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1. Introduction

In this paper we have introduced and studied Ueespand their properties. These spaces
have been called supratopological spaces by sotherau[1, 2,8,12]). However the U-
spaces we have considered here are more genenathtbse considered in the above
papers. In this general set up we have studied quogwerties of Hausdorff, normal,
regular and completely regular U-spaces, and cotmgad locally compact U- spaces.
We have also defined one- point-compactificationlaxfally compact U- space and
studied its properties.

2. Definitions and preliminaries
We begin with some basic definitions and exampieted to U- spaces.

Definition 2.1. [11] A subfamilyZ of the power set P(X) of a nonempty set X is chlle
aminimal structure (briefly M - structure) on X if® 0 ¢ and XO L.
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On Hausdorff and Compact U-Spaces

By (X, 1), we denote a nonempty subset X with a minimaicstire 7 on X and call it
an M-space. Each memberd? is said to be M-open and complement of an M-o@n s
is said to be M-closed set.

Example 2.1. Let X = {a, b, ¢, d}, 77= {X, ®, {a, b}, {b, c}}. Then (X, 77" ) is anM -
space.

Definition 2.2. A U-structure on a nonempty set X is a collectiaid of subsets of X
having the following properties:
() & and X are ires,
(i) Any union of members ot{is in .
The ordered pair (X ) is called aU- space A U- space which is not a
topological space is calledmoper U- space The members of¢ are calledJ-open
setsand the complement of a U- open set is called elosed set

A U-structure and a U-space have been called aatmgwlogy and a
supratopological space respectively by some auisees[1,2,8,12]).
In general we have
Topological space U-space= M-space
Topological space /U-spacel] /M-space

Example 22. Let X ={a, b, ¢, d}, & = {X, @, {a, b}, {a, ¢}, {a, b, c}}. Here (X, %) is a
U- space but not a topological space.

Example 2.3.Let X be a totally ordered set with order relatisnand ¢ the set of all
unions of the sets of the forms[{: x < a} and {x(X: x > b}. Then is calledorder
U- structure on X.

Example 2.4.Let R denote the real numbers and t&tconsist of the empty set, all open
rays and their unions, theR (%) is a U-space. This U- space will be calleddkaal U-
spaceR and will be denoted simply b§. We note thatt/ is not a topology ok, since
(2,3) = (-0, 3)Nn (2, o)

Definition 2.3. Let (X, 7/ ) be a U- space an@# A0 X .Let %'={A n G| GU «}is
a U- structure in A.ForJ(An G,)=An (0G,)and 0G, O Then p, &') is a
a a a

U-space and is called a U-subspace oftfX, Also, we say that A is a U-subspace of X.

Example 2.5.Let X = (0, 1) and¢Z the union of the sets{(0,b) {bR, 0 <b <1} and
{@&,1) : adR, 0 <a<1}. Then (X&) is a U- space but not a topological space , since
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(% ,1} N (Oéj:(%éjDﬂ. In fact this is the U- space obtained by coméide(0,1)

as a U- subspace 8fwith the usual U-structure .

In the usual U-spack, every singleton set {a} is closed I since {a} = (- = ,a]n [a,
o). However, every finite set need not be closed.

Definition 2.4. A subset A of a topological space X is said to be:

1. Pre-open [5] if AJInt(CI(A))

2. Semi-open [5] if AICI(Int(A))

3.a -open [10] if AL Int(CI(Int(A)))

4. B-open [10] if ALI CI(Int(CI(A)))

5. 6-open [13] if Int(CI(A))O Cl(Int(A)).

6. b-open [1,5] if AL CI(Int(A)) LI Int(CI(A))

7. *b-open [5] if AL CI(Int(A)) n Int(CI(A))

8. b**-open [5] if AUJ Int(CI(Int(A))) LI CI(Int(CI(A)))

9. **b- open [5]if A L Int(CI(Int(A))) n CI(Int(CI(A)))

10. Locally open [6] ifA = G O F, for an open subset G and a closed subset F of X
11. Locally closed [6if A = GnF, for some open subset G and closed subset F of X.

