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Abstract. Vertex covering and independence have been wallestuconcepts in graph
theory. These concepts have also been definedhiigssph. In this paper we consider a
subsemigraphs —v of a semigraptG whereV is vertex of G. We prove that for one
such subsemigrapfs—Vv the vertex covering number does not exceed the&ewer

covering number ofG. For others subsemigragB —V it may exceed. We also prove
some related results about independence in serhigrap
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1. Introduction
Semigraphs provide a generalization of graphs witdny applications and scope for
further research. There are concepts in graph yhewhnich have several variants in
semigraph theory. As a results, many new theoreave lappeared. Semigraphs have
been well studied by several authors like [1]. émigraphs, also some authors have
defined parameters like domination number, Indeproe number.

In this article we consider two subsemigraphs @f hose vertex set is

V(G) —{\} . In the first subsemigragh—V, we consider those subedge<zf which are

obtained by removing the vertex from every edge ofs. In the second subsemigraph
G —v we consider those edges@fwhich do not contain the vertex.

We would like to study the effect of removing ate& from a semigraph on two
parameters namely vertex covering number and imtkp®e number of a semigraph.
These concepts have been defined in [3].

2. Preliminaries

Definition 2.1. Independence set [3]

Aset SOV inasemigraplcs is an independent set if e ésla subset &

An independent set with maximum cardinality is edll maximum independent set of
G, and itis denoted g8, —set of G.
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The cardinality of a maximum independent set itedahe independence numberGyfit
is denoted ag3,(G) .

Definition 2.2. Vertex Covering Set ande —Vertex Covering Numbers [1]
A subsetS of V(G) is called a vertex covering set, if every edgeésofias non-empty

intersection witrs

A vertex covering set with minimum cardinality islled a, —set of G.

The cardinality of a minimum vertex covering set ®fis called the vertex
covering number o6 and it is denoted ag,(G).

It is obvious to see that a subseof V(G) is a minimum vertex covering set if
and only ifV(G) — Sis a maximum independent set.

Note that thea,(G) + 5,(G) = n = Thenumber of VerticesG.

Definition 2.3. Edge degree [1]
If v is a vertex of semigrapls .Then the edge degreeeg,v is defined to be the

number of edges, which contain the vernex

3. Subsemigraph
3.1. Subsemigraph of type — 1
Here we considered the subsemigra@h-v whose veeteis ¥ (G) —{\} and the

edge set is sub edges obtained by removing thexvertfrom every edge o5 . We call
this subsemigraph of type 1.

In this section, we will consider the subsemigraph-v of type 1.

In the following lemma, we shall prove that theteg covering number cannot
decrease when a vertax is removed from the sentigsap

Lemma 3.1If Gisasemigraphand v isavertexof G, thena,(G) < a,(G-V).

Proof: Let S be a minimum vertex covering set®f~-v . LEt be adge ofG .
IfvOE, then E is an edge of—v and sinc§, is a vertesedag set ofG —v
EnS#g.

If EisanedgeofG and/OE thed'=E-v isan edg&ofv , Sifsce,
is a vertex covering set &-Vv,E'n S#¢ .HenEen S#Z¢ , he®e is a vertex

covering set oG
Thereforeq,(G) <[§ < a(G-V) .

Now we shall state and prove the necessary affidisnf condition under which
the vertex covering number of a semigraph doeschahge when a vertex is removed
from the semigraph.

Theorem 3.2.Let G be a semigraph andv1V(G), then a,(G) = a,(G —v) if and only
if thereisa minimum vertex covering set Sof G such that v S.
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Proof: First, suppose that,(G) =a,(G-v) .Les be a minimum vertex conpset

of G —v. By above lemma 3.1S s a vertex covering s&b of
If S is nota minimum vertex covering set@f , then

a,(G) <|9 = a,(G-v)which is a contradiction. Hence&S is a minimum verte

covering set ofG and sinc® 1V (G) —{\}, V[S..
Conversely, letS be a minimum vertex covering det@such thavJS . Let
E' be anyedge db6-v ,thelt’' =E-{v} forsome edge Gof .NowS#%¢

and therefor&e' n S# ¢ , becaug€l S . Therefog, is a vertegromyset ofG —v
Thus,a,(G-v) < |S| =a,(G)=a,(G-V).
Hencea,(G) =a,(G-v) .

