Annals of Pure and Applied Mathematics Vol. 4, No.2, 2013, 172-181 ISSN: 2279-087X (P), 2279-0888(online) Published on 18 November 2013 www.researchmathsci.org

Vertex Covering and Independence in Semigraph

D. K. Thakkar¹ and A. A. Prajapati²

¹Department of Mathematics, Saurashtra University Campus, Rajkot – 360 005, India, E-mail:<u>dkthakkar1@yahoo.co.in</u> ²Mathematics Department, L. D. College of Engineering, Ahmedabad – 380 015, India, E-mail: <u>ashishprajapati14@gmail.com</u>

Received 23 October 2013; accepted 1 November 2013

Abstract. Vertex covering and independence have been well-studied concepts in graph theory. These concepts have also been defined in semigraph. In this paper we consider a subsemigraph G-v of a semigraph G where v is vertex of G. We prove that for one such subsemigraph G-v the vertex covering number does not exceed the vertex covering number of G. For others subsemigraph G-v it may exceed. We also prove some related results about independence in semigraph.

Keywords: Semigraph, Subsemigraph, Vertex covering number, Independence number

AMS Mathematics Subject Classification (2010): 05C99, 05C69, 05C07

1. Introduction

Semigraphs provide a generalization of graphs with many applications and scope for further research. There are concepts in graph theory, which have several variants in semigraph theory. As a results, many new theorems have appeared. Semigraphs have been well studied by several authors like [1]. In semigraphs, also some authors have defined parameters like domination number, Independence number.

In this article we consider two subsemigraphs of G whose vertex set is $V(G) - \{v\}$. In the first subsemigraph G - v, we consider those subedges of G which are obtained by removing the vertex v from every edge of G. In the second subsemigraph G - v we consider those edges of G which do not contain the vertex v.

We would like to study the effect of removing a vertex from a semigraph on two parameters namely vertex covering number and independence number of a semigraph. These concepts have been defined in [3].

2. Preliminaries

Definition 2.1. Independence set [3]

A set $S \subseteq V$ in a semigraph G is an independent set if no edge is a subset of S. An independent set with maximum cardinality is called a maximum independent set of G, and it is denoted as $\beta_0 - set$ of G.

The cardinality of a maximum independent set is called the independence number of G, it is denoted as $\beta_0(G)$.

Definition 2.2. Vertex Covering Set and *e* –Vertex Covering Numbers [1]

A subset S of V(G) is called a vertex covering set, if every edge of G has non-empty intersection with S.

A vertex covering set with minimum cardinality is called $\alpha_0 - set$ of G.

The cardinality of a minimum vertex covering set of G is called the vertex covering number of G and it is denoted as $\alpha_0(G)$.

It is obvious to see that a subset S of V(G) is a minimum vertex covering set if and only if V(G) - S is a maximum independent set.

Note that the $\alpha_0(G) + \beta_0(G) = n = The number of Vertices G$.

Definition 2.3. Edge degree [1]

If v is a vertex of semigraph G. Then the edge degree $\deg_e v$ is defined to be the number of edges, which contain the vertex v.

3. Subsemigraph

3.1. Subsemigraph of type – 1

Here we considered the subsemigraph G - v whose vertex set is $V(G) - \{v\}$ and the edge set is sub edges obtained by removing the vertex v from every edge of G. We call this subsemigraph of type 1.

In this section, we will consider the subsemigraph G - v of type 1.

In the following lemma, we shall prove that the vertex covering number cannot decrease when a vertex v is removed from the semigraph G.

Lemma 3.1. If G is a semigraph and v is a vertex of G, then $\alpha_0(G) \leq \alpha_0(G-v)$.

Proof: Let S be a minimum vertex covering set of G - v. Let E be any edge of G. If $v \notin E$, then E is an edge of G - v and since, S is a vertex covering set of G - v,

 $E \cap S \neq \phi$. If E is an edge of G and $v \in E$ then E' = E - v is an edge of G - v, since, S

is a vertex covering set of $G - v, E' \cap S \neq \phi$. Hence $E \cap S \neq \phi$, hence S is a vertex covering set of G.

