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Abstract. In this paper, a fuzzy based inventory model for imperfect quality items has 
been developed with shortages. The parameters fixed cost; holding cost and shortage cost 
are considered as fuzzy numbers. We considered the triangular fuzzy number to 
represents fuzzy parameters. The optimum order quantity is obtained in fuzzy sense with 
the help of signed distance method. The proposed model is illustrated with numerical 
example. 
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1. Introduction 
In the classic economic production quantity (EPQ) models, the underlying assumption is 
that 100% of items in a produced lot are perfect. However, in most real-life situations, the 
lot sizes produced may contain some defective products due to imperfect production 
process, machine malfunction and so on. The imperfect quality has influence on lot sizing 
policy. Therefore, the research on the inventory problems with imperfect quality products 
has become a hot issue in enterprises and academia. Rosenblatt and Lee [16] originally 
proposed an EPQ model that deals with imperfect quality.  
 They assume that the random deterioration from in-control state is exponentially 
distributed. Kim and Hong [12] extensive Rosenblatt and Lee’s [16] model with the 
assumption of the elapsed time until process shift is arbitrarily distributed. Chung and 
Hou [9] further comprehensive Kim and Hong [17] to consider allowable shortages for 
the imperfect production processes. Chen, Lo and Liao [8] combined abovementioned 
models by considering the learning effect of the unit production system. Chia-Huei Ho 
[4] investigates a production/inventory policy in an integrated vendor-buyer inventory 
system with defective goods in the buyer’s arrival order lot. He assumes there be a lead 
time demand and its distribution is unknown so the minima distribution-free procedure is 
applied to solve the problem. 
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  Ouyang and Chang [15] have studied an EMQ model with variable lead time and 
imperfect production process; furthermore they also investigated the impact of setup cost 
reduction on the EMQ model. Lee and Wu [13] derive an EOQ model for items with 
Weibull spread deterioration, power demand rate and shortages. All of these models did 
not consider the time required to rework on defective items to make them good-quality 
items. Hayek and Salameh [10] assumed that the defective products reworked are all 
perfect and developed the EPQ model with allowable shortage and random defective rate 
which follows normal distribution. Chiu [3] extended the Hayek and Salameh’s [10] 
model by considering a proportion of imperfect items and scrap items are produced in 
regular production process.  
 Chiu and Chiu [5] investigated EPQ model with random imperfect rate. The 
basic assumption in his model is that a portion of the imperfect items are reworked to 
make them good quality items. Chiu [6] combined aforementioned models by considering 
a portion of imperfect items and scrap items are produced in regular production process 
and a portion of the imperfect items are reworked to make them good quality items. All 
of the models derived optimal inventory policy by utilizing conventional approach. Chiu 
[7] reworked on the paper by Chiu [5] and used a simple algebraic method to derive the 
optimal solution. Lin, Chiu and Ting [14] used the same approach and solved Chiu’s [6] 
problem. From literature survey, the above models with imperfect items are based on the 
EPQ inventory systems, where the uncertainty of defective rate is tackled from the 
traditional probability theory is assessed by a crisp value.  
 But in practical situations, precise values of the defective rate are seldom 
achieved as they may be vague and imprecise to certain extent. Thus in inventory system, 
the decision maker may allow some flexibility in the parameter values in order to tackle 
the uncertainties which always fit the real situations. As such, these characteristics are 
better described by the use of fuzzy sets which encompass a specific range of values. In 
recent years, several researchers have developed various types of inventory problems in 
fuzzy environments. Vijayan and Kumaran [17] studied fuzzy inventory models with a 
mixture of backorders and lost sales by introducing fuzziness in the cost parameters.  
 Vijayan and Kumaran [18] considered Economic order time models in which the 
time period of sales is a decision variable in fuzzy environments. Bj¨ork [1] contributes to 
the set of models capturing the economic order quantity with backorders, where both the 
demand and the lead times were fuzzified as the triangular fuzzy number. Konstantaras, 
Skouri, and Jaber [11] studied Inventory models for imperfect quality items with 
shortages and learning in inspection. Specifically, Chang [2] developed an economic 
order quantity (EOQ) model with fuzzy defective rate and demand, and signed distance 
method is employed to find the optimal order quantity.  
 This paper is organized as follows. In Section 2, some basic concepts of fuzzy 
sets, fuzzy numbers and signed distance method are introduced. Section 3 states the 
assumptions of the model. In Section 4, mathematical modeling for infinite planning 
horizon is discussed. Section 5 provides Numerical examples to illustrate the results of 
the proposed models. Finally the conclusion is given in Section 6. 
 
