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1. Introduction

The successful development of the theory of singinfizgral equations (SIE) naturally
stimulated the study of singular integral equatiaith shift (SIES). (see [9,11,13,14],
[15-18] and others). Existence results and appraténsolutions have been studied for
certain classes of nonlinear singular integral #goa (NSIE) and nonlinear singular
integral equations with shift (NSIES) by many authamong them we mention [1-6, 12,
20]. The classical and more recent results on thlgability of NSIE should be
generalized to corresponding equations with skdg([22]). The theory of SIES is an
important part of integral equations because ofatent applications in many fields of
physics and engineering, (see [8,15,17]).

In the present paper a class of NSIES has beestigated for the case of finite
group of iterations generated by preserving origmiaCarleman shift, we discuss the
existence and uniqueness for Holder solutions dEISSy application of a generalized
Kantorovich majorization principle. This majorizati principle reduces the problem of
finding fixed points of abstract nonlinear operatan Banach spaces to that of finding
fixed points of simple convex functions on the rbaé. In this technique, we do not
require Frechet differentiability of nonlinear optr involved, but only a suitable
Lipschitz condition.
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2. Formulation of the problem
Let [ be a simple smooth closed Lyapunov contour, whiistides the plane of the
complex variableZ into two domains, the interior domald " and the exterior domain
D ,and letG:I xI' xR - R be given Caratheodory function (i.e. function whare
continuous in the last variable and measurablééndther variables) in the Lebesgue
spacel , = Lp(l'),(ls p< 00) . and assume thd satisfies the following Lipschitz
condition
Glt,s,u,) - Glt,s,u,)| < A () Ju —u,|,  (Juglu,|<r) (1.2)
where Al(r) denotes the Lipschitz constant f@ . The purpose of this paper is to
investigate NSIES:
m-1
u(t) = Z(a’—(t)jﬂ dr+ b (t)J Glai(t)r, u(T))d rj, tar. (1.2)
i=o\ 771 I'T_ai(t) r T_ai(t)
By means of the generalized Kantorovich majorizatioinciple under the assumption
that a(t) homeomorphically mapE into itself with preservation orientation and sfiéis
the Carleman condition:

a,(t)=t, a;(t)#t, 1<i<m-1,
where

a;(t) = alai4(t)].aot) = t,
and m = 2. Moreover assume thaﬂ'(t) satisfies the Holder condition and the
coefficients a, (t),bi (t),i = 01,...,m~-1 belong to the generalized Holder spa¢g(c.)
and A [ (—00,00), is a numerical parameter, the functﬁlﬁt, T,u(r)) is a given function
and u(t) is an unknown function.

Our problem has been studied wheaq,(t): 0,i =0]L,...,m-1 by applicability of

Banach fixed point theorem in [3], also it has besundied under same preceding
condition andl” is a real segment , (without shift), in usual Hwldpace in [21] .

3. The generalized Kantorovich majorization principle
Let X be a Banach space, and IetB(u,,R) ~ X be a nonlinear operator where

B(u,, R) denotes the closure of the bal(uy, R)={u:u0X, |u-u,| <R
Suppose that the operatBrsatisfies the local Lipschiiz condition
|P(uy) -~ Plu,) [ <k(r) | u, —us), (u,u, 0B(uy,R) ;r <R), (2.1)
where k(r) denotes the minimal Lipschitz constant féron the baIIE(uO, R), ie.
k(r) :sup{w :u,,u, 0B(u,, R);u, # uz}.

[y =y
Define a scalar functiog on[o,R| by
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r

@r)=a+ [k(t)dt 2.2)
where °

a=| u, —Puy|. (2.3)

Theorem 2.1. [7] Let P:B(u,,R) — X be an operator satisfying a Lipschitz condition
(2.1). Suppose that the scalar equation (2.2) hascue fixed pointry D[O, R] and that

¢(R) < R. Then the operatdP has a fixed pointU, in the ball B(uy, 1), this solution

is unique in the baIIB(uo,R), and this fixed point may be obtained as limittio¢
successive approximations
u, =P"u, 0B(u,,r).

