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Abstract. In this article, nonlinear statistical models have been described along with 

its applications in diffusion of mobile telephony in India. In statistical regression 

sense, nonlinear statistical models are those in which at least one of the parameters 

appears nonlinearly. Iterative techniques are employed to obtain the parameter 

estimates of nonlinear models. Internal influence model was found to be appropriate 

for describing the growth trajectory of mobile telephony in India. The maximum 

possible GSM subscriber base was found to be 760 million, which is likely to be 

achieved beyond the year 2020. 
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1. Introduction 

Most of the processes of bio-physical and socio-economic domains are nonlinear in nature. 

However, to model such processes most of the times linear models are employed. Simple, 

elegant, easy-to-use linear models remained the choice of researchers for a long time. Linear 

models provide only an approximation of the system being studied, and may sometimes 

represents a distortion of the underlying process. Today, due to the availability of high speed 

low cost computers coupled with appropriate software, which is built on sound statistical 

theory, made it possible to use nonlinear models, which require high computing dexterity 

(Seber and Wild [7], Gallant [1]). Models whether deterministic or stochastic, empirical or 

mechanistic, may be linear or nonlinear in nature. Linearity and nonlinearity can be explained 

in a variety of ways: 

 

1.1. Input output relationship 

In linear model output is proportional to input, whereas in nonlinear model the output is not 

proportional to input. 
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1.2 System theory 

A model is linear in the system theory sense (LST) if the principle of superposition holds, that 

is, given that y1, y2 are the outputs corresponding to inputs x1, x2, a model is LST if the 

output corresponding to input x1+x2 is y1+y2; else the system is nonlinear. Thus, if input X 

and output Y are related by the equation Y=β0+β1X1+β2X2+β3X1
2 

+
 
β4X

2
2+β5X1X2, or 

Y=β0+β1X+β2X
2 
, then the models are said to be nonlinear in system theory sense. 

 

1.3. Appearance of parameters in the model 

The model is linear in the statistical regression sense (LSR) if at least one of the parameters of 

the model appears linearly. Thus, if input X and output Y are related by the equation 

Y=β0+β1X1+β2X2+β3X1
2
+β4X

2
2+β5X1X2, or Y=β0+β1X+β2X

2
,  

or kk XXXY   ...22110 , then the models are linear in the statistical 

regression sense. Therefore, linear regression models are ones in which parameters appear 

linearly, whereas nonlinear regression models have at least one parameter appearing 

nonlinearly. Examples of nonlinear models are: )exp( 2

21 XXY   and

)exp( 21 XXY   . 

 

1.4. Derivative of the function 

If the derivatives of the function with respect to the independent variable do not depend 

upon the independent variable; the model is considered as linear. If the derivatives are 

functions of the parameter and independent variable, the model is said to be nonlinear.  

 

1.5. Nonlinear measures 

Models which results intrinsic (IN) and parameter effects (PE) curvature measures in the 

parameter space are nonlinear models. Linear models do not have such properties. In a data 

set having n observations, if different values obtained with different parameter values are 

plotted then the hyperplane so obtained will have a curvature. This curvature is known as 

intrinsic nonlinearity. The spacing of these points is unequal. This property is known as 

parameter effects (Ratkowsky[3], Bates and Watts[6]). 

 

1.6. Examples of nonlinear models 

Let us consider some examples of nonlinear models, the volume v and pressure p of gas 

satisfy the relationship pv
γ
=k. Writing y=p and x=v

-1
, we get y=kx

γ
=f(x;k,γ), γ is  a parameter 

for each gas, which is to be estimated from the data. This model is nonlinear in γ but linear in 

k (Draper and Smith[10]). Let us take one more example, in an irreversible chemical reaction, 

substance A changes into substance B, which in turn changes into substance C. Let A(t) 

denotes the quantity of substance A at time t. The differential equations governing the 

changes are  

1 1 2 2

( ) ( ) ( )
( ), ( ) ( ), ( )

dA t dB t dC t
A t A t B t B t

dt dt dt
         

where θ1 and θ2 are unknown parameters. Assuming A(0)=1, B(t) has the solution 
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)]exp()[exp()( 12

21

1 tttB 






 . 

This model is nonlinear in θ1 and θ2 (Draper and Smith[10]). Cobb-Douglas 

production function given by Y=β0X1
β1

X2
β2

 is an example of nonlinear model, 

where Y is output and X1 and X2 are capital and labour input, respectively. Another 

well-known model is constant elasticity of substitution (CES) production function 

given by Y=β0[δK
-β

+(1-δ)L
-β

]
-1/β

, where Y is output, K and L are capital and labour 

input, respectively. β (β≥1), β0 and δ (0<δ<1) are substitution parameter, scale 

parameter, and distribution parameter, respectively (Intriligator, Bodkin and 

Hsiao[9]). Nonlinear models which can be transformed into linear form are known 

as intrinsically linear nonlinear models. Nonlinear models, which cannot be 

transformed into linear form, are known as intrinsically nonlinear models.  

