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1. Introduction
The fixed point theory has become a part of noadirfunctional analysis since 1960. It
serves as an essential tool for various branchesnathematical analysis and its
applications. Polish mathematician Banach publidtis¢tontraction Principle in1922. In
1928, Menger[17] introduced semi-metric space gergeralization of metric space. In
1976, Cicchese [6] introduced the notion of a @mitve mapping in semi-metric space
and proved the first fixed point theorem for thiass of spaces. In 1986, Jungck [13]
introduced the notion of compatible mappings. IN97,9 Hicks and Rhoades|[8]
generalized Banach contraction principle in semirimespace. In 1998, Jungck and
Rhoades [14] introduced the notion of weakly corfg@tmappings and showed that
compatible mappings are weakly compatible but nawversely. Recently in 2006,Jungck
and Rhoades [15] introduced occasionally weakly gatible mappings which is more
general among the commutativity concepts. Jungak Rinoades[15] obtained several
common fixed point theorems using the idea of docadly weakly compatible
mappings. Several interesting and elegant resaite been obtained by various authors
in this direction. There have been interesting gaized and formulated results in semi-
metric space initiated by Frechet [7], Menger [aid8l Wilson[20]. Also, in this paper, we
prove a common fixed point theorem for three pafrself-mappings using occasionally
weakly compatible mappings.

Let X be a non-empty set amdX X X — [0, ). Then,(X,d) is said to be a
semi-metric space (symmetric space) if and only if it satisfies thowing:
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W1:d(x,y) = 0ifand only ifx = y, and

W2:d(x,y) = d(y,x) if and only ifx = y for anyx,y € X.
The difference of a semi-metric and a metric cofrm® the triangle inequality.

Definition 1.1. [1] Let A and B be two self-mappings of a semi-metric spéXgd).
Then, A andB are said to becompatible if T{ir{)lod(Aan, BAx,) = 0, whenevefx,} is

a sequence in X such thatlim d(Ax,, t) = limd(Bx,,t) = 0, for some& € X.
n—oo n—-oo

Definition 1.3. [1] Let A andB be two self-mappings of a semi-metric spéXgad).
Then, A andB are said to beveakly compatible if they commute at their coincidence
points.

Definition 1.4. [15] Let A andB be two self-mappings of a semi-metric sp@tal).
Then,A andB are said to beccasionally weakly compatible (owc) if there is a point
x € X which is coincidence point & andB at whichA andB commute.

Example 1.1. Let us considek = [2,20] with the semi-metric spacé€X, d) defined by
d(x,y) = (x — y)?. Define a self mapandB by

A(2) = 2atx = 2 andA(x) =6 forx > 2
B(2)=2at=2,B(x) =12for2 <x <5 andB(x) =x — 3 for x > 5.

Now, A(9) = B(9) = 6, besidex = 2 ,x = 9 is another coincidence point oA andB.
AB(2) = BA(2)but(9) = 6 BA(9) =3, AB(9) # BA(9). ThereforeA and Bare owc
but not weakly compatible. Hence weakly compatibb@ppings are owc but not
conversely.

Lemma 1.1. [15] Let(X,d)be a semi-metric space. If the self mappigadB onX have
a unique point of coincidenge= Ax = Bx, thenw is the unique common fixed point of
A andB.

In order to establish our result, we consider &tion @: R* - R* satisfying
@DO0<@(t) <t fort >0, and @2) foreach >0, lim@™(t) = 0.
n—oo

2. Main Results

Theorem 2.1. Let (X,d) be a semi-metric space. L&tB, T, S, P andQ be self-mappings

of X such that

() {AB, P} and {TS, Q} are occasionally weakly compatible (owc),

(i) d(ABx, TSy) < @(max {d(Px, Qy),% [d(ABx, Px) + d(TSy, Qy)],% [d(ABx, Qy) +
d(TSy,Px)]})forall (x,y) € X X X,

ThenAB, TSP andQ have a uniqgue common fixed point. Furthermorthéfpairs A, B)

and (T, S) are commuting pair of mappings thén B, T, S P andQ have a unique
common fixed point.
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Proof: Since{AB,P} and{TS, Q}are owc, then there existsy € X such thalBx =
PxandTSy = Qy. We claim thalBx = TSy. Using condition (ii), we get

d(ABx, TS)) < @(max {d(Px, Qy),; [d(ABx, Px) + d(TSy, Qy)],5 [d(ABx,Qy) +

d(TSy,Px)1})