We make some remarks on Theorem 2.1. The ussBibfahis theorem consists
in reducing the hard problem of finding fixed paimtf a nonlinear operator in a Banach
space to the simple problem of finding fixed poiots scalar function. Moreover, in the

generic casel, <R we get much more information oun, than just existence, the
smaller we may choose the fixed point of ¢, the better we may localize the fixed
point u, of P, and the larger we may choose the invariant iaie[r@, R], the better we
may exclude other fixed points d¥. The caser. = R, we may guarantee then only
uniqueness irB(O, R) and existence i|§(0, R).

Since the functiork in (2.1) is increasing, the functiog in (2.2) is convex.
Consequently, existence and uniqueness of fixedtpaif ¢ essentially depend on the

size of the initial valuea in (2.3). Of course, in the classical Banach-Camooli fixed
point principle we simply havek(r)=k<1. In this case we have existence and

unigueness ir1§(0, R), whereR=r, = (1— k)_la may be chosen arbitrarily large [7].

4. Some notations and auxiliary results
In this section, we introduce some notations andliaty results, which will be used in
the sequel.

Definition 3.1.[10] We denote byd the class of all functions(J), defined or(O,I],

wherel is the length of the cunfe, which satisfies the following conditions:
1. a(0) is a modulus of continuity,

w(S)dszlw@o,

2sup—f <

0>0 CL(J)
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as)

ds=J, <co.

3. sup—j
5>O
Definition 3.2. [10] The generalized Holder spa¢¢r(a,) is the set of all continuous
function u(t) such that
t,)—ult
He(u)= sup|u(1) u(t, )| <o
O W |t1—t2|
For udH, («) we define the norm:

o =l + HE (), where] ull ) = maxu(t)].

tar

Using the notations
G(t T, u(r)) dr,

(Asu)t) =4 j (3.1)
AJ' e dr; ht)OH, (@), (32)
1 u(r)
Sulit)=— | —+ 3.3
(su)t) m!f_t (3.3)
For singular integral operators, where
I(t,s,u) = M
ou
is also a caratheodory function,
(wu)t) = ua ().,
for shift operator, and the operatdss, B, are defined by
m-1 m-1
(Bu)®) =X a ®Wu(t), (Bu)t) = b (HWut). (3.4)
i=0 i=0
where
(Wu)t) =u(e, (), i=04..m-1.
Consequently, The equation (1.2) takes the follgvaperator form:
u(t) = (B,su)(t) + (B,Acu)(t). (3.5)

Now, we study the singular integral operatbg, defined by the equality (3.1) where the
function G = G(t,7,u) :I' xI' xR - R satisfies the following condition:

|V(t1’ 71) =~ V(t,, Z-2)| < A w* (|t1 _t2|) + A3w(|T1 - T2|) : (3.6)
wherev(t, r) = G(t, r,u), and fora(0),a* (0) P , we have
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w* (0)In(1/0) < A,aX9), 3.7)

where A, , A, and A, are positive constants.

Lemma 3.1. If the function G(t,s,u) satisfies the conditions (3.6), (3.7), then the
operator/\; defined by (3.1) is bounded dr [ ().
Proof: Now, putting

£y = (VET) _
f(t) —!ﬁdr, M, = (trrr})ma}>x<r|v(t,r)| ,

From Definition (3.1) and inequalities (3.6), (3.We get

_ ) -, d
‘f(t)‘s!%r +|v(t,t)|'IT—_Tts

sm Al ) +7M, ,
where d7j<m’d8,
m" is a positive constant [8].
Now, we estimatef (t,) - f t, ) as follows:
Suppose|t1 —t2| <g,, fix an arbitrary numben, 1<n<g, /| t, —t2|. Draw a circle of
radiuso = n|t1 —t2| centered at the poirt. This circle intersect§ at two pointse; and
&,. The part ofl lying within this circle is denoted byg,&, .

