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1. Introduction

Exterior algebra [5] and differential forms are twaportant sections in differential
geometry. A differential form of order or anr-form is totally antisymmetric tensor of
type(0,r). At any pointp on a manifold, a-form gives a multi-linear map from threth
exterior power of the tangent spacepatoR. A fibre bundle is a space which looks
locally like a product space. It may have a différglobal topological structure in that
the space as a whole may not be homomorphic t@dupt space. Using this we have
developed some important theorems. In the calafiaifferential forms, the local field
guantities are associated with the geometric apdlegical property of the manifold. In
this paper, we finally discuss the applicationextierior algebra bundle and differential
forms on manifolds in differential geometry, gerieesd Stock’s theorem, Laplace
equation, and Maxwell’s equationsif .

2. Connections on vector bundles

A manifold is a topological space [8] which lookedlly like R™, but not necessarily so
globally. By introducing a chart we give a localdidean structure to a manifold, which
enables us to use the conversional calculus ofraelendles. A fibre bundle is, so to
speak, a topological space which looks locally likelirect product of two topological

spaces. Many theories in physics such as genelaiviy and gauge theories are
described naturally in terms of fibre bundles.

A connection on a fiber bundle [7] is a device thafines a notion of parallel transport
on the bundle; that is, a way to "connect” or idgriibers over nearby points. If the fiber
bundle is a vector bundle, then the notion of palrétansport is required to be linear.
Such a connection is equivalently specified by a&adant derivative, which is an
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operator that can differentiate sections of thatdbel along tangent directions in the base
manifold.

Definition 1. A connection on a vector bundteis a map
D:(E)-»>(T(M)®E),

which satisfies the following conditions?

i) For anys,, s, € (E),

D(s; + s;) = Ds; + Ds,
ii) Fors € (E) and anya € C*(M) ,
D(as) =da ® s+ aDs)

SupposeX is a smooth tangent vector fields dhands € (E). Let Dy s =< X,Ds >
where <,> represents the pairing betwe&iM) andT*(M). Then Dys is a section of
E , called the absolute differential quotient or ttwvariant derivative of the sectian
alongX.

Theorem 1.[4] A connection always exists on vector bundles.

Theorem 2.[1] SupposeX andY are two arbitrary smooth tangent vector fieldstia
manifoldM. Then

R(X, Y) = Dny - DyDX - D[X,Y]
hereD is the connection on a vector bun#lef rankq [1].

3. Wedge product
The wedge product of kform o and anl-form g is a k +1)-form denotedeAB. For
example, itk =1 = 1, thenaAp is the 2-form whose value at a pomts the alternating
bilinear form defined by
(an ﬁ)p(vt w) = ap (‘U),Bp w) — ap (W)ﬁp (v)
for v, we T,M. The wedge product is bilinear: for instance,ajf, andy are any
differential forms, then
aN(B+y)=aAB+aAry
It is skew commutative meaning that it satisfievagiant of anticommutativity that
depends on the degrees of the forms: i§ ak-form andg is anl-form, then a A =
(-DMBAa
(i) (Distributive Law): (wq + w) An=wi An+w, An), o AM+n)=wAn; +
w A1)
(i) (Associative Law): (fw) An =w A(fn) = f(w A1)
(i) (Skew Symmetry):n A w = —w A1 herew, n, wq, w,, Ny, and n, are 1-form ang is
a function.
(iv) g"(@nB)=gang*B, g°(fw) = (g*f)(g*w) heref is a scalar function and
hence can be regarded as a O-form. Its pull gagkoygis just the compositgo g.
(v) (Exterior Differentiation): Ifw = fidg; + fodg, + -+ fmdgm then we have
do =dfyndg, +dfa Adg, + -+ dfu ANdgm
(vi) (d? = 0). For each functiofi, d?f = d(df) = 0.
(vii) (Product Rule): dfw)=df Nw + fdw
(viii) f*(dw) =d(f*w)
(ix) Let f be differentiable mapp,y are 1-Form, then
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d(@AY)=dp A — P AdyY

We can express thzform dx A dy in Cartesian coordinates and in polar coordingtes
given by
dx ANdy =rdrAd8  wherex = rcos0, y = rsinf

Theorem 3.[2] If w is a2-form on R3 such thatlw = 0 then there exists a one fogm
such thatié = w.