Therefore, $\alpha_0(G) \leq |S| \leq \alpha_0(G-v)$.

Now we shall state and prove the necessary and sufficient condition under which the vertex covering number of a semigraph does not change when a vertex is removed from the semigraph.

Theorem 3.2. Let G be a semigraph and $v \in V(G)$, then $\alpha_0(G) = \alpha_0(G-v)$ if and only if there is a minimum vertex covering set S of G such that $v \notin S$.

Proof: First, suppose that $\alpha_0(G) = \alpha_0(G - v)$. Let *S* be a minimum vertex covering set of G - v. By above lemma 3.1, *S* is a vertex covering set of *G*.

If S is not a minimum vertex covering set of G, then

 $\alpha_0(G) < |S| = \alpha_0(G - v)$ which is a contradiction. Hence *S* is a minimum vertex covering set of *G* and since $S \subset V(G) - \{v\}, v \notin S$.

Conversely, let S be a minimum vertex covering set of G such that $v \notin S$. Let E' be any edge of G - v, then $E' = E - \{v\}$ for some edge E of G. Now $E \cap S \neq \phi$, and therefore $E' \cap S \neq \phi$, because $v \notin S$. Therefore, S is a vertex covering set of G - v

Thus,
$$\alpha_0(G-v) \leq |S| = \alpha_0(G) \leq \alpha_0(G-v)$$
.

Hence, $\alpha_0(G) = \alpha_0(G - v)$.

Corollary 3.3. With notation as above, $\alpha_0(G-v) > \alpha_0(G)$ if and only if $v \in S$, for every minimum vertex covering set S of G.

Example 3.4. Consider the semigraph *G* (see Figure 1) with $V(G) = \{0, 1, 2, 3, 4, 5, 6\}$ and $E(G) = \{(1, 0, 4), (2, 0, 5), (3, 0, 6)\}$. Note that $\alpha_0(G) = 1$. However, $\alpha_0(G-0) = 3$. Thus, $\alpha_0(G-0) > \alpha_0(G)$.

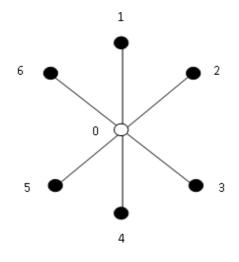


Figure 1:

Note that $\{0\}$ is the only minimum vertex covering set of G. Thus, 0 belongs to every minimum vertex covering set of G, and thus, $\alpha_0(G-0) > \alpha_0(G)$.

Here also we prove that the independence number of G-v does not increase. **Theorem 3.5.** If *G* is a semigraph and $v \in V(G)$ then $\beta_0(G-v) < \beta_0(G)$.

Proof: Let *S* be a maximum independent set of G - v. We claim that $S \cup \{v\}$ is an independent set in *G*. For this, suppose *E* is an edge of *G* such that $E \subset S \cup \{v\}$.

Case I: $v \notin E$

Then, E' = E - v = E and E' is a subset of S. Hence S is not an independent set of G - v. A contradiction.

Case II:
$$v \in E$$

Then, since $E \subset S \cup \{v\}$, $E' = E - v \subset S$ and thus, S is not an independent set of G - v. Again a contradiction.

So, $S \cup \{v\}$ must be an independent set of G - v.

Therefore, $\beta_0(G) \ge |S| + 1 > |S| = \beta_0(G - v)$. Hence, $\beta_0(G) > \beta_0(G - v)$.

Another proof of above theorem

We may note that $\alpha_0(G) + \beta_0(G) = n$. Also, $\alpha_0(G-v) + \beta_0(G-v) = n-1$. We may note that $\alpha_0(G-v) \ge \alpha_0(G)$ and therefore $\beta_0(G-v) < \beta_0(G)$. Now we prove necessary and sufficient condition under which $\beta_0(G-v) = \beta_0(G)-1$.

