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Abstract. Coupled coincidence and fixed point problems Haagun to be considered only
very recently. In this paper we work out a couptsincidence point theorem for a
compatible pair of mappings in fuzzy metric spaatich is G-complete. The space is
assumed to be endowed with a partial ordering. ¥éeacombination of analytic and order
theoretic concepts in our theorem. The resultustilated with an example.
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1. Introduction and Preliminaries

The purpose of this paper is to establish a Couptsdcidence point theorem in fuzzy

metric spaces as defined by George and VeeramanTh@ space is assumed to be
G-complete. Although there are several other difims of fuzzy metric space, fixed point

theory developed in this space more elaborateljmeSexamples of the works are provided
in [2, 5, 10, 11]. One of the reasons for thisat the topology in such space is Hausdorff.
Coupled fixed point result in this fuzzy metric spavas proved by Zhu [15] and was

followed in works like [4, 8].

Definition 1.1. ([13]) A binary operation [1:[0,1 — 0,1] is called a t-norm if the
following properties are satisfied:

() * is associative and commutative,

(i) a*1=a forall all[0,1],

(i) a*b<c*d whenevera<c andb<d, forall a,b,c,d[0,1].
. : ab
Generic examples of —norm arealJb=min{a b}, allb —

for 0<A <1, aljb=ab, aljb=max{a+b-1,0}.
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The following is the definition given by George avideramani [6].

Definition 1.2. ([6]) The3-tuple (X,M,[) iscalled afuzzy metric spacein the sense of
Georgeand Veeramani if X isanon-empty set, [Jisacontinuous t-normand M isa
fuzzy set on X?x(0,0) satisfying the following conditions for each x,y,z0O X and
t,s>0:

M (x,y,t)>0,

(i) M(x,y,t)=1ifand only if x=y,

(i) M(x, y,t) =M (y,x.t),

(ivyM(x,y,t)M (y,z,5)<M (x,zt+s) and

(V) M(x,y,.): (0,0) - [0,1] is continuous.

Let (X,M,0) be a GV-fuzzy metric space. For> 0, O <r <1, the open ball
B(x,r,t) with center x[J X is defined by
B(x,r,t) ={yOX: M(x y,t)>1-r}.
A subsetA[d X is called open if for eactkx[JA, there existt >0 and
0<r <1 such thatB(x,r,t) 0 A. Let 7 denote the family of all open subsets Xf.

Then 7T is called the topology orX induced by the fuzzy metrid/ . This topology is
Hausdorff and first countable [6].
A metric space(X,d) can be considered as a fuzzy metric spg¥eM ,*)

t
t+d(xy)

Amongst other inequivalently defined fuzzy metgases, we will only consider
this space and hence will refer to it simply aszz¥ metric space.

with a*b=min{a } and M defined asM (x,y,t) =

Example 1.3. ([6]) Let X =R . Let alb=ab for al a,b €[0.0). For each
t0(0,) , let
b=yl
M(xyt)=e ',
forall x,yd X . Then (X,M,D is a fuzzy metric space.

Definition 1.4. ([6,14]) Let (X,M,) bea fuzzy metric space.

(i) A sequence{x} in X is said to be convergent to a poixt]X if
limn..M(x,,x,t)=1 forall t>0.

(i) A sequence{x} in X is called a Cauchy sequence if for eddke & <1

and t > 0, there existsn, LN such thatM (x,, x,,t) >1-& for eachn,m=n,.

(iii) A fuzzy metric space in which every Cauchysence is convergent is said to
be complete.

(iv) A sequence{x} in X is called a G-Cauchy sequence if for each
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O<e&<landt>0, there existsn, ON such thatM(x,, xn, ,t) > 1 —€ for each
n=n, and fixed p.

(v) A fuzzy metric space in which every G-Cauchgsence is convergent is said
to be G-complete. G-completeness is weaker thampletemess.

The following lemma, which was originally provedr fthe fuzzy metric space
introduced by Kramosil et al. [9] is also true lire (present case.

Lemma 15. ([7]) Let (X,M,*) be a fuzzy metric space. Then M(X,y,.) is
nondecreasing for all x,ylX.

Lemma 1.6. ([12]) M isa continuous functionon X?x(0,0).

It is our purpose in this paper to prove a coupl@dcidence point theorem for two
mappings in complete fuzzy metric spaces.

Let ( X, <) be a partially ordered set arfél be a self map onX . The mapping
F is said to be non-decreasing if for ad],x, X, x; < x, implies F(x;) < F(x;)

and non-increasing if for alk;, X, 0 X , x; < x, implies F(x;) = F(x;) [1].