Theorem 4. Suppose f:V — W is a linear map. Therf* commutes with the exterior
product, that is, for anyp eA”™ (W*) andy €A’ (W™),
ffCe AYP) = fro A frY.

Proof. Choose anyy, ..., v, € V. Then

frCo AP, e, Vrgs) = @ A Y (f (1), -, f(Vr45))
1
= CEw] sgno . (f(va(l)), ,f(va(r))).

g€ S (r+s)

1¢(f(”a(r+1)): i f(Vo(res)))

= O] sgna.f*q)(va(l), ...,va(r)).
o€ S (r+s)
f*lpb(vo(r+1): e vo(r+s))
= [0 A fPr, o, Vpss).
Therefore f*(@ AY) = fro A f Y.
This completes the proof of the theorem O

Definition 2. SupposeM is anm-dimensional smooth manifold. Then there exists a
uniqgue mapd: A(M) - A(M) such that d(A"(M)) c A"*1(M) and such that
satisfies the following:

1) Foranyw;, w; € A(M), d(w, + wy) = dw; + dw,.

2) Supposew, is an exterior differentiat-form. Then

d(wi A wy) = dwiAd wy + (—1)" w4 dw,.
3) If fis asmooth function oM, i.e.,f € A°(M), thendf is precisely the
differential of f.

4) If f € A°(M), thend(df) = 0.

The mapd defined above is called the exterior derivative.

Definition 3. The k-fold exterior product o’ is a vector spaca¥(V), together with a
linear map

0:VEk =V X ..XV > AK(V)
k times

The exterior algebra (V) =@ A¥(V) is a graded algebra, with product given by the

k
wedgeA. For finite dimensional vector spaces it is pdsstb find an explicit basis for
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each\*(V), if ey, ..., e, is a basis oF, then the sef{e; A..Ae;} 1< iy <+ < iy <
n is a basis oA¥ (V).

Definition 4. Thekth exterior bundle oveM (smooth manifold) is the vector bundle

Neon = | [ nsaemy
XEM
A section of the bundla*(M) — M is called a differentiat-form. The set of differential

k-forms is denoted bf2*(M) and the set of differential formg Q*(M) is denoted

k
by Q(M), whereQQ(M) has the structure of a module over the ring ofaindunctions
and of a graded algebra with wedge multiplication.

Theorem 5. Supposew is a differentiall-form on a smooth manifoldf. X andY are

smooth tangent vector fields avl. Then
<XAY,dw >= X<Y,0o>-Y<X,w>-<[X,Y],w>

Proof. Given that

<XAY,do >= X<Y,0>-Y<X,0>-<[X,Y],w> D
Since both sides of equatigh) are linear with respect o, we may assume thab is a
monomial

w =gdf ;wheref and g are smooth functions off
=>dw=dg A df
LHS: <XAY, dw >
=<XAY,dg Adf >

_‘<X,dg> < X,df >
T l<Y,dg> <VY,df >

Xg Xf
Yg Yf
= Xg.Yf—-Xf.Yg

RHS: X<Y, o> -Y<X,w>-<[X,Y], 0>
=X<Y,gdf>-Y<X,gdf > -<[X,Y],gdf >

=X(@Yf)— Y(gXf) —glX.Y]f
=Xg.Yf + gXYf—-Yg.Xf—gYXf—gXYf +gYXf

=Xg.Yf—Xf.Yg
Therefore L.H.S =R.H.S

This completes the proof of the theorem. O
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Theorem 6.Supposeg: M — N is a smooth map from a smooth maniféddo a smooth
manifoldN. Then the induced mapf*: A(N) - A(M) commutes with the exterior
derivative d, that is,

ffod=dof":A(N) - A(M) (2)

Proof. Since bothf* and d are linear, we need only consider the operatfdioth sides
of (2) on a monomigk.
First supposé is a smooth function oW i.e., 8 € A°(N). Choose any smooth tangent

vector field X onM. Then <X f@dp)> = <f,X,dg >
= fX(B) =X(Bof)
= <X,d(f'B) >.
Therefore fr@p)=4d{*B).
Next suppose? = u dv, whereu, v are smooth functions aw.
Then f*dp) = f*(du A dv)
=f*du A f*dv =d(f*u) Ad(fv)
= d(f*B).

