Annals of Pure and Applied Mathematics Vol. 4, No.2, 2013, 138-144 ISSN: 2279-087X (P), 2279-0888(online) Published on 10 October 2013 www.researchmathsci.org

τ_{α}^* -ga Closed Sets in Topological Spaces

T. Indira¹ and S. Geetha²

¹PGand Research Department of Mathematics,Seethalakshmi Ramaswami College Tiruchirappalli-620002, Tamilnadu, India Email: <u>drtindira.chandru@gmail.com</u>
²Department of Mathematics,Seethalakshmi Ramaswami College Tiruchirappalli-620002, Tamilnadu, India <u>Email: gsvel@rediffmail.com</u>

Received 17September 2013; accepted 29 September 2013

Abstract. In this paper, we introduce a new class of sets called τ_{α}^* -ga closed sets and τ_{α}^* -ga open sets in topological spaces and study some of their properties.

Keywords: αcl^* - operator, τ_{α}^* - topology, τ_{α}^* -ga closed sets and τ_{α}^* -ga open sets

AMS Mathematics Subject Classification (2010): 54A05, 54D05

1. Introduction

In 1970, Levine [6] introduced the concepts of generalized closed sets as a generalization of closed sets in topological spaces. Using generalized closed sets, Dunham [5] introduced the concept of the closure operator cl* and a new topology τ^* and studied some of their properties. P. Bhattacharya and B.K. Lahiri[3] introduced the concept of semi generalized closed sets in topological spaces. J. Dontchev [4] introduced generalized semi-open sets, H. Maki, R. Devi and K. Balachandran [9] introduced generalized α -closed sets in topological spaces.

In this paper, we obtain a new generalization of α -closed sets in the topological space (X, τ^*). Throughout this paper X and Y are topological spaces in which no separation axioms areassumed unless otherwise explicitly stated. For a subset A of a topological space X, int(A), cl(A), cl*(A) and A^c denote the interior, closure, closure* and complement of A respectively.

2. Preliminaries

Definition 2.1. A subset A of a topological space (X, τ) is called

- (i) Generalized closed(briefly g-closed)[6] if cl(A)⊆G whenever A ⊆ G and G is open in X.
- (ii) Semi-generalized closed(briefly sg-closed)[3] if scl(A)⊆ G whenever A⊆ G and G issemi-open in X.

 τ_{α}^* -ga Closed Sets in Topological Spaces

- (iii) Generalized semi-closed(briefly gs-closed)[2] if scl(A)⊆ G whenever A⊆G and G is openin X.
- (iv) α -closed[8] if cl(int(cl(A))) \subseteq A.
- (v) α generalized closed(briefly g-closed)[9] if αcl(A)⊆G whenever A⊆ G and G inX.
- (vi) Generalized α closed(briefly g α –closed)[12]if α cl(A) \subseteq G whenever A \subseteq G and G is α -open in X.
- (vii) Generalized semi-pre closed(briefly gsp-closed)[2] if spcl(A)⊆ G whenever A⊑ G and Gis open in X.
- (viii) Pre closed[11] if $cl(int(A)) \subseteq A$.
- (ix) Semi-closed[7] if $int(cl(A)) \subseteq A$.
- (x) Semi-pre closed(briefly sp-closed)[1] if $int(cl(int(A))) \subseteq A$.

The complements of the above mentioned sets are called their respective open sets.

Definition 2.2. For the subset A of a topological space X, the generalized α -closure operator $\alpha cl^*(A)$ is defined by the intersection of allg α -closed sets containing A.

Definition 2.3. For a topological space X, the topology τ_{α}^* is defined by $\tau_{\alpha}^* = \{G : \alpha cl^*(G^c) = G^c \}.$

Example 2.1. Let $X = \{a,b,c\}$ and $\tau = \{X,\Phi,\{a\}\}$. Then the collection of subsets $\{X,\Phi,\{a\},\{b\},\{c\},\{a,b\},\{b,c\},\{a,c\}\}$ is a τ_{α}^* - topology on X.

Definition 2.4. For the subset A of a topological X, the α -closure of A (cl_{α}(A)) is defined as the intersection of all α -closed sets containing A.

3. τ_{α}^* - ga closed sets in topological spaces

In this section, we introduce the concept of τ_{α}^* -ga closed sets in topological spaces.