Definition 1.7. ([1]) Let ( X, <) be a partially ordered set and F: XxX - X bea
mapping. The mapping F is said to have the mixed monotone property if F is
non-decreasing in itsfirst argument and is non-increasing in its second argument, that is,

if for all x,x,0X, x; < x, implies F(x1,y) < F(x,,y) for fixed y[J X and if for
all y,y,0X, y; <y, implies F(x,y;) = F(x,y,), for fixed xUX .

Definition 1.8. ([3]) Let ( X, <) be a partially ordered set and F: XxX - X and
g: X - X betwo mappings. The mapping F issaid to have the mixed g -monotone

property if F ismonotone g -non-decreasing in its first argument and is monotone g
-non-increasing in its second argument, that is, if for all x, X, 0 X, gx; < gx, implies
F(xy,y) < F(xy,y) for al yOX and if for al vy,y,UX , gy; <gy,
impliesF(x,y,) = F(x,y,) ,forany xOX.

Definition 1.9. ([1]) Let X be a nonempty set. An element (X, y) X x X iscalled a
coupled fixed point of the mapping F: XxX - X if
FOxy)=xF(y,x)=y.

Definition 1.10. ([3]) Let X be a nonempty set. An dlement (X, y) X x X iscalleda
coupled coincidence point of themappings F: XxX - X and g: X - X if

gx=F(x,y),9y =F (y,x).
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Definition 1.11. ([3]) Let (X,d) be a metric space. The mappings F and g where
F:XxX - X and g: X - X, aresaidto be compatibleif

lim d(g(F(x,, ¥.)), F(9(x,), 9(y,))) =0

and
lim d(g(F(¥n %)), F(9(¥,), 9(x,))) =0,

whenever {x} and {y} are sequences inX such that limF(x,y,) =

n- o

limg(x,) = x and lim F(y,, x,) = limg(y,) =y forsomex,ydX.

Definition 1.12. ([8]) Let (X,M,*) be a fuzzy metric space. The mappings F and g
where F: XxX - X and g: X - X, aresaidto be compatibleif for all t>0
lim M(g(F(x, y,)), F(a(x,), 9(y,).1) =1
and
lim M(g(F (Y, %)), F(a(y,), 9(x,),1) =1,

whenever {x} and {y} are sequences inX such that limF(x,y,) =

limg(x,) = x and lim F(y,, x,) = limg(y,) =y forsomex,ydX.

The following lemma is used in our theorem.
Lemma 1.13. ([14]) Let (X,M,[) be a G-complete fuzzy metric space. Then {x}

converges whenever lim M(x,, X,,,,t) =1 forall t>0.

2. Main results
Theorem 2.1. Let (X, <) beapartially ordered set and (X,M,[) bea G-complete

fuzzy metric spacewhere a*b>ab for all a,bJ[0,1].Let F: XxX - X and
g: X - X betwomappingssuchthat F hasthemixed g -monotone property and
that the following conditions are satisfied:

() F is continuous and~(X x X) [0 gX ,

(i) g is continuous and monotonic increasing,

(i) (g,F) is a compatible pair,

(V) M (F(x y),F (u,v),t)+q(1-max{M (gx, F (u,v),t),M (Qu.,F x,y)t)}),

2 y(M (gx, gu,t)* M(gy, gv,1)) (2.1)

for all x,y,u,vO0X,t >0 with gx < gu andgy = gv where y:[0,1] - [0,1] is a
continuous function such that(a) > Ja foreachO<a <1. If there existx,, Y, X
such thatgx, < F (x9,Yo ) and gy, = F (yy,%o ),then there existx,y[] X such
that gx=F(x,y) and gy = F(y,X), that is, F and g have a coupled coincidence
point in X.
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Proof: Let X,,Y, be two points in X be such that gx, < F (x9,y, ) and gy, =
F (¥9,x0 ). We definethesequence {x} and {y} inXasfollows:

0% = F (X, Yo) and gy; = F (Y5, %)

gx, = F(x,y,) and gy, = F(y,, %)
and, in general, foraln=0,

P = F (X0 Y,) and gy, = F (Y5, %) (2.2)
This construction is possible by the conditié( X x X) [J gX .