Remark 2.1. Let X be a topological space. Let the classes bfbabpen (resp.
b*-open, b**- open, **b- open) sets in X be denotied b(X) (resp. b*(X), b**(X),

**h(X)). We shall now consider which of (X, PO(X)(X, SO(X)), (X, B(X)), (X,

LO(X)), (X, LC(X)), (X, a(X)), (X, &(X)) and (X, b(X)), (X, b*(X)), (X, b**(X)), (X,

**p(X)) are M-spaces and which are U-spaces.

()X, a(X)) is a topological space. So, it is both an Mwspand U-space.

(iH(X, PO(X)) is a U- space.

(ii)(X, SO(X)) is a U-space.([6], Them.15(i), (ii)).

(ivX(X, B(X)) is a U-space, but not a topological spacd, {[6em.18(i)).

(V) (X, LO(X)), (X, LC(X)), (X, &(X)) are not U-spaces but are M-spaces.
([6], Them. 16(i), 17(i), 19(i)).

(vi) (X, b(X)), (X, b*(X)), (X,b**(X)) and (X, **b(X)) areU-spaces.

Remark 2.2. Let (X, 7/ ) be a U- space. Léty, denote the topology generated 1

on X. This will be called theopology indeed by¥. Also, if (X, T ) is a topological
space, (X7 ) is a U- space. Also, for any subcollection oresgpllection? of 7 in &

(X) which is closed under union is a U- structureXa (X, %) is supratopology on X,
associated with7 . A. S. Mashhour and others have considered ardiestuhese
supratopologies associated with a topology. We ldaadt with U- spaces in general.

Definition 2.5. Let (X, @) be a U-space. For a subset A of X, thelosure of A
(uCI(A)) and thdJ-interior of A (yInt(A) ) are defined as follows:
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GI(A) =n{FAOF FUO%} uint(A) =0{U:UTA UO%}
Clearly, we have CI(A) is U- closed angdInt(A) is U-open.

Lemma 2.1.Let X be a U-space and A a subset of X. ThelhGd(A) if and only if
GnA £ @, for every U-open set G containing x.
The proof is exactly similar to that in the casdagfological spaces.

As in the case of supratopological spaces [8], @fnd 3 types of continuity in the
following.

Definition 2.6. Let (X, &) and(Y, ') be two U- spaces. A function f: X Y is said
to beU-continuousif for each U-open set'Gn Y, f (G') is U-open set in X.

Example 2.6.Let X ={a, b, ¢, d }, % = {X,®,{a}{a, b},{a, c, d},{b, c, d}}

Y={p,q, r}, “ ={Y,0{p}{p, a}.{p, r}.{q, r}}.Let f: X Y be defined by f(a) = p,
f(b) = q, f(c) =, f(d) = r. Then f is U- continus.

Here(X, &) and(Y, &) are two U- spaces but not a topological spaces.

Definition 2.7. Let (X, &) be a U- space an¥, 7 ) a topological space. A function f:

X Y is said to bel - continuousif for each open set H in Y, f(H) is U-open set in
X.

Example 2.7.Let X={a, b, c}, @ = {X,d,{a},{b, c},{a, c}}. Y={p,q,r},
T ={Y,o{p}{p, a}.{p, 1}}. (X, &) is a U- space but not a topological space and
(Y, 7) is a topological space. The function f. X Y defined by f(a) = r,f(b) = q,

f(c) =q, f isU - continuous.

Definition 2.8. Let (X, &) be a topological space afd, &) a U- space. A function f:

X - Y is said to bdJ "-continuousif for each U-open set H in Y, (H) is open set in
X.

