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Abstract. In the present article, we construct the exacteling wave solutions of
nonlinear evolution equations in mathematical ptg/svia the (3+1)-dimensional
potential-Yu-Toda-Sasa-Fukuyama (YTSF) equatiorubiynng two methods: namely, a
further improved (G'/G) -expansion method, wher&(§) satisfies the auxiliary

ordinary differential equation (ODE)G'(8)]* = pG?(é) +qG* (&) +rG®(&); p. q
andr are constants and the well known extended tanttifummethod. We demonstrate
that some of the exact solutions bring out by thegemethods are analogous, but they
are not one and the same. It is worth mentioniagy tthhe first method gives further exact
solutions than the second one.
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1. Introduction

Nonlinear evolution equations play a significarierim various scientific and engineering
fields, such as, optical fibers, solid state phgsituid mechanics, plasma physics,
chemical kinematics, chemical physics geochemistty Nonlinear wave phenomena of
diffusion, reaction, dispersion, dissipation, andnwection are very important in
nonlinear wave equations. In recent years, thetes@lations of nonlinear PDEs have
been investigated by many researchers (see [1¥0d are concerned in nonlinear
physical phenomena and many powerful and efficraethods have been offered by
them. Among non-integrable nonlinear differentiguations there is a wide class of
equations that referred to as the partially intelgrabecause these equations become
integrable for some values of their parametersrdlhee many different methods to look
for the exact solutions of these equations. Thet fiamsous algorithms are the truncated
Painleve expansion method [1], the Weierstrasgtiglifunction method [2], the tanh-
function method [3-8] and the Jacobi elliptic fupat expansion method [9-12]. There
are other methods which can be found in [13-17}. iRtegrable nonlinear differential
equations, the inverse scattering transform mefii&d, the Hirota method [19], the
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Exact Solutions of (3 +1)-dimensional Potential-¥TSquation
truncated Painleve expansion method [20], the Backkransform method [21] and the
Exp-function method [22-26] are used for searcliggexact solutions.

Wang et al [27] introduced a direct and concisehwett called the(G'/G) -
expansion method to look for traveling wave soliaf nonlinear partial differential
equations, wheré& = G(§) satisfies the second order linear ODE

G"(&)+AG' (&) + uG(&) =0; A and i are arbitrary constants.

For additional references see the articles [28-34].

In this article, we bring in an alternative appioacalled a improvedG'/G) -
expansion method to find the exact traveling wastutons of the potential-YTSF
equation, wherds = G(¢) satisfies the auxiliary

ODE[G'(&)]? = pG?(&) +qG*(&) +rG°®(&); p, q and r are constants.
Recently EI-Wakil et al. [30] and Parkes [31] hawwn that the extended tanh-function
method proposed by Fan [5] and the baf®& / G) -expansion method proposed by
Wang et al [27] are entirely equivalent as theywdelexactly the same set of solutions to
a given nonlinear evolution equation. This obséovahas also been pointed out recently
by Kudryashov [35]. In this article, we assert etleough the basi¢G'/ G) -expansion
method is equivalent to the extended tanh-functizethod, the improvedG'/G) -
expansion method presented in this article is gatvalent to the extended tanh-function
method. The method projected in this article iSagito some extent from the extended
(G'/ G) -expansion method.

The objective of this article is to show that timeproved (G'/G) -expansion

method and the celebrated extended tanh-functidhadeare not identical. Further novel
solutions are achieved via the offered improv@@'/G)-expansion method. This

approach will play an imperative role in constraogtimany exact traveling wave
solutions for the nonlinear PDEs via the (3 + Ipelnsional potential-YTSF equation.

2. Thelmproved (G'/G) -expansion M ethod
Suppose we have the following nonlinear partidiedéntial equation,

H(u,u,u,u,,u,,u,u,,u,,,-)=0. 1)
where U = u(X, Y, zt) is an unknown functiortd is a polynomial inu = u(x, Y, zt)
and its partial derivatives in which the highestasrderivatives and the nonlinear terms
are involved. The main steps of the further imptb{&'/ G) -expansion method are as
follows:

Step 1: The traveling wave variable,

uxyzt)=u(), {=x+y+z-Vt, )
whereV is the speed of the traveling wave, which convmsEqg. (1) into an ODE in
the form,