2. Preliminaries 
2.1. Definition: Fuzzy Set 
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A fuzzy set A%  is defined by A%  = {(x, 
A
µ (x)% ) : x ∈ X, 

A
µ (x)%  ∈ [0, 1]}. In the pair {(x, 

A
µ (x)% )}, the first element x belong to the classical set A, the second element 

A
µ (x)% , 

belong to the interval [0, 1], called membership function or grade of membership. The 

membership function is also a degree of compatibility or a degree of truth of x inA% . 
 
2.2. α-Cut 
The set of elements that belong to the fuzzy set A% at least to the degree α is called the α - 
cut A (α) = {x ∈ X: 

A
µ (x)%  ≥ α} 

 
2.3. Generalized Fuzzy Number 
Any fuzzy subset of the real line R, whose membership function satisfies the following 
conditions, is a generalized fuzzy number 

(i) A
µ (x)%  is a continuous mapping from R to the closed interval [0, 1]. 

(ii) A
µ (x)%  = 0, -∞ < x ≤ a1, 

(iii) A
µ (x)%  = L(x) is strictly increasing on [a1, a2], 

(iv) A
µ (x)%  = 1, a2 ≤ x ≤ a3, 

(v) A
µ (x)%  = R(x) is strictly decreasing on [a3, a4], 

(vi) A
µ (x)%  = 0, a4 ≤ x < ∞, where a1, a2, a3 and a4 are real numbers. 

 
2.4. Triangular Fuzzy Number 
The fuzzy set ( )A = , , 1 2 3a a a%  where a1 ≤ a2  ≤ a3 and defined on R, is called the triangular 

fuzzy number, if the membership function of A% is given by (Q, r) inventory model with 
fuzzy lead time  

A
µ (x)%   =   

1
1 2

2 1

1
2 3

3 2

x - a
, a   x   a

  a  - a

a  - x
, a   x   a

 a  - a

0           , Otherwise

 ≤ ≤

 ≤ ≤





 

 
Definition 1. For 0 ≤ α ≤ 1, the fuzzy set 

za% defined on R = (-∞, +∞) is called an α-level 

fuzzy point if the membership function of 
za%  

is given by ( ) ,     

0,   

if x a
x

if x aza
αµ =

=  ≠%
 

 
Remark 1. 
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(1) When α=1, the membership function of the 1- level fuzzy point 1a%  becomes the 

characteristic function that is ( ) 1, if x = a
x =µa1 0, if x a


 ≠

%  in this case the real number a∈R is the 

same as the fuzzy point  1a%  except for their representations 
 

(2)  If c=b=a, then the triangular fuzzy number 
A = (a, b, c)%

 is identical to the 1-

level fuzzy point 1a%  
 

Definition 2. For 0 ≤ α ≤ 1, the fuzzy set [aα, bα] za% defined on R is called an α-level 

fuzzy interval, if the membership function of [aα, bα] 
is given by ( ) α, a x b

x =µαB(α) 0, otherwise

≤ ≤

  

 

Definition 3. Let be a fuzzy set on R and 0 ≤ α ≤ 1. The α- cut B (α) of 
B%

consists of 

points x such that B
µ (x) α≥%  that is B (α) = { }B

/ µ (x) αx ≥% . 
 
Decomposition principle: 
Let be a fuzzy set on R and 0 ≤ α ≤ 1. Suppose the α- cut of to be closed interval [BL(α), 
BU(α)], that is B(α) =  [BL(α), BU(α)].  