Definition 3.1. A subset A of a topological space X is called τ_{α}^* - Generalized α -closed set(briefly τ_{α}^* -gaclosed) if $cl_{\alpha}^*(A) \subseteq G$ (or) $\alpha cl^*(A) \subseteq G$ whenever $A \subseteq G$ and G is τ_{α}^* -open.

The complement of τ_{α}^* -generalized α -closed set is called the τ_{α}^* -generalized α -open set(briefly τ_{α}^* -g α open).

Theorem 3.2. Every closed set in X is τ_{α}^* -g α closed. **Proof:**Let A be a closed set. Let A \subseteq G, since A is closed, $Cl(A) = A \subseteq$ G, where G is τ_{α}^* - open.

But $\alpha cl^*(A) \subseteq cl(A) \subseteq G$

 $\alpha cl^*(A) \subseteq G$, whenever $A \subseteq G$ and G is τ_{α}^* - open.

T. Indira and S. Geetha

Hence A is τ_{α}^* - ga closed.

Theorem 3.3. Every τ_{α}^* - closed set in X is τ_{α}^* -ga closed. **Proof :**Let A be a τ_{α}^* - closed set. Let A \subseteq G, where G is τ_{α}^* - open. Since A is τ_{α}^* - closed, $\alpha cl^*(A) = A \subseteq G$ $\alpha cl^*(A) \subseteq G$

Hence A is τ_{α}^* - ga closed.

Theorem 3.4. Every α - closed set in X is a τ_{α}^* - g α closed but not conversely. **Proof** :Let A be a α - closed set.

Assume that A \subseteq G, G is τ_{α}^* - open in X,

Since A is α -closed \implies A is g α -closed.

 $\alpha cl^*(A) = A$

Since $A \subseteq G$, then $\alpha cl^*(A) \subseteq G$.

Hence A is τ_{α}^* - αg closed.

The converse of the above theorem need not be true as seen from the following example.

Example 3.5. Consider the topological space $X = \{a,b,c\}$ with topology $\tau = \{Y,\Phi,\{a\},\{a,b\},\{a,b,c\},\{a,b,d\}\}$. Then the collection of sets $\{\{a\},\{b\},\{c\},\{d\},\{a,b\},\{b,c\},\{c,d\},\{a,c\},\{a,d\},\{b,d\},\{a,b,c\},\{a,b,d\},\{b,c,d\},\{a,c,d\}\}$ are τ_{α}^* -ga closed but not α - closed.

Example 3.6. Let $X = \{a,b,c\}$ and $Y = \{a,b,c,d\}$ be the two non-empty sets.

- (i) Consider the topology $\tau = \{X, \Phi, \{a\}\}\)$. Then the set $\{a\}$ is not both gs- closed and τ_{α}^* -g α closed.
- (ii) Consider the topology $\tau = \{X, \Phi, \{a\}\}$. Then the set $\{a\}$ is not both g-closed and τ_{α}^* -ga closed.
- (iii) Consider the topology $\tau = \{X, \Phi, \{a\}\}$. Then the set $\{a\}$ is not both gsp-closed and τ_{α}^* -g α closed.
- (iv) Consider the topology $\tau = \{X, \Phi, \{b\}, \{a, b\}\}\)$. Then the sets $\{\{c\}, \{b, c\}, \{a, c\}\}\)$ are not both pre- closed and τ_{α}^* g α closed.
- (v) Consider the topology $\tau = \{X, \Phi, \{a\}\}$. Then the set $\{a\}$ is not both $g\alpha$ closed and τ_{α}^* -g α closed.
- (vi) Consider the topology $\tau = \{X, \Phi, \{a\}, \{b\}, \{a, b\}\}\)$. Then the set $\{a, b\}$ is bothgspclosed and τ_{α}^* -g α closed.
- (vii) Consider the topology $\tau = \{X, \Phi, \{a\}, \{b\}, \{a,b\}\}\)$. Then the set $\{a\}$ is sg-closed but not τ_{α}^* $g\alpha$ closed.
- (viii)Consider the topology $\tau = \{Y, \Phi, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Then the sets $\{\{c\}, \{d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}\}$ are τ_{α}^* -g α closed but not α g closed.
- (ix) Consider the topology $\tau = \{X, \Phi\}$. Then the set $\{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ are τ_{α}^* -g α closed but not α -closed.