P(u,u’,u”,u", --) =0, (3)
where prime denotes the derivative with respeét.to
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Step 2: Suppose that the solution of the Eq. (3) can bgressed by means of a
polynomial in(G'/G) as follows:

n G' i
u@é)=> a, (—j 4)
i \G
where a;, (i =1,2,3---) are constants provided, # 0 and G = G(¢) satisfies the
following nonlinear auxiliary equation,
[G'(&)]* = pG*(§) +aG*(§) +r G°(4), (5)
where p, q andr are random constants to be determined later.
The general solutions of Eq. (5) are as follows [B8:

No G(¢) No G(¢)
1 _ 1 6 _ _1
-pgsech®(y/pé) |2 o - psed(y/- pé) 20r
| g - pr L+ tanhg/ pd))> _qiz,/—prtan(\/—_pf)_
1 _ -1
- pacsch’(/p &) r 550 -pesé(f-pf) |
_qz—pr(lJ_rcoth(\/Bf))2 _qtz,/—prcot(\/—_pf)_ ’
p<0,r>0
2 1 7
2p 2 [ t2\/5g‘ %
,p>0A>0 pe ,
++/A cosh@,/pé) - q _(et2ﬁ5_4q) —64pr
p>0
3 1 8 ~ 1
Y arys or —Etlitanh(%\/?f)j or
+/A cos@/-pé)—q L
- 1
L _ 1
_ 1 P 1 2
2p ]2, <0, a0, q(licoth%ﬁ{)ﬂ p>0,
; P L
E: Asm(Z\/—_p{)—q A=0
4 | ! 9 _ 1
2p 2 +pe12ﬁ{ 2
- ,p>0, A<O — | ,p>0,9=0
| +y/-Asinh@p &) -q| 1-6apreiF
5| _ _1 10 1
- psech? 2 * , p=0, r=0.
psecd’(ypd) |? Jaé
Kk thanh(\/gf)_
1
pcsch?(y/ pé) 2 p>0,1>0
_qiz\/ﬁcoth(ﬁ{) ' '
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Exact Solutions of (3 +1)-dimensional Potential-¥TSquation
whereA=q?-4pr.

Step 3. In Eq. (4), n is a positive integer which is usually obtaineddafancing the
highest order nonlinear term(s) with the lineantés) of the highest order come out in
Eqg. (3).

Step 4. Substituting Eq. (4), into Eq. (3) and utilizi. (5), we obtain polynomials in
G'(¢) and G'(&) G'(é) (i=0,+1,+2,+3--). Vanishing each coefficient of the
resulted polynomials to zero, yields a set of algebequations fowr,, p, g, r,V and
constant(s) of integration, if applicable. Suppwesth the aid of symbolic computation
software such as Maple, the unknown constanisp,q,r andV can be found by

solving these set of algebraic equations and subeg these values into Eq. (4), new
and more general exact traveling wave solutionghef nonlinear partial differential
equation (1) can be found.

3. Application
In this section, we apply the improve(G'/G) -expansion method to the (3 + 1)-

dimensional potential-YTSF equation which is dredlgifimportant nonlinear evolution
equations in mathematical physics and have beeahgiténtion by a lot of researchers
and the extended tanh-function method to compagestiutions obtained by the two
methods.

3.1. On Solving the (3 + 1)-dimensional Potential-YTSF Equation by the Projected
Method: We start with the (3 + 1)-dimensional potentidlSF equation [38-40] in the
form,

—4u, +u

XXXZ

+4u,u,, +2u,,u, +3u,, =0. (6)

Let us now solve the Eq. (6) by the proposed furingproved (G'/G) -expansion

method. Making use of the travelling wave varia@g permits us in converting Eq. (6)
into an ODE and upon integration yields:

4V +3)u’ +3(u")*+u" =0, (7)
with zero constant of integration. Considering tt@mogeneous balance between the
highest order derivativel” and the nonlinear terrfu’)?come out in Eq. (7), we deduce
thatn = 1. Therefore, the solution (4) turns out to be

u(é) = a,(G/G)+a,. (8)
Substituting (8) together with Eq. (5) into (7), wbtain the following polynomial
equation irG :

G2(3a,q+4a,QV +4a,q p)+G*(3a70% +32a,r p+6a,r +8V a,r +60,0?) o
+GG(12a12rq+48a1rq)+Gs(12afr2+48a1r2):0 ©)
Setting each coefficient of the polynomial Eq. () zero, we achieve a system of

algebraic equations which can be solved by usiegsymbolic computation software
such as Maple and obtain the following two setsadditions:
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Theset1a1=—4,ao=ao,q=21/pr,V:—p—g. (10)
Theset2a1:—4,a’0=a’0,q:0,V=—4p—§, (11)
wherea,, p andr are arbitrary constants.
Now for the set 1, we have the following solution:

u(é) = -4(%] ra,, 12

whereé = x+y+ z+(p+§ )’t.

