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1. Introduction 
The successful development of the theory of singular integral equations (SIE) naturally 
stimulated the study of singular integral equations with shift (SIES). (see [9,11,13,14], 
[15-18] and others). Existence results and approximate solutions have been studied for 
certain classes of nonlinear singular integral equations (NSIE) and nonlinear singular 
integral equations with shift (NSIES) by many authors among them we mention [1-6, 12, 
20]. The classical and more recent results on the solvability of NSIE should be 
generalized to corresponding equations with shift,(see [22]). The theory of SIES is an 
important part of integral equations because of its recent applications in many fields of 
physics and engineering, (see [8,15,17]). 

In the present paper a class of NSIES has been investigated for the case of finite 
group of iterations generated by preserving orientation Carleman shift, we discuss the 
existence and uniqueness for Holder solutions of NSIES by application of a generalized 
Kantorovich majorization principle. This majorization principle reduces the problem of 
finding fixed points of abstract nonlinear operators in Banach spaces to that of finding 
fixed points of simple convex functions on the real line. In this technique, we do not 
require Frechet differentiability of nonlinear operator involved, but only a suitable 
Lipschitz condition.  
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2. Formulation of the problem 
Let Γ  be a simple smooth closed Lyapunov contour, which divides the plane of the 

complex variable Z  into two domains, the interior domain +D  and the exterior domain 
−D , and let RRG →×Γ×Γ:  be given Caratheodory function (i.e. function which are 

continuous in the last variable and measurable in the other variables) in the Lebesgue 
space ( ) ( )∞≤≤Γ= pLL pp 1,  . and assume that G  satisfies the following Lipschitz 

condition 

                          ( ) ( ) ( ) ( )ruuuurAustGustG ≤−≤− 2121121 ,,,,,,            (1.1) 

where ( )rA1  denotes the Lipschitz constant for G . The purpose of this paper is to 
investigate NSIES: 
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By means of the generalized Kantorovich majorization principle under the assumption 
that ( )tα  homeomorphically maps Γ  into itself with preservation orientation and satisfies 
the Carleman condition: 
                                                ( ) ( ) 11,, −≤≤≠= mitttt im αα , 

where 
                                                 ( ) ( )[ ] ( ) ,, 01 tttt ii == − αααα  

 and 2≥m . Moreover assume that ( )t'α  satisfies the Holder condition and the 

coefficients ( ) ( ) 1,...,1,0,, −= mitbta ii  belong to the generalized Holder space ( )ωΓH  

and ( )∞∞−∈ ,λ , is a numerical parameter, the function ( )( )ττ utG ,,  is a given function 

and ( )tu  is an unknown function.  

Our problem has been studied when, ( ) 1,...,1,0,0 −== mitai  by applicability of 

Banach fixed point theorem in [3], also it has been studied under same preceding 
condition and Γ  is a real segment , (without shift), in usual Holder space in [21] . 

 
3. The generalized Kantorovich majorization principle 
Let X be a Banach space, and let ( ) XRuB →Ρ ,: 0  be a nonlinear operator where 

( )RuB ,0
 denotes the closure of the ball ( ) { }.,:, 00 RuuXuuRuB <−∈=  

Suppose that the operator Ρ  satisfies the local Lipschitz condition    

                ( ) ( ) ( ) ( )( )RrRuBuuuurkuu ≤∈−≤Ρ−Ρ ;,,, 0212121  ,                 (2.1) 

where ( )rk  denotes the minimal Lipschitz constant for Ρ  on the ball ( )RuB ,0 , i.e. 

                           ( ) ( ) ( ) ( )
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Define a scalar function φ  on [ ]R,0  by                                       



On the Existence and Uniqueness of Holder Solutions of Nonlinear Singular Integral 
Equations with Carleman Shift  

137 
 

                                                   ( ) ( )∫+=
r

dttkar
0

φ ,                                                 (2.2) 

where  

                                                      00 uua Ρ−= .                                                   (2.3) 

 
Theorem 2.1. [7]  Let ( ) XRuB →Ρ ,: 0

 be an operator satisfying a Lipschitz condition 

(2.1). Suppose that the scalar equation (2.2) has a unique fixed point [ ]Rr ,0∈∗  and that 

( ) RR ≤φ . Then the operator Ρ  has a fixed point ∗u in the ball ( )∗ruB ,0 , this solution 

is unique in the ball ( )RuB ,0 , and this fixed point may be obtained as limit of the 

successive approximations                                          

                                                        ( )∗∈Ρ= ruBuu n
n ,00 . 

 
 We make  some remarks on Theorem 2.1. The usefulness of this theorem consists 
in reducing the hard problem of finding fixed points of a nonlinear operator in a Banach 
space to the simple problem of finding fixed points of a scalar function. Moreover, in the 
generic case Rr <*  we get much more information on *u  than just existence, the 

smaller we may choose the fixed point *r  of φ , the better we may localize the fixed 

point *u  of Ρ , and the larger we may choose the invariant interval [ ]R,0 , the better we 

may exclude other fixed points of Ρ . The case Rr =* , we may guarantee then only 

uniqueness in ( )RB ,0  and existence in ( )RB ,0 . 