Now assume that2) holds for exterior differential forms of degree r . We need to
show that it also holds for exterior differentraforms. Supposg = £; A B2,
where B, is a differentiall-form onN and B, is an exterior differentia(r — 1) form on
N. Then by the induction hypothesis we have

dof*(Br AB)=d(f"Br A f"B2)

=d(f*"BIN [T Ba— [P A d(f" B2)

fr@dBy A B2) = (B NdB2)
frod(BiA B2).

This completes the proof of the theorem. O

4. Applications in differential geometry

The exterior algebra has notable applications fiierdintial geometry, where it is used to
define differential forms [4]. A differential forrat a point of a differentiable manifold is
an alternating multilinear form on the tangent spat the point. Equivalently, a
differential form of degreek is a linear functional on thi-th exterior power of the

tangent space. As a consequence, the wedge proflunultilinear forms defines a

natural wedge product for differential forms. Diffatial forms play a major role in

diverse areas of differential geometry [6].

Let V be ann-dimensional real inner product space. We extemerirproduct
fromV to all of A(V) by setting the inner product of elements whichtemmogeneous of
different degrees equal to zero and by setting

<Wi A AW,V A LAY, >=det <wy, v >
and then extending bilinearly to all of (V).
If eq, ..., e, is an orthonormal basis @f then the corresponding bas{sl-l A A
e} 1<i; < <ip<nofA(V)isan orthonormal basis far(V).
SinceA™ (V) is one dimensionah™ (V) — {0} has two components. An orientationion
is a choice of a component ot (V) — {0}. If V is an oriented inner product space, then
there is a linear transformation
i AV) > A(V)
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called star, which is well defined by the requiraméhat for any orthonormal basis
ey, ..., ey Of V.

Theorem 7.Prove that o\P(V), *x= (—1)P("~P)_ Also prove that for arbitrary,w €
AP (V), their inner product is given By v,w >=% (W A x v) =% (x v A *xw).
Proof. First we need to show that &, ...,e, is an orthonormal basis dfm then
{{ei, ANy} 1<i; < <, <n}is an orthonormal basis fa(V). To do this we
just need to prove that

< eil VARWAY eip,ejl JARWA e]-p >= 5i1-j1 "'Sip-jp = {3 ell];ell = lp - ]p
whereg; ; is the Kronecker symbol.
It is to see that the matr(x e;,, e; >) is the identity matrix, thus

<ej,A..Aey e N.Ne, >= det(Identity matrix of size p X p) = 1.

On the other hand, i¢; A Ney, # e N.Nej that means there iskasuch that
i # Ji- This means, theth row (column) of the matrig< e;, , e;, >) is zero.
Now we need to show thatx= (—1)P™~P) in AP(V). We can assume without loss of
generality thakx 1 = e; A ... A e,. Note that the definition of implies that

el-l/\.../\el-p/\*(el-l/\.../\el-p) =e AN Ney

g L..Leg LL(gL..Lg)=C(gL..Lg)LLLgL..L§)
® (i)
then we have to do is to moy#&), n — p slots (becausé)is in A" P(V)).So we get a
(—1)™=P) for each of the basis elements théti) (becaus€ii)is in AP(V)). Since this
is true for any oriented basis, we have that (—1)P(®~P),
Finally we need to show th&tv,w >=x (W A*xv) =x (*v Axw). Again we can
simply work with monomials.

* (ei1 A Nep Ax ( e, A A el-p)) =x (e A..Ney) =1=
<eyAhep,ep NNep >
And on the other hand, if there igauch thati; # j,, thenx ( e, N .. A ejp) will be of
the formzte;;, A (something) which means that
* (el-1 A Nep Ax ( e, A .../\el-p)> =0=<e, A wNep,ep N Aep >
This complete the proof of the theorem o