 τ_{α}^* -ga Closed Sets in Topological Spaces

- (x) Consider the topology $\tau = \{X, \Phi\}$. Then the sets $\{\{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ are τ_a^* -g α closed but not closed.
- (xi) Consider the topology $\tau = \{X, \Phi, \{a\}\}\)$. Then the sets $\{\{a\}, \{b\}\}\)$ are not both spclosed and τ_{α}^* -ga closed.

Remark 3.7. From the above discussion, we obtain the following implications.

Theorem 3.8. For any two sets A and $B,\alpha cl^*(A \cup B) = \alpha cl^*(A) \cup \alpha cl^*(B)$.

Proof : Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$ then $\alpha cl^*(A \cup B)$ and

 $\alpha cl^*(B) \subseteq \alpha cl^*(AUB)$

Hence $\alpha cl^*(A) \cup \alpha cl^*(B) \subseteq \alpha cl^*(A \cup B)$ (1)

 $\alpha cl^*(A)$ and $\alpha cl^*(B)$ are $g\alpha$ - closed sets.

 $\Rightarrow \alpha cl^*(A) \cup \alpha cl^*(B)$ is also ga-closed set.

Again, A $\Box \alpha cl^*(A)$ and B $\Box \alpha cl^*(B)$

 \Rightarrow A U B \subseteq acl*(A) Uacl*(B).

Thus $\alpha cl^*(A) \cup \alpha cl^*(B)$ is a ga - closed set containing AUB.

Since $\alpha cl^*(A \cup B)$ is the smallest $g\alpha$ - closed set containing $A \cup B$

We have $\alpha cl^*(A \cup B) \subseteq \alpha cl^*(A) \cup \alpha cl^*(B) \longrightarrow (2)$

From (1) and (2), $\alpha cl^*(A \cup B) = \alpha cl^*(A) \cup \alpha cl^*(B)$.

Theorem 3.9. Union of two τ_{α}^* - ga closed sets in X is a τ_{α}^* -ga closed set in X. **Proof :** Let A and B be two τ_{α}^* -ga closed sets. T. Indira and S. Geetha

Let $A \cup B \subseteq G$, where G is τ_{α} *- open.

Since A and B are τ_{α}^* -ga closed sets, then $\alpha cl^*(A) \subseteq G$ and $\alpha cl^*(B) \subseteq G$.

 $\alpha cl^*(A) \cup \alpha cl^*(B) \subseteq G.$

But by the above theorem, $\alpha cl^*(A)U\alpha cl^*(B) = \alpha cl^*(AUB)$

 $\alpha cl^*(AUB) \subseteq G$, where G is τ_{α} *- open.

Hence AUB is a τ_{α}^* -ga closed set.

Theorem 3.10. A subset A of X is τ_{α}^* -gaclosed if and only if $\alpha cl^*(A)$ -A contains no non-empty τ_{α}^* - closed set in X.

Proof : Let A be a τ_{α}^* - ga closed set.

Suppose that F is a non-empty τ_{α}^* - closed subset of $\alpha cl^*(A) - A$.

Now, $F \subseteq \alpha cl^*(A) - A$.

Then $F \subseteq \alpha cl^*(A) \cap A^c$

Sinceacl*(A) – A = $\alpha cl^*(A) \cap A^c$

 $F \subseteq \alpha cl^*(A)$ and $F \subseteq A^c$

Since F^c is a τ_{α}^* - open set and A is τ_{α}^* -ga closed. $\alpha cl^*(A) \subseteq F^c$, i.e. $F \subseteq [\alpha cl^*(A)]^c$.

Hence, $F \subseteq \alpha cl^*(A) \cap [\alpha cl^*(A)]^c = \Phi$, i.e. $F = \Phi$,

which is a contradiction.

 $\alpha cl^*(A)$ -A contains no non-empty τ_{α}^* - closed set in X.

Conversely, assume that $\alpha cl^*(A) - A$ contains no non-empty τ_{α}^* - closed set.

Let $A \subseteq G$, G is τ_{α}^* - open.

Suppose that $\alpha cl^*(A)$ is not contained in G then $\alpha cl^*(A) \cap G^c$ is a non-empty τ_{α}^* - closed set of $\alpha cl^*(A) - A$, which is a contradiction. $\alpha cl^*(A) \subseteq G$, G is τ_{α}^* - open.

Hence A is τ_{α}^* - αg closed.