Then we have 
B = αB(α)

0 α 1≤ ≤
% U  or ( ) ( )x  = α xµ CB(α)B

0 α 1≤ ≤
U% , where α B(α) is a fuzzy set with 

membership function  
( ) α, a x b
x =µαB(α) 0, otherwise

≤ ≤

  and CB(α)(x) is a characteristic function 

B(α), that is  ( ) ( )
( )

1, if x B
x =CB(α)

0, if x B

α
α

 ∈


∉  

 
Remark 2. From the decomposition principle, we obtain  

( ) ( )B = αB(α) ,α αB BL Uα α
0 α 1 0 α 1

 =  
≤ ≤ ≤ ≤

% U U or 
(x)= α (x) (x)µ µCB(α)B (α), (α)B BL U0 α 1 0 α 1

=   ≤ ≤ ≤ ≤
U U%  

 
Interval operations: 
For any a, b, c, d, k ∈ R, a< b and c<d, the interval operations are as follows: 
(1). [a, b] ⊕ [c, d] = [a + c, b + d] 
(2). [a, b] Θ [c, d] = [a- d, b- c] 

(3). k⊗ [a, b] = 

[ ]
[ ]
ka,kb , if k>0

=
kb,ka , if k<0




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Further for a > 0 and c > 0 
 
(4). [a, b] ⊗ [c, d] = [ac, bd]

 

(5). [a, b] ∅ [c, d] = 
a b

,
d c
 
  

 

Next, we introduce the concept of the signed distance of fuzzy set 
 
Definition 4. For any a and 0 ∈ R, define the signed distance from a to 0 as d0 (a, 0) = a, 
if a > 0, the distance from a to 0 as - d0 (a, 0) = -a, if a < 0. Hence d0 (a, 0) = a is called the 
signed distance from a to 0. 
Let Ω be the family of all fuzzy sets B% defined on R with which the α- cut B(α) = [BL(α),  
BU(α)] exists for every α ∈ [0, 1] and both BL(α)and BU(α) are continuous functions on 

α∈[0, 1]. Then for anyB% ∈ Ω, we have ( ) ( )B = ,α αB BL Uα α
0 α 1

 
 

≤ ≤
% U   

From the above definition, the signed distance of two end points, BL(α) and  BU(α) of the 
α- cut B(α) = [BL(α),  BU(α)] of B% to the origin 0 is d0 (BL(α), 0) = 

 
BL(α) and d0 (BU(α), 

0) = 
 
BU(α) respectively. The average ( ) ( )

2
B BL Uα α+

 
In addition, for every α ∈ [0, 1], there is a one – one mapping between the α-level fuzzy 
interval [BL (α), BU (α)] and the real interval [BL (α), BU (α)], that is [BL (α), BU (α)] ↔ 
[BL (α), BU (α)]. 

Also the 1-level fuzzy point 10% is mapping to the real number 0. Hence the signed 

distance of [BL (α)α, BU (α)α] to 10%  can be defined as = d([BL(α)α, BU(α)α], 10% ) = d([BL(α), 

BU(α)], 0) = 
( ) ( )L Uα + αB B

2  

Moreover,B% ∈ Ω, Since the above function is continuous on 0 ≤ α ≤ 1, we can use the 
integration to obtain the mean value of the signed distance as follows; 

( ) ( )( ) ( ) ( )
1 11

d , , dα α , α dαα αB B B B0L L L U1α α 20 0

   =∫ ∫   
%  

 

Definition 5. For,B% ∈Ω, define the signed distance of B% to 
10%  (that is y axis) as 

( ) ( ) ( )( ) ( ) ( )
1 11

d B, = d , , dα α , α dαα αB B B B0 0L U L U1 1α α 20 0

   =∫ ∫   
% % %  

Property 1. For the triangular fuzzy number ( ), ,A a b c=%
,
the α-cut ofA%  is [AL(α), 

AU(α)], α∈[0,1], where AL(α)=a+(b-a)α and AU(α)=c-(c-b)α. The signed distance of A%  to 

01%  is ( ) ( )
1

1
d A, = a+2b+c .

