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Abstract. Coupled coincidence and fixed point problems have begun to be considered only 
very recently. In this paper we work out a coupled coincidence point theorem for a 
compatible pair of mappings in fuzzy metric spaces which is G-complete. The space is 
assumed to be endowed with a partial ordering. We use a combination of analytic and order 
theoretic concepts in our theorem. The result is illustrated with an example. 
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1. Introduction and Preliminaries 
The purpose of this paper is to establish a Coupled coincidence point theorem in fuzzy 
metric spaces as defined by George and Veeramani [6]. The space is assumed to be 
G-complete. Although there are several other definitions of fuzzy metric space, fixed point 
theory developed in this space more elaborately. Some examples of the works are provided 
in [2, 5, 10, 11]. One of the reasons for this is that the topology in such space is Hausdorff. 
Coupled fixed point result in this fuzzy metric space was proved by Zhu [15] and was 
followed in works like [4, 8]. 

 

Definition 1.1. ([13])  A binary operation 2:[0,1] 0,1]∗ →  is called a t -norm if the 
following properties are satisfied: 

(i) *  is associative and commutative, 
(ii) *1=a a  for all [0,1],a ∈  

(iii) * *a b c d≤  whenever a c≤  and ,b d≤  for all , , , [0,1]a b c d ∈ . 

Generic examples of t − norm are 1 = min{ , }a b a b∗ , 2 =
{ , , }

ab
a b

max a b λ
∗  

for 0 < <1λ , 3 =a b ab∗ , 4 = { 1,0}a b max a b∗ + − . 
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The following is the definition given by George and Veeramani [6]. 
 

Definition 1.2. ([6])  The 3-tuple ( , , )X M ∗  is called a fuzzy metric space in the sense of 

George and Veeramani if X  is a non-empty set, ∗  is a continuous t -norm and M  is a 

fuzzy set on 2 (0, )X × ∞  satisfying the following conditions for each , ,x y z X∈  and 

, > 0t s : 

 (i) ( , , ) > 0M x y t , 

(ii) ( , , ) = 1M x y t  if and only if =x y , 

(iii) ( , , ) = ( , , )M x y t M y x t , 

(iv) ( , , ) ( , , ) ( , , )M x y t M y z s M x z t s∗ ≤ +  and 
(v) ���, �, . � � �0, ∞� � �0,1� is continuous. 
 
Let ( , , )X M ∗  be a GV-fuzzy metric space. For > 0, 0 < < 1t r , the open ball 

( , , )B x r t  with center x X∈  is defined by 

( , , ) = { : ( , , ) > 1 }.B x r t y X M x y t r∈ −  

        A subset A X⊂  is called open if for each x A∈ , there exist > 0t  and 
0 < <1r  such that ( , , )B x r t A⊂ . Let τ  denote the family of all open subsets of X . 

Then τ  is called the topology on X  induced by the fuzzy metric M . This topology is 
Hausdorff and first countable [6]. 

A metric space ( , )X d  can be considered as a fuzzy metric space ( , ,*)X M  

with * = min{ , }a b a b  and M  defined as ( , , ) =
( , )

t
M x y t

t d x y+
. 

Amongst other inequivalently defined fuzzy metric spaces, we will only consider 
this space and hence will refer to it simply as a fuzzy metric space. 
 
Example 1.3. ([6]) Let =X R . Let = .a b a b∗  for all �, � � �0. ∞� . For each 

(0, )t ∈ ∞  , let 
| |

( , , ) = ,
x y

tM x y t e
−−

 

for all ,x y X∈ . Then ( , , )X M ∗  is a fuzzy metric space. 
 

Definition 1.4. ([6,14])  Let ( , , )X M ∗  be a fuzzy metric space. 

(i) A sequence { }nx  in X  is said to be convergent to a point x X∈  if 

( , , ) =1lim n nM x x t→∞  for all > 0t . 

(ii) A sequence { }nx  in X  is called a Cauchy sequence if for each 0 < <1ε  

and > 0t , there exists 0n ∈ N  such that ( , , ) > 1n mM x x t ε−  for each 0,n m n≥ . 