 Since the function k  in (2.1) is increasing, the function φ  in (2.2) is convex. 

Consequently, existence and uniqueness of fixed points of φ  essentially depend on the 
size of the initial value a  in (2.3). Of course, in the classical Banach-Caccioppoli fixed 
point principle we simply have ( ) 1<= krk . In this case we have existence and 

uniqueness in ( )RB ,0 , where ( ) akrR 1
* 1 −−=≥  may be chosen arbitrarily large [7].    

 
4. Some notations and auxiliary results 
In this section, we introduce some notations and auxiliary results, which will be used in 
the sequel. 
 
Definition 3.1.[10] We denote by Φ  the class of all functions )(δω , defined on( ]l,0 , 

where l  is the length of the curveΓ , which satisfies the following conditions: 
1. )(δω  is a modulus of continuity, 

2. ∞<=∫
>

ω

δ

δ

ω
δω

Ids
s

s

00

)(

)(

1
sup , 



Samah M. Dardery 

138 
 

3.  .
)(

)(
sup

2
0

∞<=∫
>

ω
δδ

ω
δω

δ
Jds

s

sl

 

 
Definition 3.2. [10] The generalized Holder space ( )ωΓH  is the set of all continuous 

function ( )tu  such that  
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For ( )ωΓ∈ Hu  we define the norm: 
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For singular integral operators, where 
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is also a caratheodory function, 
                                                     ( ) ))(()( tutWu α= , 

for shift operator, and the operators 21,BB are defined by 
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where  
                                             ( ) 1,...,1,0)),(()( −== mitutuW ii α . 

Consequently, The equation (1.2) takes the following operator form: 
 
                                            ( ) ( )( ) ( )( )tuBtSuBtu GΛ+= 21 .                                  (3.5) 

 
Now, we study the singular integral operator GΛ  defined by the equality (3.1) where the 

function RRutGG →×Γ×Γ= :),,( τ  satisfies the following condition: 
   

                              )()(*),(),( 2132122211 ττωωττ −+−≤− AttAtvtv ;           (3.6)        

 
where ( ) ( )utGtv ,,, ττ = ,  and for Φ∈)(*,)( δωδω  , we have  
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                                                 ),()ln()(* 4 δωδδω Al ≤                                         (3.7)                

where 32 , AA  and 4A  are positive constants. 

                                 
Lemma 3.1. If the function ),,( ustG  satisfies the conditions (3.6), (3.7), then the 

operator GΛ  defined by (3.1) is bounded on ).(ωΓH  

Proof: Now, putting  
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From Definition (3.1) and inequalities (3.6), (3.7), we get 
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where                                                          θτ dmd *≤ , 

 *m  is a positive constant [8]. 

Now, we estimate ( ) ( )21 tftf − as follows: 

Suppose 021 σ<− tt , fix an arbitrary number n , 210 /1 ttn −<< σ . Draw a circle of 

radius 21 ttn −=σ  centered at the point 1t . This circle intersects Γ  at two points 1ε  and 

2ε . The part of Γ  lying within this circle is denoted by 21εε . 

( ) ( ) ( ) ( ) ( ) ( )∫∫∫∫
ΓΓΓΓ −

−
−
−

−
−

+
−
−

=−
2

22
1

222

1
11

1

111
21 ,

,),(
,

,),(

t

d
ttvd

t

ttvtv

t

d
ttvd

t

ttvtv
tftf

τ
ττ

τ
τ

τ
ττ

τ
τ

Therefore, we get 
    

( ) ( ) ( ) ( ) ( )

( ) ( )( )
( ) ( )( ) ( ) ( )( )

.

,,
,),(

,),(,),(,),(

54321

\ 1
1122

\ 21

22221

\ 1

21

2

222

1

111
21

2121

212121

IIIII

i
t

d
ttvttvd

tt

ttvtvtt

d
t

tvtv
d

t

ttvtv
d

t

ttvtv
tftf

++++=












−

−
−+

−−
−−

+

+
−
−

+
−
−

+
−
−

≤−

∫∫

∫∫∫

ΓΓ

Γ

π
τ

ττ
ττ
τ

τ
τ

τττ
τ

ττ
τ

τ

εεεε

εεεεεε

 
 From, [20], we obtain 

                                        ( ) 5,..,2,1;21 =−≤ ittMI ii ω  

,*,)1(*2,)1(*2 4233231 AAmMInAmMInAmM =+=+= ωω  
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Therefore, we have 

                                                 ,21 ∧+∧≤Λ
ΓHGu                                             (3.8) 

where                                   ( ) ,)(3
*

1 vMlIAm πωλ ω +=Λ     

and                                       )( 543212 MMMMM ++++=∧ λ .      

 
Hence, the nonlinear singular integral operator GΛ  defined by the right-hand side of  

(3.1) is a bounded operator in generalized Holder space )(ωΓH . 