40% %
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Furthermore, for two fuzzy sets 
B,G%% ∈Ω

, where ( ) ( )B= ,α αB BL Uα α
0 α 1

 
 

≤ ≤
% U and 

( ) ( )L U αα
0 α 1

G= , αG Gα
≤ ≤

 
 

% U  and k∈R
 

Using the interval operations +, - and  ., we have 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

( )( ) ( )( )

(i) B G= + ,α α α αG +GB BL UL Uα α α α
0 α 1

(ii) B G= - ,α α α αG - GB  BL UU Lα α α α
0 α 1

k α , k α ,k>0B BL Uα α
0 α 1

(iii) k(.)B k α , k α ,k 0B BU Lα α
0 α 1
0, k=0

 +
 ≤ ≤
 −
 

≤ ≤
  
  ≤ ≤
  = <   ≤ ≤



%% U

%% U

U

% U

 

Property 2. For two fuzzy sets 
B,G%%

∈ Ω and k∈R, we have 

 ( ) ( ) ( )( ) ( ) ( )( )
1 1

L U L U1 1
α α

0 0

1
d B, d , , dα= α + α dαB B B Bα α0 0

2
 =
 ∫ ∫% % %

 

( ) ( ) ( )( ) ( ) ( )( )
1 1

L U L U1 1
α α

0 0

1
d G, d , , dα= α + α dαG G G Gα α0 0

2
 =
 ∫ ∫% % %

 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 1 1

1 1 1

1 1

(i) d B(+)G , d B, +d G,0 0 0

( )d B(-)G , d B, - d G,0 0 0

( )d k.B , kd B,0 0

ii

iii

  = 

  = 

  = 

% %% %% % %

% %% %% % %

% %% %

 

An inventory model with shortages is developed with fuzzy parameters fixed cost, 
holding cost and shortage cost are represented by fuzzy triangular membership function 
and the fuzzy total cost is obtained by applying signed distance method. 
 
3. Assumption and Notations 
Assumptions: 
1. The demand rate is constant. 
2. Shortages are allowed. 
3. Lead time is zero. 
4. 100% inspection of items is performed for each shipment. 
5. The screening rate is faster than the demand rate. 
6. The defective items are sold at a discounted price. 
7. The planning horizon is infinite. 
 
Notations Used: 
q  -  Order quantity per shipment  
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B  -  Maximum back ordering quantity in units per cycle 
c  -  Unit purchasing cost 
K  -  Fixed cost per order 
h  -  Holding cost per unit of time 
b  -  Shortage cost per unit per unit of time 
p  -  Percentage of defectives per shipments 
w  -  Unit selling price per good quality unit 
v  -  Unit discounted price per defective unit, v< c  
y  -  Screening rate in units per unit of time y>D 
d  -  Unit screening cost 
*  -  The superscript representing optimal value 
 
4. Mathematical Model 
Crisp Mathematical Model 
The profit per unit time is given by 

2p (c+d)D KD (h+b) hDpq h(1-p)qBTP(q,B) = wD + vD  - -  + hB -  -  - 
1-p 1-p q(1-p) 2q(1-p) (1-p)y 2

 

                                    (1) 

The objective is to maximize the profit per unit time. By taking partial derivatives of TP 
(q, B) w.r.to q and B and by setting the results to zero, we have  

2TP KD (h+b) hDp h(1-p)B = 0  +  - - 
2 2q (1-p)y 2(1-p) 2 (1-p)q q

∂
⇒

∂

                                                                        

(2) 

TP h(1-p)q
and 0 B=

B h+b

∂ = ⇒
∂

 

Substitute B in equation (2), we obtain 
2TP KD (1-p) hDp h(1-p)h = 0  +  - - 0

2q 2(h+b) (1-p)y 2(1-p)q

∂
⇒ =

∂
 

Hence  2KDy(h+b)*=q
2h by+2DP(h+b)(1-p) 