Theorem 8.If w is ap-form andn is a(p+ 1)-form then(dw, n) = (w, 7).
Proof. We integrate over the closed manifdicthe relation
do A+ (—DPoAd*n=d(wA*n)

fMda)/\*n+(—1)pra)/\d*n=fMd(a)/\*n)=faMa)/\*n=0

(da), TI) = (_1)1’—1wa Ad * Ui
Sinced = n is an(n — p) —form we have
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wx (d*n) =x(xd*n) = (—1)P@Pd xqp
so that (—1D)Pldxn = (=1)P 1 (=1)POP) « (x d * )
= (—D)"*x (xd x1)
Butn is a(p+21)-form, hence
67,} — (_1)n(p+1)+n+1 % d * n= (_1)np+1 % (* d * 7’})
and so (—1DP ld xn =x6n
(dw,n) = (-DP [ wAdxn

= [}y A* (61) = (w, 61)
This completes the proof of the theorem O
A form w is called harmonic providefiw = 0. It is clear that if thep —form w
satisfies the two equatiods = 0, 6w = 0, thenw is harmonic. The converse is also
true. Indeed, itv is anyp —form then
(Aw, w) = (déw, w) + (déw, w)
= (bw, bw) + (dw, dw)
Now if w is harmonic thedw = 0
(bw,dw) + (dw,dw) =0
But each term is non-negative hence each vanigldes.dw) = 0, (6w, dw) = 0 and
this implies in turn thadw = 0, 6w = 0.

Theorem 9.If w is anyp- form then there is g — 1)-forma, a(p + 1)-form g anda
harmonicp- formy such that w = da + §8 + y. The formsda, 68,y are unique.
Proof. We shall only settle the uniqueness part. Suppeskave
da+68+y=0
We then have(da) = 0 and alsaly = 0 sincey is harmonic. Hence
dép =0,(déB,B) = 0,(6B,88) =0

6f=0,da+y,da=0,y=0
By an almost identical argument one shows thatase® is a closed-formdw = 0,
then the terndg in the Hodge decomposition afis absent w = da + y
It follows from this that ifz is anyp-cycle then[ w = [y
That is,y has the same period as daesThe result of this is that is is any closed form
then there exists a unique harmonic formvith the same periods as thosewof
This completes the proof of the theorem O

5. Generalized Stocks theorem
If M is an oriented manifold with boundargM and ifa is a(k — 1)-form defined on

(an open set containingj, then
f da =f a
M oM

Consider the 4-dimensional ba&l= {(x,y,z, t)|x? + y? + z? + t? < R} of radiusR in
R* in two ways. This is a 4-manifold with boundary {(x,v,z,t)|x% + y? + z? +
t2 = R}.

V can be expressed as the integrat [ff [, dx dydzdt [, dxAdyAdzAdt
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We use extended spherical co-ordinatgs ¢, 8, wheres measures the distance of
(x,v,zt) to the origin inR* andy the angle to the-axis. So that = o cosy and
p = osiny is the distance from the projecti@n, y, z) origin. Then lettingd, ¢ be the
remaining spherical co-ordinates gives

x = psin¢g cosf = o siny sin ¢ cos O

y = psin¢gsinf = gsiny sing sinf

Z = pcos¢ = agsinpcosep
In these co-ordinateB is described 8 <Y <m,0<¢p <m,0<0 < 27,0 <
o < R}. To simply computations, we note that form wilk geultiplied by the Jacobian
when we change co-ordinates:
020 1o ndyndond
30.0.$.0) 7" ¥ b
= o3sin*yYsinpdo Adip AdO Adep

The volume is now easily computﬁoﬁa?’ do [ sin*ydi fozn do [ sinpd¢p = %an‘*.

dx ANdy Ndz Adt =

Alternatively we can use Stocks theoremi= [  dxAdyAdzAdt=

— [, tdxAdy ndz

The parametex, y, z gives a left hand co-ordinate system on the uppetispherd/ =
Sn{t > 0}. Itis left handed becausex, y, z is left handed oR*. For similar reasons
X,y, z gives a right handed system on the lower hemigghemeret < 0. Therefore

V=—f tdx/\dy/\dz—f tdx Ady ANdz
U L

= fffx2+y2+zzsR \/R2 —x%2 —y?2—22 dxdydz
— R 5 T . 21
_Zfo f JRZ=p% dp fo sin ¢pd¢ fo do
= 8 [2 R*sin® acos?® ada

