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1. Introduction

Many important problems of engineering mechanié® Ielasticity, plasticity, and

fracture mechanics and aerodynamics can be rediacéite solution of a non-linear
singular integral equation or non-linear finite4paimgular integral equations. Hence,
since these are connected with a wide range oflgmabof an applied character. The
theory of non-linear singular integral equationd aon-linear finite-part singular integral
equations seems to be particularly complicatedio$aly linked with applied mechanics
problems.

Having in mind the implications for different prephs of engineering
mechanics, E.G.Ladopoulos [15-17] and E.G.Ladomoudmd V.A.Zisis [12-14]
introduced and investigated non-linear singulaedgrdl equations and non-linear finite-
part singular integral equations. This type of tioear equations has been applied to
many problems of structural analysis, fluid mecbargind aerodynamics.

The theory of nonlinear singular integral equatiavith Hilbert and Cauchy
kernel and its related Riemann-Hilbert problemsehdeen developed in works of
Pogorozelski W. [19], Guseinov A. | and Mukhtardéie. Sh. [7], Wolfersdorf L.V. [22],
Ladopoulous E.G [15] and others.

The successful development of the theory of singatagral equations naturally
stimulated the study of singular integral equatiovith shift. The Noether theory of
singular integral operators with shift is developeda closed and open contour (see [9-
11], 18] and others).
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The classical and more recent results on the sitityabf non-linear singular
integral equation and non-linear finite-part sirgulintegral equations should be
generalized to corresponding equations with slifee[21]). The theory of singular
integral equations with shift is an important paftintegral equations because of its
recent applications in many field of physics andieeering,(see [10,11]).

Existence results and approximate solutions hawn tstudied for nonlinear
singular integral equations and nonlinear singirigggral equations with shift by many
authors among them we mention (1-6, 8, 14).

In this study, the existence and uniqueneshefolution of a class of nonlinear
finite-part singular integral equations with Carkamshift preserving orientation has been

investigated in the generalized Holder spht;(r).

2. Formulation of the problem
In the present paper we construct an approximdtgi@o of the following nonlinear
finite-part singular integral equation with Carlemahift:

u(t)=(Pu)t), toOr, (®.1
were (Pu)t)=2AG(t), tOr (2.2)
and
G(t) = F(t.u(t) Ak (u( ))E). Ak, (L u()XE) (2.3)
with
Afu) =2 j@ dr 24
Aolul)= JWW 25)

where [ is a simple smooth closed Lyapunov contour whickidgi the plane of the
complex variableZ into two domains the interior domaiD *and the exterior domain
D™, F(t, u,v, W), K, (t,u(t)), r =12, are continuous functions on the domains

D, :{(t,u,v,w):tDI’,u,v,wD(—oo,oo)},

D, ={(t,u):t0Or,,ul(-,o)}
respectively, wherej(t) is an unknown function that has continuous deireabelongs
to the spaceH , (I') and the shift operatdy is defined by

(A0 = 2 OWuE), @)

where (Wu)t) =u(a, (t)), i=01...m-1.
Under the assumption thar(t) homeomorphically mapg™ into itself with
preservation orientation and satisfies the Carleowanition:

112



On a Class of Nonlinear Finite-Part Singular Inak@rquations with Carleman Shift
a, (t)=t, a()#t, 1sism-1,
where a;(t)=ala,_(t)],a,(t) =t,
and m = 2. Moreover assume than'(t) satisfies the Holder condition and the
coefficients a(t), i = 0L,...,m-1 belong to the generalized Holder spadg (I') and
A0 (— 00,00), is a numerical parameter.

3. Basic assumptions and auxiliary results
In this section, we introduce some definitions,uagstions and results which will be
used in the sequel.

Definition 3.1. [7] We denote by® the class of all functions¢(5) defined for
sufficiently small non-negative valu@ and having the following properties:
i) ¢(5) is a continuous monotonic increasing function.

i) $(0)=0and ¢(3)>0;5>0.

iii) #(3)0~" is almost decreasing function.

Definition 3.2. [9] We denote byc(r) the space of all continuous functiouét)defined
on [ with the norm:

[ullr, =maxu@] - (3.1)

Definition 3.3. [4] We denote byH ,(I") the space of all functions(t) Oc(r),
@ O H® , with the norm:

Jully =lulle, +ul: (3.2

_ | u(tl)_ u(t2)| .
Jul= sup=ot =)

Ho = {¢ Od: f@d5+ Jj‘@df < E¢(5)} , Cis a positive constant.

Definition 3.4. We denote byH¢1m(Dl) to be the space of all functioﬂ%(t,u,v,w),
which satisfy the following condition:

|F(t1'U'uV1'V\ﬂ) - F(tZ’UZ’VZ’\NZX < I1¢0t1 _t2|)+ |2|U'1 _U2| + |3|V1 _V2| + |4|V\ﬂ _W2| ) (3.3)
where (t;,u,,v;,w )0 D,, i =12, ¢ 0® andl,,l,,l,,l, are constants.