f(tl)—f(tz):lw dT+V(t1,t1)!TdT _Iv(tz,r)—V(tz,tz) | dr

“4og -t r 7L,

Therefore, we get

7)) <

J' V(tl!r)_v(tlltl) dﬂ_i_

r-t,

J' V(tZ!T)_V(tZ'tZ) dﬂ_k

r-t,

J‘ V(tl’r)_V(tZ’T) dﬂ_k

&£&) &£&) MNe&e, r= t1

+ (tl _tz)(v(tza T) _V(tzitz )) +
B =y () dﬂ

S P P P

(v(tz,tz)—v(tl,tl){ [ _ﬁ}

Nee, 1

From, [20], we obtain
I <Mt -t,));i=12,..5
M, =2m* A,(n+DI,, M,=2m* A (n+D)l,,, M, = m*AA,
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M. :‘nTﬂVm* A, Mg =(AA(N(/9)™ +AIM,,

where
M, = dr |
r/&¢, _tl
Therefore, we have
AU, <O+, (3.8)
where A, :|/1|(m*A3Iww(I) +7T|V|V),
and 0, =[A|(M, +M, + M, + M, +My).

Hence, the nonlinear singular integral operafog defined by the right-hand side of
(3.1) is a bounded operator in generalized HolgaceH - (&) .

Lemma 3.2. [10,19] Let the function u(t) belong to the spacec(l')and

|

j#d( <o, wherew, (0) = sup|u( t,)- u(t2)|. Then the following inequalities

0 |ty ~t|<d

|, < c{j#d( +||u||cj, wg,(d)<c [.[ ;f)

0

! (f) j
are valid, wherec, and ¢, are constant.

Lemma 3.3. The singular operato® is a bounded operator on the spekd:fs(a)).
Proof: From Definition 3.2, we have
—_ w
| Hr_||SJ||c(r)+HF (SJ)
From Lemma 3.2, we have

p CU wuz(z)d@”unc} . sup w(%) U a)uéf)

0 0

| u Hr@@d( +1]+ c,|u

Hence, from Definition 3.1, we get
[Sull,, < o] ul, (3.9)
where p, is a constant defined as

w(f) J

e
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Po = C{j@dz +1J+Cz(|w +J,)

Thus, the lemma is proved.

Lemma 3.4. [2] Let the functiong(t,7) = m(t,7) h(7); h(7r) belong to the generalized
Holder spaceH - (&) . Then the following inequality is valid
©,(0,,8,) < ], @,(3,.0) + [, @, 0,8,) + BHE(MeAd),  (3.10)
where
Wy (4,,0,) = I_SIL"'p |g(t1’r1) g(tz’rz)|

11-T5|<0,

and ma>1m(t T)|

t,rar

The proof of boundedness of the operatorin the generalized Holder spadd, (¢.)
depends on the classical Zygmund inequality [19],

%(6)50(] <g‘()df Jjw(‘z) J (3.11)

wherec is a constant.

In the following Theorem, the functiom=m(t,7) should carry the following quite
restrictive conditions[10]:

1 Supwm(i())()d";(l/d) =J, < (3.12)
0<o<I
t@,0¢)
2. m d :J2<00 3.13
i?fw(a)j : 519
@, (0,¢)
3. d J; <o 3.14
sup | e @19

Theorem 3.1. The nonlinear singular operatot is a bounded operator on the
generalized Holder spadd - (&) .

Proof: Let
m(t,7)h(7) = g(t,7), 3.15)
and f) =4[ 9D 4 3.16)
L T-t
where

[(t,7,u(r)) =m(t,7) ,
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from, [2], we have

¥ =00, + 1R em) (3.17)
and N 5 _
He(E) <A (TR +THEM) (3.18)
where
|
om0 g 1= g K
0 0

- | ~
|4:C(‘|];]5+‘]1+‘]2+J1j1 |4:CIB(IC¢)+J&))'