Theorem 3.6. $\beta_0(G-v) = \beta_0(G) - 1$ if and only if there is a maximum independent set *S* of *G* such that $v \in S$.

Proof: Suppose there is a maximum, independent set *S* of *G* such that $v \in S$. Now consider the set $S_1 = S - \{v\}$. First S_1 is an independent set in G - v. Suppose there is an edge E' of G - v Such that $E' \subset S_1$. Let *E* be any edge of *G* such that $E - \{v\} = E'$. In then obviously *E* is a subset of *S*. Which contradicts the fact that *S* is an independent set of *G*.

Thus, S_1 must be an independent set in G-v. Since $\beta_0(G-v) < \beta_0(G)$, S_1 must be a maximum independent set of G-v.

Thus, $\beta_0(G-v) = |S_1| = |S| - 1 = \beta_0(G) - 1$. Conversely, Suppose $\beta_0(G-v) = \beta_0(G) - 1$.

Let S_1 be a maximum independent set of G - v and $S = S_1 \cup \{v\}$.

First, we prove that S is an independent set of G. Suppose there is an edge E of G such that $E \subset S$.

Case I: $v \notin E$

Then $E' = E - \{v\} = E$. Hence, $E' \subset S_1$. Which is contradicts the fact that S_1 is an independent set of G - v.

Case II: $v \in E$

Let $E' = E - \{v\}$. Since E is a subset of S, E' is a subset of S_1 . Again, this contradicts the fact that S_1 is an independent set of G - v.

Hence, from both the cases it follows that S is an independent set of G. Also $\beta_0(G) = \beta_0(G-v) + 1$.

Therefore, S is a maximum independent set of G. Note that $v \in S$. This completes the theorem.

Remark 1. From the above theorem, it is clear that if S is a maximum independent set of G and $w \in S$, then $\beta_0(G-w) = \beta_0(G) - 1$.

Thus, if $S_1, S_2, ..., S_k$ are all maximum independent sets of G and $S = S_1 \cup S_2 \cup ... \cup S_k$ then $\beta_0(G - w) = \beta_0(G) - 1$ if and only if $w \in S$. Thus, we have proved the following corollary.

Thus, we have proved the following corollary.

Corollary 3.7. The number of vertices w in G such that $\beta_0(G-w) = \beta_0(G) - 1 = |S|$ where $S = S_1 \cup S_2 \cup ... \cup S_k$, where $\{S_1, S_2, ..., S_k\}$ is the family of all maximum independent sets of G.

Remark 2. From the proof of the above theorem, it is clear that if $\beta_0(G-v) = \beta_0(G) - 1$ and if S_1 is a maximum independent set of G-v then $S_1 \cup \{v\}$ is a maximum independent set of G containing v.

Conversely, if S is a maximum independent set of G containing v then $S_1 = S - \{v\}$ is a maximum independent set of G - v.

(1) Thus, there is a one-one correspondence between the maximum independent sets of G-v and the maximum independent sets of G containing the vertex v.

(2) It is also obvious that the number of maximum independent sets of G is greater than or equal to the number of maximum independent sets of G-v.

(3) Also it is clear that the number of maximum independent sets of G equal the number of maximum independent sets of G-v if and only if v belongs to the intersection of all maximum independent sets of G.

(4) Also it may be noted that the number of vertices v such that $\beta_0(G-v) = \beta_0(G) - 1 \ge \beta_0(G)$.

Finally, we state the following corollary.

Corollary 3.8. $\beta_0(G-v) < \beta_0(G) - 1$ if and only if $v \notin S$ for any maximum independent set S of G.

3.2. Subsemigraph of type – 2

Now we consider a semigraph G - v in which the vertex set is $V(G) - \{v\}$ and the edge set is equal to the set of those edges of G which do not contained the vertex v. This is called the subsemigraph of type -2. In this section, we will consider subsemigraph of type -2.