According to the step 2 of section 2, we have thessquent families of exact solutions:
Family 1. If p >0, the solution of Eq. (5) has the form,

G(f){ z_quSChZ(\/B{) 2]2
q —pr(licoth(\/B{))

In this case we have the ratio,

G _ \/T){qzsinh(/ﬁf)cosh\@f) —2prsinh(/p&)cosh(pé)F2prcosh(/pd)+ pr}

G -q cosR({/pé) +2prcosh(y p &) = 2prsinh(/p &) cosh(pé) +o? - pr

Sinceq = ZW , Subsequently, we obtain the following travelingwe solutions,
olpsercelon »

3sech? (2,/p &) + 2 tanh@\/p &) 72

(13)

u(é)=4yp -

Family 2. If p>0,r >0, the solution of Eq. (5) has the form,

6 =| P’ (/pd) |?
qiz\/ﬁtanh(\/gf)

Then we have the ratio,

G _ Jolt gsinh(y/p &)cosh(/p &) 72,/ pr costt (\/p &) Jor}
G cosh(/p &){qcosh(/p &) + 2,/ pr sinh/p &)f

Sinceq =2,/ pr , subsequently, we obtain the following travelingwe solutions:

(15)

u(é) =x2,/p+2/ptanh\/p&)+a, (16)
Family 3. If p<0, r >0, the solution of Eg. (5) has the form,
1
— _ 2
66 =~ PseC(Po) an

q+2y/- pr tang/- pé)
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Then we have the ratio,
6 _J=ply=pr-2/=prcos (= pO = asing/= p &) cosy= p &)
G cos(y/- p5){2\/— prsin(y—- p& qcos(ﬁf)}
Sinceq = 2\/ﬁ, subsequently, we obtain the following travelingwe solutions:
_ —4\/—_p{tan(2ﬁ{)¢1}
1+ tan(2 ﬁ &) +sec@ ﬁ é)

Family 4. If p>0,A =0, the solution of Eq. (5) has the form,

G(&) = {—Ep{li tanhé\/gg)Hz (19)

Then we have the ratio,

G :@{il—tanhé\/ﬁf)}

G
Subsequently, we obtain the following traveling e&olutions:

ué) = —\/B{il—tanhé\/ﬁf)}+ao. (20)

Family 5. If p >0, the solution of Eq. (5) has the form,

1

etzﬁ{ 2

G(&) = Pe - (21)
(eﬂﬁ"r - 4q) -64pr

Then we have the ratio,
G _  Jple ~16q” +64pr)
G 7ePf +8qe?P¢ 11697 +64pr
Sinceq = 2\/5, subsequently, we obtain the following travelingwe solutions:

u( +a, (18)

~4.[pe?lPt
+16,/pr 7 e2/?¢

whereé = x+y+ z+(p+§ )t.

u(é) = +a,. (22)

For the set 2, we have the following solution:

I

u(E)=—4(%j+ao,where£=x+y+z+(4p+g)t. (23)

According to the step 2 of section 2, we obtainghlesequent families of exact solutions:
Cohort 1. If p>0, A >0, the solution of Eq. (5) has the form,

165



Muhammad Shakeel and Syed Tauseef Mohyud-Din

_ 2p :
Gle)= l:i x/ZcoshQ\/Bf) - q}

Sinceq = 0, thenr <0. In this case we have the ratio,
G!
& = ~/ptanhepé)

Therefore, we obtain the following travelling was@ution,

u(&) = 4,/ptanh@/p &) +a,.

Cohort 2. If p>0, A <0, the solution of Eg. (5) has the form,

1
2p 2
G($) =
L J-4sinh@,/pé) - q}
Sinceq =0, thenr > 0. In this case we have the ratio,
GI
& = Vpoothep&)
Therefore, we obtain the following travelling was@utions:

u(&) = 4/pcoth@/p &) +a,.
Cohort 3. If p<0, A >0, the solutions of Eq. (5) has the form,

oot

/A cos@y/- p)-q

Sinceq =0, thenr > 0. Thus we have the ratio,

G'
e V- ptan@Ry-pé)
Therefore, we obtain the following travelling was@utions:

u(é) =-4-ptan@-p¢) +a,.
Cohort 4. 1f p>0, r >0, the solutions of Eq. (5) has the form,
1
c@)=| - psech’(y/pé) |2
qx2,pr tanh(\/Bf)