  

                                                                                        

(3)  

Fuzzy Mathematical Model 

 

Equation (1) can be written in terms of fuzzy number, we get 
2

(h+b)p (c+d)D KD hDpq h(1-p)qBTP(q,B) = wD + vD  - -  + hB -  -  - 
1-p 1-p q(1-p) 2q(1-p) (1-p)y 2

% % % %% % % %
%% % %  

Suppose the demand rate lies in the interval [D-∆1, D+∆2], we can find a fuzzy triangular 

number to represent the vagueness in demand rate  as D% = (D -∆1, D, D +∆2), 0 < ∆1 < D 
and ∆1∆2 > 0. 

Then the signed distance of D%  is given by ( ) ( )2 1

1
d D,0 = D+ -

4 ∆ ∆
%%

                        

(4)  

In practical problems, it is not easy to decide the fixed cost for long period due to some 
uncountable factors. Therefore it becomes reasonable to locate a fixed cost in an interval 
[K-∆3, K+∆4], where 0 < ∆3 < K and ∆3∆4 > 0 such as ∆3 and ∆4 are chosen appropriately. 



W. Ritha and S. Rexlin Jeyakumari 

134 

 

Once interval is chosen then there is need to find an appropriate value in the interval [K-
∆3, K+∆4]: If”K” is chosen then there is need to find an appropriate value in the interval. 
If K is chosen then it is coincident with the ordering cost. In crisp case error is considered 
as 0. If the value is within interval, then the error is larger when the value deviates from 
‘K’ farther. Obviously error will attain its maximum at K-∆3 and K+∆4. From fuzzy point 
of view, error can be changed to confidence level such as: if error is zero then confidence 
level to be 1. If error is maximum which attains at K-∆3 and K+∆4, then confidence level 
is zero. If value is chosen from an interval [K-∆3, K+∆4], then confidence level is any real 
value between 0 and 1. 

Hence, above condition can be suitably represented by fuzzy triangular number, 

K% = (K-∆3, K, K+∆4) and 0 < ∆3 < K and ∆3∆4> 0, Where the membership grade of K for 

K%  is 1. For the points in the interval [K-∆3, K+∆4], as value is far from ‘K’ membership 
grade is less, and at the points 0 < ∆3 < K and ∆3∆4 > 0 membership grade is zero. 
Therefore, it is natural and reasonable to the interval [K-∆3, K+∆4] to the fuzzy number 

K%  in equation (4), when we respond membership grade to confidence level. The signed 

distance of K%  is given by,

  

                                  

( ) ( )4 3

1
d K,0 =K+ -

4 ∆ ∆
%%                                                              (5) 

( )d K,0%%  > 0 and    ( )d K,0%%  ∈ [K-∆3, K+∆4]: ( )d K,0%% can be taken as the estimate of total 

fixed cost in the fuzzy sense based on the singed distance. 
As a fact, we know that in a perfect competitive market, the cost of storing a unit 

per may fluctuate a little from its actual value. Suppose it lies in the interval [h-∆5, h+∆6]. 
Similarly, as discussed above in the case of fixed cost, we can find a fuzzy triangular 

number to represent the vagueness in holding cost as:

 

h% = (h-∆5, h, h+∆6), where 0 < ∆5 < 

h and ∆5∆6 > 0, where the membership grade of h for h%  is 1. For the points in the interval 
[h-∆5, h+∆6] membership grade is less as values within interval farther from ‘h’. For the 

point’s h-∆5 and h+∆6:  membership grade is 0. Then the signed distance of h%  is given by                

                  ( ) ( )6 5

1
d h,0 = h+ -

4 ∆ ∆
% %

                                                        

(6)  

( )d h,0% %  > 0 and    ( )d h,0% %  ∈ [h-∆5, h+∆6]:

 

( )d h,0% % can be taken as the estimate of total 

holding cost in the fuzzy sense based on the singed distance. 
Suppose the shortage cost lies in the interval [b-∆7, b+∆8], we can find a fuzzy 

triangular number to represent the vagueness in shortage cost as b% = (b-∆7, b, b+∆8), 0 < 
∆7 < b and ∆7∆8 > 0. 