Next, we prove that for aln=0,

9Xn < GXni1 (2.3)
and

9Yn Z GYn+1- (2.4)
Since gxy < F (x9,¥0 ) and gy, =F (y9,x, ) and since gx = F(X,,Y,) and
ay, = F(Y,,X,), we havegx, < gx; and gy, = gy;. Therefore (2.3) and (2.4) hold for
n=0.
Let (2.3) and (2.4) hold for soma=m. As F has the mixedg -monotone
property andgx,, < gxm+1 and gym = gVmas1, from (2.2), we get
g%m+1 = FXm ¥Ym) < F&m+1,Ym) @A F(Yme1,Xm) < F(Ym Xm) = 8Ym+1  (2.5)

Also, for the same reason, we have

8Xm+2 = F(Xm+1' Ym+1) = F(Xm+1t Ym) andF(Ym+1'Xm) = F(Ym+1'xm+1) = ng(n+2)
2.6
Then from (2.5) and (2.6),

9Xm+1 < Xz ANA GYmi1 = GYme2-
Then, by induction, it follows that (2.3) and (2h9)Id for all n=0.

Letforallt>0,n= 0,

9, (1) = M (9%, 9%,.1,1) * M (¥, GYis1)-
By using (2.3) and (2.4), from (2.1) and (2.2) vewéfor allt >0 and n>1,

M(gxn, 9Xns1,t) = M(F(xp_1, Yn—1), F (Xn, yn), t)
> y(M(gxp-1, 9%, t) * M(gYn-1, GYn, 1))

—q(1 — max{M(gxp_1, F (xn, Y1), £), M(gxn, F (Xn-1, Yn-1), O)})
=y(M(gxn-1,9%n, t) * M(gYn-1, gyn, t)

- C[(l - maX{M(gxn—l' IXn+1 t), M(gxnf IXn, )
=y(M(gxn-1,9%n, t) * M(gyn-1,gyn,t) —q(1 — 1)
= Y(an—l(t))-

Therefore for allt >0 and n=1
M (9%, 9%,.1,1) 2 ¥(3,4 (1)) .7
Similarly, by using (2.3) and (2.4), from (2.1) af&2) we have, for alt >0 and n=>1.
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M(gyn, gyn+1,t) = M(F (Yn-1, Xn-1), F (Yn, X3, 1)
> y(M(gyn-1, g¥n t) * M(gXn_1, g%, 1))
— q(1 — max{M(gyn—1, F (Y, Xn), 1), M(g¥n, F (Yn—1, 1), )})
=yY(M(gYn-1, 9V, 1) * M(gXn_1, gXn, t)
—q(1 = max{M (gyn-1, 9¥n+1,t), M(gYn, g¥n, )})
=Y (M(gYn-1,9¥n, 1) * M(gxn, — 1, gxp, 1) —q(1 = 1)
= Y(6n—1(t))-
Therefore forallt >0 and n>1
M (gyn’ gyn+11t) 2 y(én—l(t)) ' (28)
From (2.7) and (2.8) we obtain for dll>0 and n=1,
8,(1) 2 Y(8,5 (D) * U ,(D) 2(AS,(1))*> J,.(1).
(by the properties of and y).
Thus for eacht >0, {J,(1); n=0} is an increasing sequence[id,1] and hence tends
to a limit a(t) <1. We claim thata(t) =1 for all t> 0. If there existst, >0 such that
a(t,) <1, then taking limit ash — o for t =t, in the first part of the above inequality,
we get a(t,) = (y(a(t,)))* > a(t,), which is a contradiction. Henca(t) =1 for every
t>0, thatis, forallt >0,
lim 9,(t) = lim M(gx,, 9%,.., )* M( Y,y QY ) = 1.
Then above limit implies thaim M (gx,, gx,,;,t) = lim M (gy,, ay,.,,t) =1.

Then by an application of the lemma 1.13 waiiobthat{ gx} and{gy} are both

convergent sequences.
Then there exisk, y[1 X such that

lim gx, = xand limgy, =V.

Therefore, lim gx ,, = IimF(x,y,) = X, limgy.,, = limF(y,x,) =Y.
n- o n-o n- o n-o

Since, (g, F) is a compatible pair, using continuity of and F , we have

lim g(gx...) = gx = 1img(F(x, y,)) = 1imF(gx,ay,)=F(xy),
and lim g(gy,..) = gy = lim g(F(y,, %)) = lim F(gy,, 9x,) = F(y, %)
This completes the proof of the theorem.
3. Conclusion
It remains to be investigated whether the resuttiobd in Theorem 2.1 is valid in a

general complete fuzzy metric spaces. It is aldmtmvestigated whether the continuity of
F can be replaced with any other suitable condition
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