= @(max {d(ABx, TSy),% [d(ABx,ABx) + d(TSy, TSy)],%[d(ABx, TSy) +
d(TSy,ABx)]})

= @(max {d(ABx,TSy),0,d(ABx,TSy)})

= @(max {d(ABx,TSy)})

= @( d(ABx,TSy))

<d(ABx,TSy)

which is contradiction. S@dBx = TSy. ThereforeABx = Px = TSy = Qy. (2.1)

Moreover, if there is another point of coincideacgich thadBz = Pz, then
usingcondition (ii), we get

ABz =Pz =TSy = Qy(2.2)

Also from (2.1) and (2.2), it follows thdtBz = ABx. This implies that = x.
Hencew = ABx = Px, forw € X, is the unique point of coincidence gfBandP. By
Lemma 1.1,w is the unique common fixed point 4BandP. HenceABw = Pw = w.
Similarly, there is a unique common fixed pointt € X such that u = TSu = Qu.
Suppose that #= w.Then using condition (ii), we get.

d(w, u)= d(ABw, TSu)
1 1
< @(max {d(Pw, Qu),z [d(ABw, Pw) + d(TSu, Qu)],§ [d(ABw, Qu)
+ d(TSu, Pw)]})

= @(max {d(w, u),% [dw,w) +d(u, u)],% [dw,u) +d(u,w)]})

= @(max {d(w,u),0,d(w,u)})

=0(d(w, u))

<d(w,u).
This is contradiction. Therefore, we hawe= u. Hencew is the unique common fixed
point of AB, TS P andQ. Finally, we need to show thatis only the common fixed point

of mappings4, B, T, S, P and Q. If the pairs A, B) and [T, S) are commuting pairs, then
for this, we can write

Aw = A(ABw) = A(BAw) = AB(Aw) . This implies thatAw =w . Also, Bw =
B(ABw) = BA(Bw) = AB(Bw). This implies thaBw = w.

Similarly, we havdd'w = wandSw = w.

HenceA, B, T, S, P andQ have a uniqgue common fixed point.

Example 2.1. ConsiderX = [0,1] with the semi-metric space(X,d) defined by

d(x,y) = (x — y)?. Define self mappings B, T, S P and Q asdx = XT“ Bx = 2+53x,
Tx = 2x3+1, S(x) = x%gP(x) = 3"4“ andQ(x) = 2x5+3. Also, the mappings satisfy all the

conditions of above Theorem 2.1 and hence havégaieicommon fixed point = 1.
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On the basis of above Theorem 2.1, we have thewoil corollary.

Corollary 2.1. Let (X,d) be a semi-metric space. L&t B, T, S P and Q be self-

mappings o such that

() {AB, P} and {TS, Q} are occasionally weakly compatible (owc),

(i) d(ABx, TSy) < @(max {d(Px,Qy),d(ABx,Qy),d(TSy, Px),% [d(ABx, Px) +
d(TSy,Qy)]} forall (x,y) € X X X,

thenAB, TSP andQ have a uniqgue common fixed point. Furthermoré&qéfpairs A, B)

and (T, S) are commuting pair of mappings thén B, T, S P andQ have a unique
common fixed point.

In the above Theorem 2.1, if we také = Band= S , then we have the following
corollary. This is the result of G. Jungck and BREoades [14].

Corollary 2.2. Let (X,d) be a semi-metric space. L&tT, P andQ be self- mappings of
X such that
() {A, P} and {T, Q} are occasionally weakly compatible (owc),
(i) d(AX, Ty) < @(max {d(Px, Qy),5 [d(Ax, Px) + d(Ty, Qy)],; [d(Ax, Qy) +
d(Ty, Px)]})for all (x,y) € X X X,
thenA, T,P andQ have a unique common fixed point.

In Theorem 2.1, if we takd =B =Q and T =S = P, then we have the following
corollary.

Corollary 2.3. Let (X,d) be a semi-metric space. L&andT be self- mappings of such
that
() A and Tare occasionally weakly compatible (owc),

(i) d(AX, Ty) < @(max {d(Tx, Ay),; [d(Ax, Tx) + d(Ty, Ay)],; [d(Ax, Ay) +

d(Ty, Tx)]}) forall(x,y) € X x X,
thenA andT have a unique common fixed point.

Remarks 2.1. Our result generalizes the result of Jungck andagés [15], Manro [16],
Pant and Chauhan [19] and other similar resulteérsemi-metric space.
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