Corollary 3.3. With notation as above, a,(G-V)>a,(G)if and only if v1S, for
every minimum vertex covering set Sof G.

Example 3.4.Consider the semigrap® (see Figure 1) WittG) ={0,1, 2, 3, 4,5, 6]
and E(G) ={(1,0,4),(2,0,5),(3,0,6). Note thata,(G) =1. However,a,(G-0) =3
. Thus,a,(G-0)>a,(G).

4

Figure 1.

Note that{0} is the only minimum vertex covering set Gf. Thus, 0 belongs to

every minimum vertex covering set®f, and thusa,(G-0)>a,(G).

Here also we prove that the independence numbér-o¥ does not increase.
Theorem 3.5.If G isasemigraph and vV (G) then 5,(G-V) < S,(G).
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Proof: Let S be a maximum independent set&f-V.
We claim thatSO{\} is an independent set @.
For this, supposé& is an edge of5 such thatE [0 SCO{\} .

Case llvOE

Then, E'=E-v=E andE’' is a subset ofS. Hence S is not an independent set of
G-v. A contradiction.

Case ll:vOE

Then, sinceE0 SO{W}, E'=E-vOS and thus,S is not an independent set of

G —V. Again a contradiction.
So, SO{W} must be an independent setGf-V.

Therefore, 3,(G) 2|9/ +1>|9 = 3,(G - V). Hence, 3,(G) > B,(G-V).

Another proof of above theorem

We may note thatr,(G) + 5,(G) =n. Also, a,(G-V) + B,(G-v)=n-1.

We may note thatr,(G —V) 2 a,(G) and therefore3, (G —V) < ,(G) .

Now we prove necessary and sufficient conditioneuehich3,(G - V) = 5,(G) —1.

Theorem 3.6.5,(G —V) = 5,(G) —1if and only if there is a maximum independent set

S of G suchthat v[IS.
Proof: Suppose there is a maximum, independentsef G such thatv[]S.
Now consider the se§ =S—-{\} . First § is an independent set i&—V. Suppose

there is an edg&’ of G—v Such thatE' 0 § . Let E be any edge of5 such that
E-{\} =E'. In then obviouslyE is a subset o5. Which contradicts the fact th& is

an independent set & .
Thus,§ must be an independent set@rV. Since 5,(G-V) < 5,(G), § must

be a maximum independent set&f-V.

Thus, 8,(G-V) =S| =|§ 1= 3,(G)-1.

Conversely, Supposg, (G -V) = 5,(G) -1.

Let § be a maximum independent set6f-vand S=§ U{V} .

First, we prove thafS is an independent set & . Suppose there is an edfe of G
such thatE [J S.

Case IlVUE
Then E'=E-{\W} =E. Hence, E'0 S . Which is contradicts the fact th&is an

independent set db —V.
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Case Il:vOE
LetE'= E-{\} . SinceE is a subset of5, E' is a subset of5. Again, this contradicts
the fact that§ is an independent set G —V.
Hence, from both the cases it follows tHatis an independent set db. Also
By(G) = B, (G-v) +1.

Therefore,S is a maximum independent set@f. Note thatv[]S. This completes
the theorem.

Remark 1. From the above theorem, it is clear thalSfis a maximum independent set
of Gand wlS, then B,(G-w) = 5,(G) -1.

Thus, if S,S,,....S, are all maximum independent setsGfand S=§ 0OS,00..0 §,
then 5,(G —-w) = 5,(G) -1 if and only if wUIS.

Thus, we have proved the following corollary.

Corollary 3.7. The number of vertices W in G such that 5,(G-w) = 5,(G) —1:|S|

whee S=S0S,0..0S,, where {S,S,,...,.S} is the family of all maximum
independent setsof G.

Remark 2. From the proof of the above theorem, it is clearat thif
5,(G-V) = 5,(G)-1 and if Sis a maximum independent set Gf—Vv then S {\}

is a maximum independent set@fcontainingVv.

Conversely, ifSis a maximum independent set Gf containingv then § = S—{\} is

a maximum independent set Gf— V.

(1) Thus, there is a one-one correspondence bettieemaximum independent sets of
G-V and the maximum independent set$ofontaining the vertex'.

(2) It is also obvious that the number of maximnaependent sets &b is greater than
or equal to the number of maximum independentafets— V.