(iii) A fuzzy metric space in which every Cauchy sequence is convergent is said to 
be complete. 

(iv) A sequence { }nx  in X  is called a G-Cauchy sequence if for each 
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0 < <1ε  and > 0t , there exists 0n ∈ N  such that ���� ,  ����  , �� � 1 � � for each 

0n n≥  and fixed p . 

(v) A fuzzy metric space in which every G-Cauchy sequence is convergent is said 
to be G-complete. G-completeness is weaker than completeness. 

 
The following lemma, which was originally proved for the fuzzy metric space 

introduced by Kramosil et al. [9] is also true in the present case. 
 

Lemma 1.5. ([7]) Let ( , ,*)X M  be a fuzzy metric space. Then ( , ,.)M x y  is 

nondecreasing  for all ,x y X∈ . 
 

Lemma 1.6. ([12]) M  is a continuous function on 2 (0, )X × ∞ . 
 
It is our purpose in this paper to prove a coupled coincidence point theorem for two 

mappings in complete fuzzy metric spaces. 
Let ( X, ≤ ) be a partially ordered set and F  be a self map on X . The mapping 

F  is said to be non-decreasing if for all 1 2,x x X∈ , �� � �� implies ����� � ����� 

and non-increasing if for all 1 2,x x X∈ , �� � �� implies �����  ����) [1]. 

 
Definition 1.7. ([1]) Let ( X, ≤ ) be a partially ordered set and :F X X X× →  be a 
mapping. The mapping F  is said to have the mixed monotone property if F  is 
non-decreasing in its first argument and is non-increasing in its second argument, that is, 
if for all 1 2,x x X∈ , �� � �� implies ����, �� � ���� , �� for fixed y X∈  and if for 

all 1 2,y y X∈ , �� � �� implies ���, �� �   ���, �� �, for fixed x X∈ . 

 
Definition 1.8. ([3]) Let ( X, ≤ ) be a partially ordered set and :F X X X× →  and 

:g X X→  be two mappings. The mapping F  is said to have the mixed g -monotone 

property if F  is monotone g -non-decreasing in its first argument and is monotone g

-non-increasing in its second argument, that is, if for all 1 2,x x X∈ , !�� � !�� implies 

����, �� � ���� , ��  for all y X∈  and if for all 1 2,y y X∈ , !�� � !��  

implies ���, �� �   ���, �� � , for any x X∈ . 
 
Definition 1.9. ([1]) Let X  be a nonempty set. An element ( , )x y X X∈ ×  is called a 

coupled fixed point of the mapping :F X X X× →  if 
( , ) = , ( , ) = .F x y x F y x y  

 
Definition 1.10. ([3]) Let X  be a nonempty set. An element ( , )x y X X∈ ×  is called a 

coupled coincidence point of the mappings :F X X X× →  and :g X X→  if 

= ( , ), = ( , ).gx F x y gy F y x  
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Definition 1.11. ([3]) Let ( , )X d  be a metric space. The mappings F  and g  where 

:F X X X× →  and :g X X→ , are said to be compatible if 

lim ( ( ( , )), ( ( ), ( ))) = 0n n n n
n

d g F x y F g x g y
→∞

 

and 
lim ( ( ( , )), ( ( ), ( ))) = 0n n n n
n

d g F y x F g y g x
→∞

, 

whenever { }nx  and { }ny  are sequences in X  such that lim ( , )n n
n

F x y
→∞

 = 

lim ( ) =n
n

g x x
→∞

 and lim ( , )n n
n

F y x
→∞

 = lim ( ) =n
n

g y y
→∞

 for some ,x y X∈ . 