1.7.  Objectives  

(i) To briefly describe nonlinear models along with estimation technique.  

(ii)  To apply nonlinear model to understand the growth trajectory of mobile 

telephony in India. 

 

2. Estimation of parameters of nonlinear models 

All the models described in Section 1 appeared deterministically as if data never 

deviates from the model, which is unrealistic predominantly in biological and 

socio-economic sciences and also in physical sciences. To make the model 

realistic, independently, identically normally (iidN) distributed stochastic error 

term is added to the right hand side of the mathematical model, which results a 

nonlinear regression model. Nonlinear regression model differ greatly in their 

estimation properties from linear regression models in that, given the usual 

assumption of an independently and identically distributed normal stochastic 

error term, linear model give rise to unbiased, normally distributed minimum 

variance estimators. Nonlinear regression models tend generally to do so as the 

sample size becomes very large (asymptotically) (Gallant [1], Ross [8]).  
 

2.1. Least square method 

Let us consider the following nonlinear model 

ttt
XY 



  

where θ is the parameter to be estimated. Least square method is used to estimate 

the parameters of the model. In least square technique θ is estimated by minimizing the 

error sum of squares 

2

1

)()( 



n

t

tt XYS  , ))()(log(2
1






tt

n

t

tt XXXY
S




  

Denoting least square estimate of θ by ̂ , we get 

t

n

t

t

n

t

ttt XXXXY log)(log
1

ˆ2

1

ˆ




 
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No explicit solution of θ is possible. Least square estimate of θ can be obtained 

iteratively starting from some assumed value of̂ . The least square estimator ̂  of θ in the 

above equation does not have properties possessed by least square estimator of linear model. 

Also, unlike linear model least square estimate of θ is not a linear function of observed Y– 

values (Ratkowsky [3]). One of the important issues in fitting nonlinear models is that model 

fitting generally requires the iterative optimization of functions. Unfortunately, the iterative 

process often does not converge easily to the desired solution. For finite samples, the general 

statement may be made that even though Yt may be normally distributed about its mean 

t
X  

with some finite unknown variance σ
2
 for all t, t=1,2,...,n, ̂  is not a linear combination of the 

Yt and hence, in general, is not normally distributed, hence it is neither unbiased for θ, nor is it 

a minimum variance estimator. Thus, unlike a least square estimator of a parameter in a linear 

model, a least square estimator of a parameter in a nonlinear model has essentially unknown 

properties for finite sample sizes. A number of powerful algorithms for fitting nonlinear 

models are now available. These have been designed to handle complex models and to allow 

for the various contingencies that can arise in iterative optimization. Three main methods 

are: (i) Taylor series (or linearization) (ii) Steepest descent (or gradient) and (iii)  Levenberg-

Marquardt (Marquardt [5]). The details of these methods along with their merits and 

demerits are given in Draper and Smith [10]. Levenberg-Marquardt algorithm represents 

a compromise between the linearization method and the gradient method, and combines 

successfully the best features of both and avoids the serious disadvantages of both the 

methods. It is good in the sense that it almost always converges and does not ‘slow 

down’ at the latter part of the iterative process.  

2.2. Computation of starting values  
All the iterative procedures require starting values of the parameters.  The choice of good 

starting values can spell the difference between success and failure in locating the fitted 

value or between rapid and slow convergence to the solution. However, there is no 

standard procedure for computing starting values of the parameters. Some common 

techniques are: (i) Plotting of data (ii) Prior information (iii) Previous experiments (iv) 

Known values for similar systems (v) Values computed from theoretical 

considerations (vi) Linearization (vii) Solving a system of equations (viii) Using 

properties of the model. Sometimes a combination of two or three methods result good 

starting values.  

 

2.3. Software packages for nonlinear regression  

Commercial software like Eviews (Quick>Estimate Equation>LS-Least squares (NLS 

and ARMA)), IBM SPSS (Analysis>Regression>Nonlinear), Minitab  (Stat> 

Regression >Nonlinear Regression), SAS (NLIN) and Stata (Statistics>Linear models 

and related>Nonlinear least-squares estimation) has options to compute parameter 

estimates of nonlinear regression model. Free software R also has tools (NLS2)  to 

compute parameter estimate of nonlinear model. 

2.4. Goodness of fit of nonlinear model  

This is generally assessed by the coefficient of determination, R
2
. However, as pointed out 

by Kvalseth [13], eight different expressions for R
2
 appear in the literature. One of the 
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most frequent mistakes occurs when the fits of a linear and a nonlinear model are 

compared by using the same R
2
 expression but different variables. Thus, for example, a 

power model or an exponential model may first be linearized by using a logarithmic 

transformation and then fitted to data by using ordinary least squares method. The R
2
-

value is then often calculated using the log of observed and log of predicted data points. 