First, we established that if $v \in V(G)$ then $\alpha_0(G-v) \le \alpha_0(G)$.

Lemma 3.9. Let *G* be a semigraph and $v \in V(G)$ then $\alpha_0(G-v) \le \alpha_0(G)$. **Proof:** Note that every edge of G - v is also and edge of *G*. Let *S* be a minimum vertex covering set of *G*.

Case I:
$$v \in S$$
.

If E' is any edge of G - v then E' is also an edge of G, and hence $E' \cap S \neq \phi$ since $v \notin E'$, $E' \cap (S - \{v\}) \neq \phi$. Thus, $S - \{v\}$ is a vertex covering set of G - v.

Case II: $v \notin S$.

Let *E* be any edge of G - v then *E* is also an edge of *G*. Hence, $E \cap S \neq \phi$. Thus, *S* is a vertex covering set of G - v. Thus, *S* or $S - \{v\}$ is a vertex covering set of G - v. Therefore, $\alpha_0(G - v) \le \alpha_0(G)$.

Lemma 3.10. If G is a semigraph, $v \in V(G)$ and $\alpha_0(G-v) < \alpha_0(G)$ then $\alpha_0(G-v) = \alpha_0(G) - 1$.

Proof: Let S_1 be a minimum vertex covering set of G - v, then S_1 cannot be a vertex covering set of G. Therefore, there is an edge E of G such that $E \cap S_1 = \phi$. Then it implies that $v \in E$. Note that, $S = S_1 \cup \{v\}$ must be a vertex covering set of G. Therefore, $\alpha_0(G) = |S_1| + 1 = \alpha_0(G - v) + 1$.

Thus, $\alpha_0(G-v) = \alpha_0(G) - 1$.

Theorem 3.11. Let G be a semigraph and $v \in V(G)$. Then $\alpha_0(G-v) < \alpha_0(G)$ if and only if there is a minimum vertex covering set S of G such that $v \in S$.

Proof: Suppose $\alpha_0(G-v) < \alpha_0(G)$. Let S_1 be a minimum vertex covering set of G-v. Then $S = S_1 \cup \{v\}$ is minimum vertex covering set of G by lemma3.10 Thus, $v \in S$ and S is a minimum vertex covering set of G.

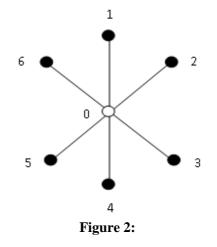
Conversely, let S be minimum vertex covering set of G such that $v \in S$. Consider the set $S_1 = S - \{v\}$. Let E' be any edge of G - v. Then E' is also an edge of G. Since S is a vertex covering set of $G \cdot E' \cap S \neq \phi$.

Since $v \notin E'$, $E' \cap (S - \{v\}) \neq \phi$. Thus $S - \{v\}$ is a vertex covering set of G - vTherefore, $\alpha_0(G - v) \le |S - \{v\}| < |S| = \alpha_0(G)$. Hence, $\alpha_0(G - v) < \alpha_0(G)$.

Corollary 3.12. Let G be a semigraph and $v \in V(G)$ then $\alpha_0(G-v) = \alpha_0(G)$ if and only if for every minimum vertex covering set S of G, $v \notin S$.

Example 3.13. Let G be the semigraph whose vertex set $V(G) = \{0,1,2,3,4,5,6\}$ and $E(G) = \{(1,0,4), (2,0,5), (3,0,6)\}$. Let v = 0 then the subsemigraph G - 0 has no edges. Also, 0 belong to the only minimum vertex covering set $\{0\}$. Therefore, $\alpha_0(G-v) < \alpha_0(G)$. In fact, we may note that $\alpha_0(G) = 1$, $\alpha_0(G-0) = 0$.

It may note that i = 1, 2, 3, 4, 5, 6 $\alpha_0(G - i) = \alpha_0(G) = 1$.