 
Definition 1.12. ([8]) Let ( , ,*)X M  be a fuzzy metric space. The mappings F  and g  

where :F X X X× →  and :g X X→ , are said to be compatible if for all > 0t  

lim ( ( ( , )), ( ( ), ( ), ) = 1n n n n
n

M g F x y F g x g y t
→∞

 

and 
lim ( ( ( , )), ( ( ), ( ), ) = 1n n n n
n

M g F y x F g y g x t
→∞

, 

whenever { }nx  and { }ny  are sequences in X  such that lim ( , )n n
n

F x y
→∞

 = 

lim ( ) =n
n

g x x
→∞

 and lim ( , )n n
n

F y x
→∞

 = lim ( ) =n
n

g y y
→∞

 for some ,x y X∈ . 

 
The following lemma is used in our theorem. 

Lemma 1.13. ([14]) Let ( , , )X M ∗  be a G-complete fuzzy metric space. Then { }nx  

converges  whenever 1lim ( , , ) = 1n n
n

M x x t+→∞
 for all > 0t . 

 
2. Main results 
Theorem 2.1.  Let ( X, ≤ ) be a partially ordered set and ( , , )X M ∗  be a G-complete 

fuzzy metric space where * .a b a b≥  for all , [0,1]a b ∈ . Let :F X X X× →  and 

:g X X→  be two mappings such that F  has the mixed g -monotone property and 
that the following conditions are satisfied: 

 (i) F  is continuous and ( )F X X gX× ⊆ , 
(ii) g  is continuous and monotonic increasing, 

(iii) ( , )g F  is a compatible pair, 

(iv) ( ( , ), ( , ), ) (1 { ( , ( , ), ), ( , ( , ), )})M F x y F u v t q max M gx F u v t M gu F x y t+ − ,         

              ( ( , , ) * ( , , ))M gx gu t M gy gv tγ≥                                     (2.1) 

for all , , , , > 0x y u v X t∈  with !� � !"  and !�  !# where : [0,1] [0,1]γ →  is a 

continuous function such that ( ) >a aγ  for each 0 < <1a . If there exist 0 0,x y X∈  

such that !�$ � � ��$ , �$  �  and !�$  � ��$ , �$   � ,then there exist ,x y X∈  such 

that = ( , )gx F x y  and = ( , )gy F y x , that is, F  and g  have a coupled coincidence 
point in X. 
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Proof: Let 0 0,x y  be two points in X be such that !�$ � � ��$ , �$  �  and !�$  

� ��$ , �$   �. We define the sequence { }nx  and { }ny  in X as follows: 

1 0 0= ( , )gx F x y  and 1 0 0= ( , )gy F y x  

2 1 1= ( , )gx F x y  and 2 1 1= ( , )gy F y x  

and, in general, for all 0n ≥ , 

1 = ( , )n n ngx F x y+  and 1 = ( , )n n ngy F y x+ .                                (2.2) 

This construction is possible by the condition ( )F X X gX× ⊆ . 

Next, we prove that for all 0n ≥ , 
 !�� � !����                                                             (2.3) 

and 
 !��  !����.                                                            (2.4) 

Since  !�$ � � ��$ , �$  � and !�$  � ��$ , �$   �  and since 1 0 0= ( , )gx F x y  and 

1 0 0= ( , )gy F y x , we have !�% � !�� and !�$  !��. Therefore (2.3) and (2.4) hold for 

= 0n . 
Let (2.3) and (2.4) hold for some =n m . As F  has the mixed g -monotone 

property and !�& � !�&�� and !�&  !�&��, from (2.2), we get 
    gx)�� * F�x), y)� � F�x)��, y)�  and F�y)��, x)� � F�y), x)� * gy)��  (2.5) 
 

Also, for the same reason, we have 
gx)�� * F�x)��, y)���  F�x)��, y)� and F�y)��, x)�  F�y)��, x)��� * gy)�� 

                                                                           (2.6) 
Then from (2.5) and (2.6), 
!�&�� � !�&�� and !�&��  !�&��. 