(3) Also it is clear that the number of maximurdependent sets &b equal the number
of maximum independent sets Gi—Vif and only if v belongs to the intersection of all
maximum independent sets Gf.

(4) Also it may be noted that the number of vedicer such that
By (G-V)=B,(G)-1=z S,(G).

Finally, we state the following corollary.

Corollary 3.8. 5,(G-V) < B,(G) —1if and only if vIS for any maximum independent
set Sof G.

3.2. Subsemigraph of type — 2
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Now we consider a semigrafh— Vv in which the vertex set\§(G) —{v} and the edge

set is equal to the set of those edge$safhich do not contained the vertex This is
called the subsemigraph of type — 2. In this sactiee will consider subsemigraph of
type 2.

First, we established thatwfJV (G) thena, (G - V) < a,(G) .

Lemma 3.9.Let G bea semigraph andv OV (G) thena, (G -Vv) < a,(G) .

Proof: Note that every edge @ — v is also and edge & .
Let Sbe a minimum vertex covering set@f

Case I: vIS.

If E' is any edge dB-vV thenE' is also an edge &, and henceE' n S # ¢since
VOE', E'n (S—-{V}) #¢.

Thus, S—{V} is a vertex covering set Gf— v.

Case ll: vOS.
LetE be any edge o6 — vthenE is also an edge & .Hence,En S# ¢.

Thus,S is a vertex covering set@f—v .
Thus, Sor S—{V} is a vertex covering setGf—v.

Therefore,a,(G -Vv) < a,(G) .

Lemma 3.10. IfGis a semigraph, vOV(G) anda,(G-V)<a,(G)then
a,(G-v)=a,(G)-1.

Proof: LetS be a minimum vertex covering set@f-v , thenS cannot be a vertex
covering set o . Therefore, there is an eddeof Gsuch thaEn S =g@. Then it
implies thavJE. Note that, S=S [0{v} must be a vertex covering set(f
Therefore,a,(G) =|S| +1= a,(G - V) +1.

Thusa,(G-v) =a,(G) -1.

Theorem 3.11.LetG be a semigraph andv OV (G) . Thena,(G -Vv) <a,(G) if and
only if thereis a minimum vertex covering set Sof G suchthatvS.

Proof: Supposer,(G —-V) <a,(G) . Let S, be a minimum vertex covering set®f v.
ThenS =S, O{V} is minimum vertex covering set Gf by lemma3.10 Thus,J Sand

S is a minimum vertex covering set®f.
Conversely, 1& be minimum vertex covering set@fsuch thav 1 S.
Consider the s& = S—{V}. LetE' be any edge @& —v. ThenE' is also an edge of

G. SinceS is a vertex covering set@.E' n S# ¢.
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SincevOE',E'n (S—{V}) Z¢. ThusS—-{v} is a vertex covering set Gf—-v
Thereforeq,(G-v) <|S—{%}|<|9=a( G.
Hence,a,(G -V) <a,(G).

Corollary 3.12. LetG be a semigraph andvOV (G) thena,(G-Vv) =a,(G) if and
only if for every minimum vertex covering set SofG,vJS.

Example 3.13.Let G be the semigraph whose vertex $§G) = {01,2345,6} and
E(G) ={( 104), (205),(306)}. Let v=0 then the subsemigrapkc—0 has no
edges. Also, 0 belong to the only minimum vertewering set {0}. Therefore,
a,(G-V) <a,(G). In fact, we may note that,(G) =1, a,(G-0) =0.
It may note thai = 1,23456 a,(G-i)=a,(G) =1.

1

L
& 2
n
] k]
@
q
Figure 2:

Corollary 3.14. LetG be a semigraph andv 0V (G) such thatVv is not isolated and
a,(G-V) =a,(G) then for every minimum vertex covering set SofG and open
neighbourhood N (V) n S# ¢ .

Proof: LetS be any minimum vertex covering set®f therwv 1 S.

LetE be any edge containing thenE n S# ¢.

Thus,N(v) n S# ¢.

Remark 3. It may be noted that the complement of a vertexedog set is an
independent set. Also, it may be noted thatl(ifV (G) andv] Sfor some minimum

vertex covering s&, thena,(G-Vv) <a,(G). Thus, we define the following two
notationsV,” ={vOV(Q: a(G-V) <a (G} and
V,° ={vOV(G): a(G-V) =a G} then
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V.,  =U[S: Sisamin imumvertexcovering set of G} .
Thus,
V,° =V(G) -{S: Sisamin imumvertexcovering set of G}
=(XV(G) - S: Sisamin imumvertexcov ering set of G}
Since, the complement of every vertex coveringisen independent set it follows that
V,%is also is an independent set.
Thus, we have the following corollary.