Example 2.8. Let X = {a, b, ¢, d}, 7 = {X, &, {a},{b}{c}.{a, b}{b, c}{a, c},
{c, d}{a, b, ¢}, {a, c, d},{b, ¢, d}}. Then(X, 77) is a topological spacé={p, q,r}
={Y, o {p}{p. al.{p. 1}, {q, r}}. Then (Y, &) is a U- space but not a topological space.

The function f: X =Y defined by f(a) = p, f(b) = q, f(c) = r, f(d) 5 rf is U"-
continuous.

3. Compact U-spaces
Definition 3.1. Let (X, & ) be a U- space. AJ- open coverof a subset K of X is a

collection {G, } of U - open sets such thatK| J G, .
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Definition 3.2. A U-space X is said to beompact if for every U-open cover of X has a
finite sub-cover.

A subset K of a U- space X is said to leenpact if every U-open cover of K has
finite sub- cover.

Example 3.1.Let X =N, @ ={2 N, 4 N, 8 N, 16N, ....... L 2'N, , N, ®}. Then
X is a compact U- space.
Letd #A UXandG be a U open cover of A. Letbe smallest +ve integer such

that2™ N [0 G. Then ALO2™N. So {2™ N } is a finite sub-cover ofG. Therefore
every subset of X is compact.

Example 3.2.Let X = N and % = {m N: ml N }0{®}. Then X is a compact
U- space.

Heine-Borel Theorem is an important result for caotpess in Topology. This states
that a subspace A of the real liReis compact if and only if A is closed and bounded.

However, the corresponding theorem does not halthibusual U- spack. For, N is a
compact subspace of the usual U- sgadaut it is neither closed nor bounded.

As for topological spaces, the following resultrise.

Theorem 3.1.Let (X, & ) and (Y, & ') be two U- spaces. If f X~ Y is a
U-continuous function and B is a compact subsetUef space X, then f(B) is
compact.

Proof: Let {H,:i 1 } be any U-open cover of f(B). For eachlB, there exists i(X)
Ul such that f(x) LIHix. Since f is U- continuous, there exists a U-opeh G(x)
containing x such that f(G(x)) H;,, . The family {G(x): x LIB} is a U- open cover of
B. Since B is compact, there exists a finite nundfgpoints, say %x»,Xs,....... X, in B
such that B] {G(x,) :X, 1 B,1< k< n}. Therefore, we have

fBY L{ f(G(x)):x UBlsks<n} OO{H,,, X UB,1sks<n}.
Thus f(B) is compact.

We can similarly prove the following two results:

Theorem 3.2.Let (X, ¢ ) be a U- space artt,7 ) a topological space. If f: X5 Y is a
U -continuous function and B is a compact subset-addace X, then f(B) is compact.

Theorem 3.3.Let (X, &) bea topological spacend(Y, /) be a U- space. If f: XY

is a U"-continuous function and B is a compact subset ofsphce X, then f(B) is
compact U- space.

Theorem 3.4.Every U- closed subspace of a compact U- spaaenipact.
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Proof: Let X be a compact U-space and F be closed subsgpacd. et {V;} be U-
open cover of F. SoE IV, and V;,= G, n F, where Gis a U-open set of X. Therefore
FCD{Gi}is a U-open cover of X. Since X is a compact U-cgpalhere exists,ii,
i3,........hsuch that X = F0G, 0G_0.....0G

OF DOV, 0OV, O... OV, .0 Fis compact.

Definition 3.3. A U-space X is calletlausdorff if, for each x, yl1X, x#y, there exists
disjoint U-open sets G and H in X such thafl &, yL1H.

Example 3.3.Let X ={a, b, c, d},
 ={{a}{d}.{b, c},{b, d}, {a, d}, {a, c}.{a, b, ¢}, {b, c,d}{a, c, d}{a, b, d}, X,®}.
Then K, %) is a Hausdorff U- space.

Example 3.4. Theusual U- spac® is Hausdorff , for any x, ¥IR with x£Zy (say X
+ +
<y), there exist two disjoint U- open setscx(;x—zy) and (X—Zy,oo) containing x and

y respectively.