Definition 3.5. We denote by H¢,1(Dz) to be the space of all functions

k. (t,u(t)), r =212, which have partial derivatives up to first oreéth respect tat, u
and satisfy the following condition:
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alkr (tl’ul) - alkr (t2’u2)|

ot'ou’ otou |Smlr¢0tl_t2|)+m£|ul—uz|, (3.4)
where (tr,ur)D D,, r=12 ¢0®,i+j=I,1=0land m,m, are positive

constants; the functionskr(t,u(t)),r =12 and their first derivative with respect
to t and u belong to the spacbl¢(l') for anyu [J H¢(I') [20].

Definition 3.6. Let R be positive number and the functignsatisfies the assumptions
of Definition 3.1 we define the convex compact mt}sl;(l') as

HX(M)={uOH,(M):|u < Rult,)-ult,) < Re(t, -t,|)t..t, OT}
Lemma 3.1. [4] The singular operatof: H¢(F) - H¢(F) denoted by the operator of
singular integration

1 cul(r)
QJt)=—|—+d :
(su)t) mlr_t r B
is abounded operator on the spa¢g(I") and satisfies the inequality
[Sul, =< 26 |ul, 3

where p, is a constant defined as follows :
]
Py = c{_f@ dé +1j +¢c,C,
0
wherec,, C,, C are constants.

Lemma 3.2. The shift operatorA:H¢(I') - H¢(I') is a linear bounded continuously
invertible operator on the spa¢¢, (") and satisfies the inequality

| Aully< o]yl - (3.7)
m-1
where y, = [a], -
i=1
Proof of the Lemma 3.2 is obvious from the defois of the shift operatoA and the
spaceH (') .

Theorem 3.1. [3] The shift operatoA is a linear bounded continuous invertible operator
on the spaceLp(I'), 1< p <o and satisfies the inequality

[ Aullo <yl o, (3.8)

(a’ o )

where

m-1
Vi = ;Ha o)

1/ p
o(r)
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For everyu(t),v(t)D H, (F) the following equality
(uv)(t)=u(t)v(t), tor (3.9)
is satisfied.

Lemma 3.3. Let the functionsu(t) and v(t) belong to the generalized Holder space
H¢(F) and the equality (3.9) is satisfied. Thé.mv)(t) belongs to the spacbl¢(r),

where
Juvi| < )M + Mgy ol (3.10)
Pr oof:

From the Definition 3.3, we Fa)ve( ) ( )V( )|
_ u(t, (t, ) - u(t, v(t,
||u\/|| - ti?mrr) ¢(]tl —t2|)
< sup | u(tl)(v(tl) B V(tz )) B V('[2 )(U(tz) - u(tl))|
t,t,00 ¢(Itl —t2|)
< suif) S st )

Consequently, we can sgyv < ) M|+ [V]e)[ul.
Hence the is proved.

Lemma 3.4. If the functionsk, (t,u(t))D HM(D2 ),r =12 and u(t)D H;(F) then
the following inequality is valid

[k € u®), <., r=12 (3.12)

where Q, =mj +m[ +2mR, r=12, m; =maxk, (t0), r=12
t
Proof of the Lemma 3.4 is obvious from Definitidh8, 3.5 and 3.6.

Lemma 3.5. If the assumptions of the Lemmas 3.1 and 3.3 aigfisd, u'(t) 0 H (I

then the operatora\, : H¢(I') - H¢(I'), r = 12 satisfy the following inequalities
InK Eul)), e, r=12 (3.12)

where

0, =0,Q,,0, = po(QI +Q*2)’Q; =my’ +m; +2m;R,

Q; = 2m? +mf +3mRIR, M = max, (t.0), m* = maxk,, (t0) .

Proof:
From inequality (3.6) we get
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Akt u))], < ookt ult))],
Hence from Lemma 3.4 we obtain
||/\1k1(t,u(t))||¢ <O, where®, = p,Q,

It is well know that the first derivative of the @zhy singular integral defined by (3.5)
is valid as

(su)t)==2] —”(’)2 dr (3.13)
my (T _t)

By integrating the right-hand side of (3.13) ongephrts, and assuming that the contour

I" is closed, we obtain

: 1 cu'(r) .
Suft)=—|——=dr=|Su [t 3.
(Sult) il (su')e) (3.14)
From the relations (3.13) and (3.14) and inequ#Bt@) we can say that
Aok (t Ut < ookt u(t) + e (tuleu' (1)),
From the inequalities (3.4) , (3.10) and the assionpu (t) O H;(I’), it is seen that
Ak, (), < ©,
where
0, = p,(Q; +Q}), Q, =my’ +m; +2mR,
Q;, = (2m? +mf +3mERIR, m” = mavfk, (.0}, m* = maxk,, (t.0)
Thus the lemma is valid.