Then the signed distance of b%  is given by ( ) ( )8 7

1
d b,0 = b+ -

4 ∆ ∆
% %

                            

(7)  

Now, we defuzzify TP (q, B) using signed distance method. The signed distance of 

( )TP q,  B% to 0% is given by  
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( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

(c+d)d D,0 d K,0 d D,0p
d TP q,B ,0 wd D,0 + vd D,0  - - + d h,0 B  

1-p 1-p q(1-p)

2d h,0 d b,0 d h,0 d D,0 pq d h,0 (1-p)qB
                          -  -  - 

2q(1-p) (1-p)y 2

=

 +
 

% % %% % %
%% % % %% % %

% %% % % %% % %%
 

Substitute the equations (4), (5), (6) and (7) in the above one, we get 

( ) ( )( ) ( ) ( )

( ) ( ) ( )

( )
( )

p1 1* q,B  = d TP q,B ,0 w D+ - + v D+ -  TP ∆ ∆ ∆ ∆2 1 2 1 1-p4 4

1 1 1
(c+d) D+ - K+ - D+ -∆ ∆ ∆ ∆ ∆ ∆2 1 4 3 2 14 4 4                     - -  

1-p q(1-p)

1 1
h+ - b+ -∆ ∆ ∆6 5 81 4 4                   + h+ - B - ∆ ∆6 54

   =       

    
        

+
 
  

%%

( )

( ) ( ) ( )

2∆ B7
 

2q(1-p)

1 1 1
h+ - D+ - pq h+ - (1-p)q∆ ∆ ∆ ∆ ∆ ∆6 5 2 1 6 54 4 4

                    - -  
(1-p)y 2

 
  

    
        

 

Differentiate partially with respect to q and B and equating them to zero, we have 
 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1 1 2K+ - D+ - h+ - b+ -∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ B4 3 2 1 6 5 8 7* q,BTP 4 4 4 4
= 0   2 2q (1-p) 2 (1-p)q q

1 1 1
h+ - D+ - p h+ - (1-p)∆ ∆ ∆ ∆ ∆ ∆6 5 2 1 6 54 4 4

                              - -  = 0         
(1-p)y 2

    +    ∂     ⇒ +
∂

    
        

             (8) 

( ) ( )
( ) ( )1 1

h+ - b+ - B∆ ∆ ∆ ∆6 5 8 7* q,B 1TP 4 40 h+ -  - 0∆ ∆6 5B 4 q(1-p)

 + ∂    = ⇒ = ∂  
 

 

( )

( ) ( )
6 5

6 5 8 7

1
h+ - q(1-p) 

4
    We obtain   

1 1
h+ - b+ -

4 4

∆ ∆

∆ ∆ ∆ ∆
B

 
  =

 +  

 

Substitute B in (8), we get 
 

( )

- - -- ∆ ∆ ∆ ∆ ∆ ∆∆ ∆ 4 3 6 5 8 72 12 D+ y K+ h+ +b+
4 4 4 4* =q

- - - --∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆∆ ∆ 26 5 6 5 8 7 8 72 1h+ 2 D+ p h+ +b+ + y b+1-p
4 4 4 4 4

   
    
    
       
       
       

      (9) 

5. Numerical Example 
To illustrate the result of the proposed model, we consider an inventory system with the 
following data : D=500 units per year; y=17, 520 units per year; K= $300; h=$1 per year; 
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b=$5 per unit per year; P=0.1;∆1=0.0005, ∆2= 0.01, ∆3 = 0.0004, ∆4 = 0.02, ∆5 = 0.0006, 
∆6 = 0.03, ∆7 = 0.007, ∆8 = 0.04 Substitute these values in (9), we obtain q* = 664 units. 
 