Lemma 3.2. [10,19] Let the function ( )tu  belong to the space ( )Γc and 
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are valid, where 1c and 2c  are constant. 
 

Lemma 3.3. The singular operator S  is a bounded operator on the space ( )ωΓH . 
 
Proof: From Definition 3.2, we have 
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From Lemma 3.2, we have  
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Hence, from Definition 3.1, we get 

                                                            
ΓΓ

≤
HH

uSu 0ρ .                                        (3.9) 

where 0ρ  is a constant defined as  
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Thus, the lemma is proved. 
 
Lemma 3.4. [2] Let the function )(;)(),(),( ττττ hhtmtg =  belong to the generalized 

Holder space )(ωΓH . Then the following inequality is valid 

                     )()(),0()0,(),( 2121 δωβδωδωδδω ω hHhh mcmcg Γ++≤ ,    (3.10) 
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The proof of boundedness of the operator L  in the generalized Holder space )(ωΓH  

depends on the classical Zygmund inequality [19], 
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where c  is a constant. 
 
In the following Theorem, the function ),( τtmm =  should carry the following quite 
restrictive conditions[10]: 
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Theorem 3.1. The nonlinear singular operator L  is a bounded operator on the 
generalized Holder space )(ωΓH . 

Proof:  Let                                                                              
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from, [2], we have 
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From, the inequalities (3.17) and (3.18), we obtain 
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~
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Thus, the theorem is proved. 
 
Theorem 3.2. [2] The shift operators 2,1; =iBi  are bounded operators on the 

generalized Holder space ( )ωΓH  and satisfy the inequality 
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5. Existence and uniqueness of the solution 
Our aim is to apply a generalized Kantorovich majorization principle (Theorem 2.1) to 
the following nonlinear singular integral operator 
 
                                        ( )( ) ( )( ) ( )( )tuBtSuBtPu GΛ+= 21 .                                      (4.1) 

In order to apply Theorem 2.1 to the operator Ρ  defined by (4.1), we have to find an 
explicit formula, or at least a good upper estimate, for the Lipschitz constant ( )rk  in (2.1)  

where we take for simplicity .00 =u  

Since 

                    
ΓΓΓΓΓ

Λ−Λ+≤Ρ−Ρ
HGGHHHH

uuBSBuu 212121 .         (4.2) 

 From condition (1.1), we get the nonlinear operator (3.1) whose Lipschitz constant 
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in the generalized Holder space ( )ωΓH . From the Lagrange formula, we obtain 
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Therefore from the inequality (3.19), we get 
                                                          ( ) γλ=rk * .                                                   (4.4) 

hence, from the inequalities (3.9), (3.20) the minimal Lipschitz constant for the operator 
Ρ  on the ball ( )RB ,0  is given by 

                                                         ( ) 201 Θ+Θ= γλρrk .                                      (4.5) 

Choosing  

                                                      ( ) 1
2

1
011 −− ΘΘ−< γρλ , 

consequently, the relation (4.2) takes the following form: 

                                                
201
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H
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uu

uu
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In this way, we arrive at the following theorem: 
 
Theorem 4.1.  Suppose that the operators (3.1)-(3.4) act in the space ( )ωΓH and are 

bounded. Moreover, suppose that the scalar function [ ) [ )∞→∞ ,0,0:φ  defined by    

                                       ( ) ( )rar 201 Θ+Θ+= γλρφ                                                                           

( ( )
Γ

=
H

Pa 0 ) has a unique fixed point ( ) 11 −
∗ Ω−= ar , (

201 Θ+Θ=Ω γλρ and 

1<Ω ) in some interval[ ]R,0 , ( )*rR ≥ , and ( ) RR ≤φ . Then equation (3.5) has a fixed 

point ( ) ( )ωΓ∗ ⊂∈ HRBu ,0 . This fixed point may be obtained as limit of the 

successive approximations ( ) ( ) ( )RBPu n
n ,00 ∈=  and is unique in the ball ( )RB ,0 . 

We introduce an elementary example, shows that this principle may be 
considered as a modification of a classical Banach fixed point principle.  
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Example. Suppose the nonlinear operator    

                                    ( ) ,;2 ∞<<∞−++=Ρ uducbuu  

where 

                                    ( ) 10;41 2 <<>− δδ db ,                                             (4.7) 

and u is a function of t. It is clear that 

         bruuuuuubc
uu

uu
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ΓΓ
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Γ δ  

From inequality (2.1), we get ( ) brrk 2+= δ , obviously, the scalar function (2.2) takes 
the form:  
                                            ( ) drbrr ++= δφ 2 . 

From condition (4.7), the function ( )rr φ−  has two positive roots  

                                     ( ) ( )[ ]{ }.411
2

1 212 dbR −−±−=± δδ . 

Consequently, the condition ( ) RR ≤φ  holds for any [ ]+−∈ RRR , , and Theorem 2.1 

applies. Observe that ( ) ∞→∞→ rasrk , , in this example, therefore the classical 

Banach fixed-point principle does not apply. 
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