Corollary 3.11. A subset A of X is τ_{α}^* - ga closed if and only if $\alpha cl^*(A) - A$ contain no non-empty closed set in X.

Proof :The proof follows from the theorem 3.10 and the fact that every closed set is τ_{α}^* - $g\alpha$ closed set in X.

Theorem 3.12. If a subset A of X is τ_{α}^* - ga closed and A \subseteq B $\subseteq \alpha$ cl*(A) then B is τ_{α}^* - ga closed set in X.

Proof: Let A be a τ_{α}^* - ga closed set such that $A \subseteq B \subseteq \alpha cl^*(A)$. Let U be a τ_{α}^* - open set of X such that $B \subseteq U$.

Since A is τ_{α}^* - ga closed,

 τ_{α}^* -ga Closed Sets in Topological Spaces

We have $\alpha cl^*(A) \subseteq U$. Now, $\alpha cl^*(A) \subseteq \alpha cl^*(B) \subseteq \alpha cl^*[\alpha cl^*(A)] = \alpha cl^*(A) \subseteq U$. $\alpha cl^*(B) \subseteq U$, U is τ_{α}^* - open set. B is τ_{α}^* - ga closed set in X.

Theorem 3.13. Let A be a τ_{α}^* - ga closed set in (X,τ^*) . Then A is ga - closed if and only if $\alpha cl^*(A)$ is τ_{α}^* - open. **Proof :** Suppose A is ga - closed in X. Then $\alpha cl^*(A) = A$ and so $\alpha cl^*(A) - A = \Phi$ which is τ_{α}^* - open in X. Conversely, suppose $\alpha cl^*(A) - A$ is τ_{α}^* - open in X. Since A is τ_{α}^* -ga closed, by theorem: 3.10, $\alpha cl^*(A) - A$ contains no non-empty τ_{α}^* - closed set in X. Then $\alpha cl^*(A) - A = \Phi$. Hence A is ga - closed.

Theorem 3.14. For $x \in X$, the set X-{x} is τ_{α}^* - ga closed or τ_{α}^* - open. **Proof :** Suppose X - {x} is not τ_{α}^* - open. Then X is the only τ_{α}^* - open set containing X - {x}. This implies $\alpha cl^*(X - {x}) \subseteq X$.

Hence $X - \{x\}$ is a τ_{α}^* - ga closed in X.

REFERENCES

- 1. D. Andrijevic, Semi-preopen sets, Mat. Vensi, 36(1986), 24-32.
- 2. S.P. Arya and T.Nour, Characterizations of s-normal spaces, *Indian J.Pure Appl. Math.*, 21(1990)717-719.
- 3. P. Bhattacharyya and B.K. Lahiri, Semi generalized closed sets in topology, *Indian J.Math.*,29(1987),375-382.
- 4. J. Dontchev, On generalizing semi pre-open sets, *Mem.Fac.Sci.KochiUni.Ser* A, 16(1995), 35-48.
- 5. W. Dunham, A new closure operator for non-T topologies, *KyungpookMath.J.*, 22(1982),55-60.
- 6. N. Levine, generalized closed sets in topology, *Rend. Circ. Mat. Palermo*, 19(2)(1970), 89-96.
- 7. N.Levine, Semi-open sets and semi-continuity in topological spaces, *Amer.Math.Monthly*,70(1963),36-41.
- 8. S.N. Maheswari and P.C. Jain, Some new mappings, *Mathematica*, 24(47) (1-2)(1982),53-55.
- H. Maki, R.Devi and K.Balachandran, Associated topologies of generalized α-closed sets and α –generalized closed sets, *Mem. Fac. Sci. Kochi Univ. Math.*, 15(1994),51-63.
- 10. H.Maki, R. Devi and K. Balachandran, Generalized α-closed sets in topology, *Bull. Fukuoka Uni.Ed*.Part III,42(1993),13-21.

T. Indira and S. Geetha

- 11. A.S.Mashhour, M.E. Abd El-Monsef and S.N.El-Deeb, On precontinuous and weak precontinuous functions, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47-53.
- 12. A.Pushpalatha, S.Eswaran and P. Rajarubi, τ*-Generalized closed sets in topological spaces, *Proceedings of the world Congress on Engineering*, 2009, Vol II.
- 13. P. Sundram, A. Pushpalatha, Strongly generalized closed sets in topological spaces, *Far East J. Math. Sci.*, 3(4) (2001),563-575.