Lemma 3.6. If the functions F(t,u,v,w)D H¢’1’L1(D1) and u(t)D H;(F) then the
functionG:IN - (—00,00) satisfies the following inequality

lo(t), <@, (3)15
where Q, =1, +1, +2,R+1,0, +1,0,, 1, =majF(t 000).

tar
Proof of the Lemma 3.6 is obvious from Definitio 33.6 and Lemma 3.5.

Corollary 3.1. If the assumptions of the Lemmas 3.2 and 3.6 atigfisd then the

operatorP that is defined by (2.2) transforms the suljsle;f(l') to the subseH LA‘M (I')

whereM = y,Q,.

Corollary 3.2. If the assumptions of the Lemmas 3.2 and 3.6 atisfisa and if
[A[M < R then the operatoP that is defined with (2.2) transforms the subiskf ()
to itself.

Theorem 3.2. If the assumptions of Corollary 3.2 are validritthe operatoP acts on
HR(r).
¢

116



On a Class of Nonlinear Finite-Part Singular Inak@rquations with Carleman Shift

4. The main results
In this section we investigate an approximate nmifloo solving the nonlinear finite-part
singular integral equation with Carleman shiftlj2.

Now, we prove that the operatétdefined by (2.2) is a contraction mapping.

Lemma4.1. Let the functionsF(t,u,v, W), K, (t,u(t)), r =12 satisfy the relations (3.3)

and (3.4) respectively then the operatBrdefined by (2.1) satisfies the following
inequality

p, (Pu,PO)<n o (u,d) (4.1)
where n=Slal ) L i, +minal,)
1/p
and | (_Hu |dt|J for ult)T()0HE(F).

Proof: For u(t),d(t) O H 5 () we get
1/ p

p., (Pu,Pl) < |/l|(j|AF(t,u,,v,w)— AF(t,U,,V,VT,)|9|dt|]
r
From relation (3.3) we obtain

p., (Pu,Pl)< WZHaH (@)

From relation (3 4) we get

p., (Pu,Pl)< WZHa e

Hencep, (Pu,Pd)<7np, (u.0)

) (ai_l)l i;rp)

Thus the Lemma 4.1 is valid.

2 l0-56) 10 (t)+|4m)—v~o(t))pdt]”p

r

Jla)]

"l i, L] ) o) -at)

p

m-1
wherep = W;Hai I (|2 +15m3 A, | o T Mg A p)

Theorem 4.1. If the assumptions of the Lemma 4.1 are satisfmdi|)l|M < R. Then the
operatoP :H X(I") — H }(I) is a continuous operator.
Proof: Letuy,u, OH; ("), n=122...and lim|u, ~U,|, =0

N - oo

We want to show thatim [Pu,, = Pu,|, =0.

From the inequality (?;H7o)o we have
|Pu, = Pug, < Alyo|F @t u,, v, w, ) - F(t,uo,vo,wo)||¢ (4.2)

From the inequalities (3.3) and (3.6) we get
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”F(t’univniwn)_ F(t!Uon’Wom,ﬁ < (lz +|3m;:00 +|4m§p00* )"un _uo||¢ (4.3)

where C is appositive constant.
From the inequalities (4.2) and (4.3) we obtain

|Pu, = Pug|, < A yoll, +15mb, +1,m2poc” |u, — Uy, (4.4)
From the inequality (4.4) it can easily be seet itha
imfu, ~u,], =0
then Lirrl”Pun =Py, |, =0.
Hence the operatd? is continuous operator.

From Theorems 3.2, 4.1 and Arzela-Ascoli theortha,imageH;(I') under
the operatorP is compact set , therefore we can apply Schasidiggd-point theorem.

Theorem 4.2. If the assumptions of Theorem 4.1 are satisdiedi If

k (t.u(t))OH,.(D,)r=12, Fltuv,w)OH,,,(D,), AM<R
Then the nonlinear finite-part singular integrabiation with Carleman shift (2.1) has a
fixed point in the subséd ().

Now, we will investigate the uniqueness of the sohuof the equation (2.1) and
the problem that how can we find the approximatatem. For this, we will use a more
useful modified version of the Banach fixed-poiminpiple for the uniqueness of the
solution of operator equations [7].

Theorem 4.2. Suppose that all assumptions of Theorem 3.2 amdma 4.1 are
satisfied, 7 <1. Then Equation (2.1) has ilh'|¢R(|_) exactly one solutionu”. This

solution can be obtained by taking limit of the wence of successive approximations
Uy,U;,U,,...,U,,....uniformly convergent on the sét, where

Upes (£) = AAF (6, (0), Ak (i D Ak (o un ), 0T
For m= 012,....and u, [ H;(F) any initial point and the following estimate fdret
rate of convergence holds:

n

7
1-n

P, (u,.u")< pu (U o) n=12,....
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