6. Conclusion 
This paper deals a fuzzy based inventory model for imperfect quality items with 
shortages. For this fuzzy model, a method of defuzzification, namely the signed distance 
method is employed to find the estimate of total profit per unit time in the fuzzy sense. 
Then the corresponding optimal order is derived to maximize the total profit. Numerical 
example is carried out to investigate the behavior of our proposed model and the result is 
compared with those obtained from the crisp model. 
 

REFERENCES 
 

1. Bj¨ork, K. M., An analytical solution to a fuzzy economic order quantity problem, 
International Journal of Approximate Reasoning, 50(3) (2009) 485-493. 

2. Chang, H. C., An implication of fuzzy sets theory to the EOQ model with imperfect 
quality items, Computers and Operations Research, 31 (2004) 2079-2092. 

3. Chiu, Y. S. P., Determining the optimal lot size for the finite production model with 
random defective rate, the rework process, and backlogging, Engineering 
Optimization, 35(4) (2003) 427-437. 

4. Chia-Huei, H., A minimax distribution free procedure for an integrated inventory 
model with defective goods and stochastic lead time demand, International Journal 
of Information and Management Sciences, 20 (2009) 161-171. 

5. Chiu, S. W. and Chiu, Y. S. P., Mathematical modeling for production system with 
backlogging and failure in repair, Journal of Scientific and Industrial Research, 65(6) 
(2006) 499-506. 

6. Chiu, S. W., Optimal replenishment policy for imperfect quality EMQ model with 
rework and back-logging, Applied Stochastic Models in Business and Industry, 23(2) 
(2007) 165-178. 

7. Chiu, S. W., Production lot size problem with failure in repair and backlogging 
derived without derivatives, European Journal of Operational Research, 188(2) 
(2008) 610-615. 

8. Chen, C. K., Lo, C. C. and Liao, Y. X., Optimal lot size with learning consideration 
on an imperfect production system with allowable shortages, International Journal of 
Production Economics, 113(1) (2008) 459-469. 

9. Chung, K. J. and Hou, K. L., An optimal production run time with imperfect 
production processes and allowable Shortages, Computers and Operations Research, 
30(4) (2003) 483-490. 

10. Hayek, P. A. and Salameh, M. K., Production lot sizing with the reworking of 
imperfect quality items produced, Production Planning and Control, 12(6) (2001) 
584-590. 

11. I. Konstantaras, K.Skouri, M.Y. Jaber, Inventory models for imperfect quality items 
with shortages and learning in inspection, Applied Mathematical Modeling, 36 (2012) 
5334-5343. 



Fuzzy Inventory Model for Imperfect Quality Items with Shortages 

137 

 

12. Kim, C. H. and Hong, Y., An optimal run length in deteriorating production process, 
International Journal of Production Economics, 58(2) (1999) 183-189. 

13. Lee, W. C. and Wu, J. W., A EOQ model for items with Weibull distributed 
deteriorations, shortages and power demand pattern, International Journal Of 
Information and Management Sciences, 13 (2002) 19-34. 

14. Lin, H. D., Chiu, Y. S. P. and Ting, C. K., A note on optimal replenishment policy 
for imperfect quality EMQ model with rework and backlogging, Computers & 
Mathematics with Implications, 56(11) (2008) 2819-2824. 

15. Ouyang, L. Y. and Chang, H. C., EMQ model with variable lead time and imperfect 
production process, International Journal of Information and Management Sciences, 
11 (2000) 1-10. 

16. Rosenblatt, M. J. and Lee, H. L., Economic production cycles with imperfect 
production processes, IIE Transactions, 18 (1986)  48-55. 

17. Vijayan, T., and Kumaran, M., Inventory models with a mixture of backorders and 
lost sales under fuzzy cost, European Journal of Operational Research, 189(1) 
(2008) 105-119. 

18. Vijayan, T. and Kumaran, M., Fuzzy economic order time models with random 
demand, International Journal of Approximate Reasoning, 50(3) (2009) 529-540. 

 