The R
2 

is generally interpreted as a measure of goodness of fit of even the original 

nonlinear model, which is incorrect. Scott  and  Wild[2] have given a real example 

where two models are identical for all practical purposes and yet have very different 

values of R
2
 calculated on the transformed scales. Kvalseth [13] has emphasized that, 

although R-square given by 

TotalSS

gSS
R

Re
12   

where RegSS is the regression sum of squares and TotalSS is the total sum of squares, is 

quite appropriate even for nonlinear models. Other summary statistics like  

n




|y-y|

 (MAE)Error  AbsoluteMean 

ii



 

and 

p)-(n

2
)

i
ŷ-

i
(y

(MSE)Error  SquaredMean 



  

should also be computed. Here n is the total number of observed values and p denotes the 

number of model parameters.  

2.5. Model diagnostics   

Coefficient of determination, MAE and MSE are important parameters of goodness of 

fit. However, sole dependency on these statistics may fail to reveal important data 

characteristics and model inadequacies. It is strongly recommended to carry out 

detailed analysis of the residuals to find out the suitability of a model. Following two 

important assumptions (i) errors are independent and (ii) errors are normally distributed can be 

tested using run test and Kolmogorov-Smirnov and Shapiro-Wilk test, respectively. 

 

3. Important nonlinear models and applications 

There are several important nonlinear models described in the literature under growth 

models (Seber and Wild [7], Ratkowsky [4], Prajneshu and Das [11,12]), yield-density 

models, enzyme kinetics and innovation diffusion models (Mahajan and Peterson [14]). In 

this Section an attempt is made to develop an appropriate nonlinear model for describing 

the diffusion path of mobile telephony in India. 

 

3.1. Innovation Diffusion Model 

Let n(t) and N(t) denotes the number of subscribers and cumulative number of  
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subscribers, respectively to GSM service at time t in India. Also consider that total 

number of potential adopters in the social system (all India) is denoted by K, then [K-

N(t)] is the number of individuals yet to adopt the technology. Let, the coefficient of 

diffusion is denoted by g(t). The rate of diffusion of new technology (mobile 

telephony) is assumed to be proportional to the individuals yet to adopt the technology. 

Following differential equation is proposed to model the growth trajectory of the 

mobile telephony in India. 

( )
( )[ ( )]

dN t
g t K N t

dt
   

with the boundary condition 

( )
0 0

N t t N   cumulative number of adopters at time t0 

( ) ( ) ,

0

t
N t n t dt

t
   n(t) being the commutative number of adopters at time t. 

( )dN t

dt
 rate of diffusion at time t 

( )g t  coefficient of diffusion. 

g(t)*[K-N(t)] represents the expected number of adopters at time t. 

Considering g(t)=bN(t), the differential equation can be solved, which results the 

following model 

)(
)0(

)0(
1

)(

0ttbKe
N

NK

K
tN






  

Reparameterizing, it can be written as 

AtBe

K
tN





1

)(  

This model is known as logistic model and in innovation diffusion literature as internal 

influence model, where potential adopters are assumed to be interacting with existing 

adopters before making adoption decision. It has a shape of elongated S and it can be divided 

into four distinct phases. These are: inception, fast growth, slow growth, and plateau. By 

changing the form of the expression g(t), other variants of the model can also be derived. 

However, these variants were not found appropriate in this case, hence not presented here. An 

stochastic error term was added to the above model to make it more realistic. The 

assumptions about the error term are that it is iid normal. The resulting model is  

tAtBe

K
tN 





1

)(  

 

3.2. Results  

Monthly data of GSM subscribers collected from Cellular Operators Association from March 

1997 to August 2013 was used to estimate the parameters of the above model. Parameters 
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were estimated using Levenberg-Marquardt algorithm in IBM SPSS software. For 

development of the model data from March 1997 to August 2013 were used. One Step Ahead 

Forecast (OSAF) of September 2013 was made to check the suitability of the developed 

model. The models with g(t)=a and a+bN(t) failed to converge or converged to undesirable 

local minima having no logical interpretation. The final model is given by 

                                                        
te

tN
056.0903.51081

874.760
)(ˆ


 . 

R
2
 of the model was found to be 0.997. OSAF was found to be very encouraging, which is 

within 4% of actual number. The maximum potential of GSM markets in India was found to 

be 760.874 million, which is likely to be achieved beyond 2020. The lower and upper limits 

of 95% confidence interval of this estimate are 748.351 and 773.397, respectively. The point 

of inflexion of this model is at K/2, which is found to be 380.437 and occurring in December 

2009. The second growth phase i.e., the fast growth phase appeared to have ended in 

December 2009. In the year 2020, model predicted number of GSM subscribers is found to 

be 760.032. The third phase of the growth process appeared to have started in 2009 and is 

likely to be continued till January 2020. Indian telecom industry is like to experience plateau 

in its growth trajectory beyond 2020. 
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