From, the inequalities (3.17) and (3.18), we obtain

L], <[Aly[H],, (3.19)
where
y= max{l4 +I~4,I5 +r5}.
Thus, the theorem is proved.
Theorem 3.2. [2] The shift operatorsB, ;i =12 are bounded operators on the
generalized Holder spadé («.) and satisfy the inequality
[B U, <&, i=12 (3.20)
m-1 m-1
where ©, =max{ M, +L, My |, Mg =D lat)].. Mg =D |b ()]
i=0 i=0

m-1 m-1

and Ly =Y HZ(a), Lg, => H?(b).

i=0 i=

5. Existence and uniqueness of the solution
Our aim is to apply a generalized Kantorovich miaption principle (Theorem 2.1) to
the following nonlinear singular integral operator

(Pu)(t) = (B,Su)(t) + (BAGu)E)- (4.1)
In order to apply Theorem 2.1 to the operakbrdefined by (4.1), we have to find an
explicit formula, or at least a good upper estimfatethe Lipschitz constark(r) in (2.1)

where we take for simplicity, = 0.
Since
|Pu, —Pu, [, <[B], [S], +IB:l, [Acu-Acu,l, - (4.2)
From condition (1.1), we get the nonlinear oparédl) whose Lipschitz constant
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sy, |
oy,

k' (r)= <rt. 4.3
(r) Sup{ Hul_uz HHr UZHH,— <r} ( )

in the generalized Holder spagg- (). From the Lagrange formula, we obtain

G(t.7u,(r)) - G(t,7u, (1)) =[u,(r) - u, (r)]j I(t.7,(1-8)u,(r) + eu,(r)) de.,

hence, we get

NG u —A

1

W @)-u, @)1 €.7.0-6) u(r)+6u,(r))de

H (/\Gul)(t)_(/\euz)(t)HHr s /]J. 0 — dr|

HI’
hence,

[Aou,=Aqu, ], <|L@)h], . whereh(r)=u,(r)-u,(r).
Therefore from the inequality (3.19), we get
k' (r)=|Aly . (4.4)
hence, from the inequalities (3.9), (3.20) the miai Lipschitz constant for the operator
P on the ballB(0, R) is given by
k(r)=e, p, +|4|y0,. (4.5)
Choosing
<@-0.0,)r 05"
consequently, the relation (4.2) takes the follgniorm:
| Pu —Pu, |,
<0, p, 1| YO, (4.6)
Ju, —u, HH,—
In this way, we arrive at the following theorem:

Theorem 4.1. Suppose that the operators (3.1)-(3.4) act in ﬂm:eer(a)) and are
bounded. Moreover, suppose that the scalar fungig,«) - [0,c0) defined by

o(r)=a+(0, p, +|4|y©,)r
(a=|P(0)|,, ) has a unique fixed point,=all-Q)", (Q=0,p,+/)|y0, and
Q <1)in some interva[O, R], (R > r*), and ¢(R) < R. Then equation (3.5) has a fixed
point u,0B(0,R)0H,(w). This fixed point may be obtained as limit of the
successive approximations = (P)"(0)0B(0,R) and is unique in the baiB(0,R).

We introduce an elementary example, shows that ghiaciple may be
considered as a modification of a classical Barfixell point principle.
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Example. Suppose the nonlinear operator
P(u)=bu® +c|u[ +d; —w <u <,
where
(1-9)*>4b|d; 0<5<1, (4.7)
and uis a function of t. It is clear that

Pu, -P
|Pu: =P, s(c+dul+u2
Juy =u [,

Hr

From inequality (2.1), we gek(r) =0 + 2br, obviously, the scalar function (2.2) takes
the form:

-1
<o+ 2br
Hr

pr)=br? +or +|d| .
From condition (4.7), the function — ¢(r) has two positive roots

R :%{ (1-8)« [1- &) - 4bd] ”2}..
Consequently, the conditioa(R)s R holds for anyRD[R_,R+], and Theorem 2.1

applies. Observe thak(r) L ,asr - oo, in this example, therefore the classical
Banach fixed-point principle does not apply.
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