Corollary 3.14. Let G be a semigraph and $v \in V(G)$ such that v is not isolated and $\alpha_0(G-v) = \alpha_0(G)$ then for every minimum vertex covering set S of G and open neighbourhood $N(v) \cap S \neq \phi$.

Proof: Let *S* be any minimum vertex covering set of *G*, then $v \notin S$. Let *E* be any edge containing *v*, then $E \cap S \neq \phi$. Thus, $N(v) \cap S \neq \phi$.

Remark 3. It may be noted that the complement of a vertex covering set is an independent set. Also, it may be noted that if $v \in V(G)$ and $v \in S$ for some minimum vertex covering set S, then $\alpha_0(G-v) < \alpha_0(G)$. Thus, we define the following two notations, $V_{cr}^{-} = \{v \in V(G) : \alpha_0(G-v) < \alpha_0(G)\}$ and $V_{cr}^{0} = \{v \in V(G) : \alpha_0(G-v) = \alpha_0(G)\}$ then

 $V_{cr}^{-} = \bigcup \{S : S \text{ is } a \min \text{ imum vertex } \operatorname{cov ering set of } G \}.$ Thus, $V_{cr}^{-0} = V(G) - \bigcup \{S : S \text{ is } a \min \text{ imum vertex } \operatorname{cov ering set of } G \}$ $= \bigcap \{V(G) - S : S \text{ is } a \min \text{ imum vertex } \operatorname{cov ering set of } G \}$ Since, the complement of every vertex covering set is an independent set it follows that $V_{cr}^{-0} \text{ is also is an independent set.}$

Thus, we have the following corollary.

Corollary 3.15. V_{cr}^{0} is an independent set.

Since every edge containing the vertex *v* intersect every minimum vertex covering set *G*, it follows that $|V_{cr}^{-}| \ge$ the minimum edge degree of a semigraph *G*. Provided there is vertex *v* in the semigraph *G*, such that $v \in V_{cr}^{0}$. If there is no vertex in V_{cr}^{0} then every vertex is in $v \in V_{cr}^{-}$ and therefore, $|V_{cr}^{-}|$ greater than or equal to the minimum edge degree of a semigraph *G*.

Corollary 3.16. Suppose G is a semigraph and for this semigraph $G, V_{cr}^{0} \neq \phi$ then $\alpha_{0}(G) \geq the \min innum edge \deg ree of a semigraph <math>G.(i.e.\alpha_{0}(G) \geq \deg_{e} v).$

Proof: Let *S* be a minimum vertex covering set of *G* and $v \in V_{cr}^{0}$.

By corollary 3.15 if *E* is an edge of *G* containing *v*, then $E \cap S \neq \phi$. Also note that if E_1 and E_2 are distinct edges of *G* containing *v*, then $E_1 \cap S \neq E_2 \cap S$ (because *G* is a semigraph and no two edges can intersect in more than one vertex).

Thus, $|S| \ge the number of edges containing vertex v$.

That is, $\alpha_0(G) \ge \deg_e v$.

We may prove as in the case of vertex covering that the independence number of a semigraph does not increase when a vertex is removed from the semigraph G.

Lemma 3.17. If G is a semigraph and $v \in V(G)$ then $\beta_0(G-v) \leq \beta_0(G)$.

Proof: Let *S* be a maximum independence set of G - v. Then obviously *S* is also an independent set of *G*. Thus, $\beta_0(G-v) \le |S| \le \beta_0(G)$.

Hence, $\beta_0(G-v) \leq \beta_0(G)$.

Example 3.18. Consider the semigraph G whose vertex set $V(G) = \{0, 1, 2, 3, 4, 5, 6\}$ and edge set $E(G) = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1), (1, 0, 4), (2, 0, 5), (3, 0, 6)\}$. In this semigraph the set $\{0, 1, 3, 5, \}$ & $\{0, 2, 4, 6\}$ are maximum independent sets and its independence number $\beta_0(G) = 4$. Now, let v = 0. The subsemigraph G - v has the

vertex set is $V(G-0) = \{1, 2, 3, 4, 5, 6, \}$ and the edge set is $E(G-0) = \{(1, 2,), (2, 3), (3, 4)(4, 5), (5, 6), (6, 1)\}$. The set $\{1, 3, 5\} \& \{2, 4, 6\}$ are maximum independent set of G-v and its independence number is $\beta_0(G-0) = 3$. Note that $\beta_0(G) > \beta_0(G-0)$.