Sinceq =0, we have the ratio,

% = —%\/B[tanh(\/ﬁf)+ coth(/p 4()]

Therefore, we obtain the following travelling was@ution

u(é) = 2|/ pitanh(/p &)+ cothi/p &)} + a,.
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Exact Solutions of (3 +1)-dimensional Potential-¥TSquation

Cohort 5. If p<0, r >0, the solutions of Eq. (5) has the form,

- pse¢(y-pé) }
q*2,-pr tan(\/—_pf)
Sinceq =0, then we have the ratio,

G 1

= =2\ pleot/~p &) - tan(/~ p &)

Therefore, we obtain the following travelling was@ution

u(é) = 2= p{coty= p &) - tang/~ p O} + a,. (33)

Cohort 6. If p>0, =0, the solution of Eq. (5) has the form,
1

G(¢) = { (32)

+ pe?/Pe

2
G(¢) =
L— 64pre P }
Then we have the ratio,

G' 1 +$J

(34)

coth —

_=i
G ~8Jr ar

where64pr =1.
Therefore, we have the solution:

uié) == 1 cot te +a (35)
-+ .
2vr (4dr) °
Cohort 7. If p=0, r =0, then the solution of Eq. (5) has the form,
G(O) =+

Jaé
Then we have the ratio,
G _ 1

G ¢

Therefore, we have the solution:

(36)

u(E)=§+ao,whereE=x+y+z+(4p+§)t. (37)
These are the exact solutions of the potential-Y€§&ation obtained by the improved

(G'/ G) -expansion method.

3.2. On Soalving the (3 + 1)-dimensional Potential-YTSF Equation by the Extended
Tanh-function M ethod.

With reference to the well-known extended tanh-fiomcmethod [1, 7, 8, 32, 34, 39, 46],
the solution of the potential-YTSF Eq. (6) can épresented as,

ui@)=a,¢ (<) +a,, (38)
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where ¢ (&) satisfy the Riccati equation
¢'(5)=A+9%(). (39)

The Riccati Eq. (39) has the following solutions:
() If A<O, then

6 (&) = —J— Atanh(v— A&) or ¢ (&) = —J/- Acoth(v- A¢). (40)
(i) If A> 0, then
6 (&) =JAtan(WAE) or  $(&) =—JAcot(VAL). (41)
(iii) If A=0, theng (&) :—%. (42)

Substituting (38) and (39) into (7), we obtain thkowing polynomial equation ig as
follows:

(Ba? +6a,)¢"* (&) +(4aV +8a,A+6a’A+3a,) ¢* (&) +

(4a,AV +3a, A+2a,A’ +3aA%) = 0.
Equating the coefficients of the polynomial to zenod solving the set of algebraic
equations with the help of Maple, we obtain théofeing solution:

alz—Z,aO:aO,V:—g+A. (44)

(43)

wherea, andA are arbitrary constants.

Accordingly the exact solutions of Eq. (6) are:
WhenA < 0, the solution takes the form,

u(é) =2v- Atanh{/- Aé) +a,. (45)
WhenA > 0, the solution takes the form,
ué) = —Zﬂtan(\/TAf) +a,. (46)

WhenA = 0, the solution takes the form,

u(f):§+ao, Where$:x+y+z—(—%+A)t. (47)

From the above results obtained by the two metheds;an draw the following remarks:

Remark 1. If we put A=-4p wherep >0, the results arranged in Eq. (45) are
identical to the result (25).

Remark 2. If we put A=-4p where p <0 then the results arranged in Eq. (46) are
identical to the result given in (29).

Remark 3. Result given in (47) is alike to the result giver{37).

5. Conclusions
An improved (G'/G) -expansion method is suggested and applied to 3he ()-
dimensional potential-YTSF equation. The resultsaioied by the suggested method
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have been compared with those obtained by the reézb extended tanh-function
method. From this study, we observe that the imgidG' / G) -expansion method and
the extended tanh-function method are not equitaddthough EI-Wakil [30] and Parkes
[31] have shown that the basi&G'/G) -expansion method and the extended tanh-
function method are equivalent. We see that alf¢isalts obtained by the extended tanh-
function are found by the suggested method anddditian some novel solutions are
attained. The analysis shows that the proposedadéshquite resourceful and practically
well suited to be used in finding exact solutioh$NbEEs. We expect that the suggested
method might be applicable to other kinds of NLEERathematical physics.
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