Corollary 3.15. V,_ °isan independent set.

Since every edge containing the verd@xtersect every minimum vertex covering Get
it followsthatV,"| > the minimum edge degree of a semigréy. Provided there is

vertexv in the semigrap@ , such thav OV, °. If there is no vertex M,° then every

vertex is invV,~ and thereforeJVcr“ greater than or equal to the minimum edge
degree of a semigrajih

Corollary 3.16. SupposeG is a semigraph and for this ::;en'igrath,VcrO Z @then
a,(G) = the minimum edge degee of a semigraph G.(i.ea,(G)=deqV).
Proof: LetS be a minimum vertex covering set®andvV, °.
By corollary 3.15ifE is an edge d& containingv, thenE n S# @. Also note that iE,
andE,are distinct edges & containingy, thenE n SZE,n S (becaus& is a
semigraph and no two edges can intersect in maredhe vertex).

Thus|S| = thenumber of edgescontaining vertex v.

That isg,(G) = deg, v.

We may prove as in the case of vertex covering thatindependence number of a
semigraph does not increase when a vertex is rerfosm the semigrapB .

Lemma 3.17.1fG isasemigraph andvV (G) then 5,(G - V) < 5,(G) .

Proof: LetS be a maximum independence seGefv. Then obviouslyS is also an
independent set & .Thus,3,(G-V) <|S < 53,(G).

Hence5,(G-V) < 5,(G).

Example 3.18.Consider the semigrapfs whose vertex seV(G) ={0,1, 2, 3,4,5, 6]

and edge seE(G) ={(1,2),(2,3),(3,4),(4,5),(5,6), (6,110, 4,),(2,0,5),(3,0,6..

In this semigraph the s€d,1,3,5,} &{0,2,4,6} are maximum independent sets and its

independence numbef,(G) =4. Now, let v=0. The subsemigrapls—Vv has the
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vertex  set is V(G-0)={,2,3,4,56,] and the edge set is
E(G-0)={(1,2,),(2,3),(3,4)(4,5),(5,6),(6,1. The set {1,3,5} &{2,4,6} are
maximum independent set d6—Vv and its independence number £&(G-0)= 3.
Note that/3,(G) > 5,(G-0).

Figure 3:

Now we prove the necessary and sufficient conditioder which the independence
number of semigrapB does not change.

Theorem 3.1545,(G - V) = 5,(G)if and only if there is a maximum independent set S of

G suchthatvdS.
Proof: Supposgs,(G-Vv)=5,(G). Let S be a maximum independent setGofv.

Now Sis also an independent set@f
Also, 5,(G) :|S| and thus,S is a maximum independent set Gfnot containing the

vertexv .
Conversely, le6 be a maximum independent set®f such thav[JS. Sincevd S, Sis

also an independent set®fv and thereforeS < 3,(G - V).

Thus,3,(G) < 5,(G —V) < B,(G).
Therefore, 3,(G) = B,(G-V).

Corollary 3.19.5,(G-V) < 5,(G)if and only if v belongs to every maximum
independent set of G.

Now we introduce the following notations,
1°={vOV(Q): B(G -V =S{(G)}
17 ={vOV(Q): (G -V <B(G}
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Thus, from the corollary 3.19we can deduce that
|~ =({S: Sisamaximumindependent setof G}. Also it may be noted that
1° =V (G)-{S: Sisamaximumindpendent set G} .
Now we prove that whery decreaseg, remains same and whap remains same
[, decreases.(Whena vertex removed from a semigraph).

Theorem 3.20.(1) If a,(G-V) <a,(G)then 5,(G-V) = 5,(G) .
(2 If ao(G -V) = ao(G) thenﬁo(G -Vv) < IBO(G) :

Proof: (1) a,(G) + 5,(G) = n = number of verticesof G.

Now, a,(G-V)+ B,(G-v)=n-1.

Thus, a,(G) -1+ 5,(G-v)=n-1.

Hence,a,(G) + B,(G-Vv) =n.

From this, it follows that5,(G —V) = 5,(G) .

Proof of (2) is similar.
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