1
— _7.[2R4-
2

6. Laplace’s equation
The Laplacian is a partial differential operatofiked by

2 2 2
NN

dx? * 0y? * 0z?
This can be expressed using operatosfas V. (Vf). Suppose thaf is a gravitational
force this is known to be conservative so that —VP. Substituting intdV. F = —4mp
yields the Poisson equatid® = 4mp. In a Vacuum this reduces to Laplace’s
equatiomMP = 0.
A solution to Laplace’s equation is calledharmonic function. These are of
fundamental importance both in pure and appliedhemattics. If we writer =

Vx%+y?+z?then
m
P= - + Constant

is the potential energy associated to particle @afsm.
We expresa in terms of forms asAfdx Ady Adz = d xdf orAf =xd xdf

205



Md. Anowar Hossain and Md. Showkat Ali

once we definex (gdx Ady Adz) = g. This last formula also works in the plane
provided we define

* (fdx + gdy) = fdy — gdx

*fdxAdy =f

The* operator im dimensions always takesforms to(n — p)- forms.
We have to find out the Laplace equation [11] idapao-ordinates and use this to
determine the radially symmetric harmonic functioms the plane. The key is the
determination of the —operator:

dr = ax+ L dy =24 +yd
dx x ay y— x Y
Similarly do = _r_zdx +r—2dy
So that xdr =>dy —2dx = rdf

=Ygy X g _1
*dl = rzdyl rzdx— 1rdr
*dr/\d@—* dx/\dy——

Thus Af=*d* I ar + 2L do)
G de—l afd r)
_1or o oy

) ) ) ] ror  or? 12962 )
If fis radially symmetric, then it depends onlyroso we obtain
1df d?y _1d df
-t (r ) 0
o . . rdr drz _rar \' dr
This differential equation can be solved using d#ad techniques to get
f(r) =C + Dlogr for constant&, D

By a similar calculation we find that f(r) =C +§
are the only radially symmetric harmonic functiom®3.

7. Maxwell’'s equation in R*
In relativity theory [3] one needs to treat thectle E = E,i + E,j + E;k and magnetic
field B = Byi + B,j + B3k as part of a single field on space time. In mattie@kterms
we can take space time to bR* with the fourth coordinate as time The
electromagnetic field can be represented Byfarm
F =B3dxAdy+ BidyAdz+ BydzAdx + E;dx Adt + E;dy Adt + Ezdz Adt
If we computadF using the analogues of the rules we have
dF = (6 2+ 953 4y + 983 4, 9B dt)/\d Ady + -
ox ay ¥ "z at xnaey
—(aBl 0B; aBS)d Ady Ad +<aE2 aEl+aB3>d Ady Adt + -
“\ox "oy Tz )T G Ty o )Y
Two of Maxwell's equation’s for electromagnetism
0B
V.B =0, VXE = BT
can be expressed @B = 0. The analogue of theorem 4.1 holds&¥;, and shows that
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for somel-form called the potential. In terms of vector g this amounts to the more
complicated looking equations
B=VxX(Aji+A,j+Ask), E=VA 041, [ 042 04
= 1l 2J 3it), B= Vi =50 t dy ] 9z
There are two remaining Maxwell equations

0E
V.E = 4mp, VXB=a+4T[]

wherep is the electric charge density ajfids the electric current. After applying the
divergence theorem it implies that the electrix flarough a closed surface equ@lstt)
times the electric charge inside it. These lastMexwell equations can also be replaced
by the single equatiosh x F = 4r] of 3-forms. Here

*F =FEzdxANdy + E;dy ANdz + E;dz Adx — Bydx Adt — Body Adt — Bzdz Adt

and J=pdxANdyAdz—]zdx ANdy Adt — J;dy Adz Addt — J,dz Adx Adt
this implies thatl] = ﬁdz * F = 0. Expanding this out yields
dp /3 dp
—dtAdxANdyAdz ———dzAdxAdyAdt + - =—(—+V.J)dxAdyAdzAdt
ot 0z ot

=0

To appreciate the meaning integr%feover a solid regiof with boundarys. Then this

equals
I vsa = e

In other words the rate of change of the electniarge inV equals minus the flux of the
current across the surface. This is the law of enwaion of electric charge.
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