Then, by induction, it follows that (2.3) and (2.4) hold for all 0n ≥ . 
Let for all > 0, 0t n ≥ , 

1 1( ) = ( , , ) * ( , , ).n n n n nt M gx gx t M gy gy tδ + +  

By using (2.3) and (2.4), from (2.1) and (2.2) we have for all > 0t  and 1n ≥ , 
 
��!��, !���� , �� * ������-�, ��-��, ���� , ���, �� 
  .���!��-�, !��, �� / ��!��-�, !�� , ���

� 0�1 � max3��!��-�, ����, ���, ��, ��!�� , ����-�, ��-��, ��4� 
* .���!��-�, !�� , �� / ��!��-�, !�� , ��

� 0�1 � max3��!��-�, !����, ��, ��!��, !��, ��4� 
* .���!��-�, !�� , �� / ��!��-�, !�� , �� � 0�1 � 1� 
* .�5�-�����. 
 
Therefore for all > 0t  and 1n ≥  

1 1( , , ) ( ( ))n n nM gx gx t tγ δ+ −≥ .                                              (2.7) 

Similarly, by using (2.3) and (2.4), from (2.1) and (2.2) we have, for all > 0t  and 1n ≥ . 
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��!��, !���� , �� * ������-�, ��-��, ���� , ���, �� 
  .���!��-�, !��, �� / ��!��-�, !��, ���

� 0�1 � max3��!��-�, ����, ���, ��, ��!�� , ����-�, ��-��, ��4� 
* .���!��-�, !�� , �� / ��!��-�, !�� , ��

� 0�1 � max3��!��-�, !����, ��, ��!�� , !�� , ��4� 
* .���!��-�, !�� , �� / ��!�� � 1, !��, �� � 0�1 � 1� 
* .�5�-�����. 
Therefore for all > 0t  and 1n ≥  

1 1( , , ) ( ( ))n n nM gy gy t tγ δ+ −≥ .                                             (2.8) 

From (2.7) and (2.8) we obtain for all > 0t  and 1n ≥ , 
2

1 1 1 1( ) ( ( ))* ( ( )) ( ( ( ))) > ( )n n n n nt t t t tδ γ δ γ δ γ δ δ− − − −≥ ≥ . 

       (by the properties of *  and γ ). 

Thus for each > 0t , { ( ); 0}n t nδ ≥  is an increasing sequence in [0,1] and hence tends 

to a limit ( ) 1a t ≤ . We claim that ( ) = 1a t  for all > 0t . If there exists 0 > 0t  such that 

0( ) <1a t , then taking limit as n → ∞  for 0=t t  in the first part of the above inequality, 

we get 2
0 0 0( ) ( ( ( ))) > ( )a t a t a tγ≥ , which is a contradiction. Hence ( ) = 1a t  for every 

> 0t , that is, for all > 0t , 

1 1lim ( ) = lim ( , , ) * ( , , ) = 1.n n n n n
n n

t M gx gx t M gy gy tδ + +→∞ →∞
 

Then above limit implies that 1 1lim ( , , ) = lim ( , , ) = 1.n n n n
n n

M gx gx t M gy gy t+ +→∞ →∞
 

    Then by an application of the lemma 1.13 we obtain that { }ngx  and { }ngy  are both 

convergent sequences. 
    Then there exist ,x y X∈  such that 

lim = and lim = .n n
n n

gx x gy y
→∞ →∞

 

Therefore, 1lim n
n

gx +→∞
 = lim ( , )n n

n
F x y

→∞
 = x , 1lim n

n
gy +→∞

 = lim ( , )n n
n

F y x
→∞

 = y . 

Since, ( , )g F  is a compatible pair, using continuity of g  and F , we have 

1lim ( )n
n

g gx +→∞
 = gx  = lim ( ( , ))n n

n
g F x y

→∞
 = lim ( , ) = ( , )n n

n
F gx gy F x y

→∞
, 

and 1lim ( )n
n

g gy +→∞
 = gy  = lim ( ( , ))n n

n
g F y x

→∞
 = lim ( , ) = ( , )n n

n
F gy gx F y x

→∞
. 

This completes the proof of the theorem. 
 

3. Conclusion 
It remains to be investigated whether the result obtained in Theorem 2.1 is valid in a 
general complete fuzzy metric spaces. It is also to be investigated whether the continuity of 
F can be replaced with any other suitable conditions. 
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