, |f(u)k 2.

Theorem 140. [20] For a simple graph G admitting an LHS1:V(G) - 2%, |X]| can
be any arbitrary positive integer greater thq_r((B) if and only if G contains a pendent

vertex.

Proposition 141. [110] If G = (V, E) is a (p, g)-graph without pendentrtiees and
isolated vertices, thel’ (G) < 2p.

Theorem 142. [110] For a (p,q)-graph G witlé(G) > 3, IUL(G)S%Q.

Theorem 143. [109] If a graph G admits a 3-uniform LHSI, then G camsano cycles of
length< 4.

Theorem 144. [110] If G is a (p,q)-graph with X §(G) < 4(G) < 3, then |- (G)
<3p-—g.

Theorem 145. [20] A graph G without isolated points admits a 3-umifoLHSI if and
only if (1)4(G) <3 and (2) girth g(G} 5.
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Theorem 146. [109] If G is a (p,q)-graph with X §(G) < 4(G) < 3 and girth(G)> 5,
then IUL(G)=3p—q.

Theorem 147. [110] If G is a conn(p, q)-graph with24(G) <4(G) <3 and girth g(G)
> 5, there exists a 3-uniform LHSI f of G satisfyiing following.

1. u(H(G)) =uG)
2. u(Hro(6)) = u(L(G)) + g, where L(G) represents the line graph of G.

10. Conclusions and scope

This survey paper on set-valuations of graphs wihichudes a various type of set
indexers, we hope that it will pave the way for aegearcher for studying the topic. The
conjectures and open problems identified in varisastions appear would be quite
interesting, for further investigation. In this ppective, the authors wish a general study
on set-valuations of graphs would be a long teral.go
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