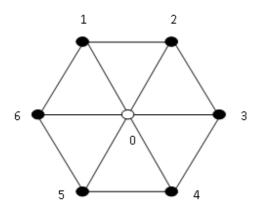


Figure 3:

Now we prove the necessary and sufficient condition under which the independence number of semigraph G does not change.

Theorem 3.15. $\beta_0(G-v) = \beta_0(G)$ if and only if there is a maximum independent set *S* of *G* such that $v \notin S$.

Proof: Suppose $\beta_0(G-v) = \beta_0(G)$. Let *S* be a maximum independent set of G-v. Now *S* is also an independent set of *G*.

Also, $\beta_0(G) = |S|$ and thus, S is a maximum independent set of G not containing the vertex y.

Conversely, let *S* be a maximum independent set of *G* such that $v \notin S$. Since $v \notin S, S$ is also an independent set of G - v and therefore, $|S| \leq \beta_0 (G - v)$.

Thus, $\beta_0(G) \le \beta_0(G-v) \le \beta_0(G)$. Therefore, $\beta_0(G) = \beta_0(G-v)$.

Corollary 3.19. $\beta_0(G-v) < \beta_0(G)$ if and only if v belongs to every maximum independent set of G.

Now we introduce the following notations,

 $I^{0} = \{ v \in V(G) : \beta_{0}(G - v) = \beta_{0}(G) \}$ $I^{-} = \{ v \in V(G) : \beta_{0}(G - v) < \beta_{0}(G) \}$

Thus, from the corollary 3.19we can deduce that $I^- = \bigcap \{S : S \text{ is a max imum independent set of } G\}$. Also it may be noted that $I^0 = V(G) - \bigcup \{S : S \text{ is a max imum independent set } G\}$.

Now we prove that when α_0 decreases β_0 remains same and when α_0 remains same β_0 decreases.(When a vertex removed from a semigraph).

Theorem 3.20. (1) If $\alpha_0(G-v) < \alpha_0(G)$ then $\beta_0(G-v) = \beta_0(G)$. (2) If $\alpha_0(G-v) = \alpha_0(G)$ then $\beta_0(G-v) < \beta_0(G)$. **Proof:** (1) $\alpha_0(G) + \beta_0(G) = n = number of vertices of G$. Now, $\alpha_0(G-v) + \beta_0(G-v) = n-1$. Thus, $\alpha_0(G) - 1 + \beta_0(G-v) = n - 1$. Hence, $\alpha_0(G) + \beta_0(G-v) = n$. From this, it follows that, $\beta_0(G-v) = \beta_0(G)$. Proof of (2) is similar.

Acknowledgement: The authors are thankful to the anonymous referee for kind comments and constructive suggestions.

REFERENCES

- 1. E.Sampathkumar, *Semigraphs and their Applications*, Report on the DST (Department of Science and Technology) submitted to DST, India, May 2000.
- 2. S.S.Kamath and R.S.Bhat, Domination in semigraphs, *Electronic Notes in Discrete Mathematics*, 15 (2003) 106-111.
- 3. S.S.Kamath, S.R.Hebber and R.Bhat, Domination in Semigraph (Part-I), *Lecture Notes National Workshop on Semigraphs*, Pune, June 04-07, 2010.
- 4. T.W.Haynes, S.T.Hedetniemi and P.J.Slater, *Fundamentals of Domination in Graphs*, Marcel Dekker, Inc, (1998).
- 5. T.W.Haynes, S.T.Hedetniemi and P.J.Slater, *Domination in Graphs: Advanced Topics*, Marcel Dekker, Inc, (1998).