Example of a U- space which is not Hausdorff iegibelow.

Example 3.5.Let X be an infinite set and/ = { X, ®,{G X |G°is a singleton set}}
Then K, ) is a proper U- space which is not Hausdorff.

Theorem 3.5. Everysubspace of Hausdorff U- space is Hausdorff.
Proof: It is trivial.

Theorem 3.6.In a topological space every compact subspace Kausdorff space is
closed.

However, we note that the following is true.
Remark 3.1.A compact subset of a Hausdorff U- space need eaidsed. Its truth is
proved by the following example:

Example 3.6.Let A = {1,2,3}10R, then clearly A is compact U- space, but it is not
closed. Because every U-closed sefRiris of the form [b, o), or (-0, a ] or their
intersection.

4. Separation axioms and Compactification in U- spzes

Definition 4.1. A U- space X is d& o-U-spaceif for each x, y1 X, with x # vy, there
exist two distinct U-open sets G and H in X sudht tti1G, y[IH.
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Example 4.1Let X ={a, b, c, d};&# = {{a},{d},{b, c}, {b, d},{a, d},{a, c}.{a, b, ¢}, {a,
b, d}, {b, c, d}, {a, c, d}, X,® }.
Then (X, %) is a Ti- U space. But (Xi£) is not a topological space.

Definition 4.2. A U- space X isT'; -U-spaceif for each X, y1 X, x # vy, there exist two
U-open sets G and H in X such that&, y[1 G and XxIH, yLIH.

Example 4.2.Let X be an infinite set. Let consist of the sets {§}for each alX and
their unions. Clearly, X[l ¢ Then (X,%¢) is a T;- U space.However, (X¢/) is not a
topological space. Since {ah {b} “ = {a, b}’0] .

Example 4.3.Let X ={a, b, c}, @ ={{a, b},{a, c}, X, ®}.
Then (X, %) is To-U-space but not ;FU-space.
Here T,-U-space= T,-U- space, but J-U- space :>/1'1-U- space.

Theorem 4.1.A U- space X is T-U-space iff every subset of X which consisting of
exactly one point of X is U- closed.
Proof: Let X be a T-U-space and X X. We shall show that X — {x} is U-open. Lety

X —{x}. Since X is T, -U-space, for eachlyX, y#x, there exist U-open set Gsuch
that yi G, but xU G,. So, G, I X —{x}. Therefore X — {x} is U- open.

Conversely, let every subset containing point of X be U-closed and let X, 1yX
and x# y . Since {x} and {y} are U- closed, G = X — {y = X — {x} are U- open and
xOG, yl G and x1H, ylH. Therefore X is T-U-space.

Definition 4.3. A Hausdorff U- space is called a-U-space.

Example 4. 4.let X ={a, b, c}, @ = {X, @, {a}, {b}{b, c}.{a, c}, {a, b}}. Then
(X, %) is a U- space but not a topological space. ld&gy) is aT,- U- space

(X, ¢) in Ex.- 4.2 is a T-U-space but it is not a,TU- space.

Hence every 7— U- space is a;FU-space, but not conversely.

Definition 4.4. Let (X, ) and (Y, & y) be U- spaces. (XY, % ), where? is a
collection of subsets of XY, is calledthe product of X with Y if ¢/ is the U- structure

on XxY generated b U{rr;lGX}J 0 (U{HfGy}j, where 77,: XxY - X and 71, :
XX y

XXY =Y are the projection maps.
Hence if XY, & ) is the product of (X;t4) with (Y, 7&), then & is the

smallest U - structure on XY such that the projection mapg,: XxY - X and
71,0 XXY - Y are U-continuous.
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In general, let {X,7/,}be any non- empty family of non- empty U- spaces.

Then, ( |_| X, , @ ), where? is a collection of subsets qf'| X , is calledthe
a a

a’
product of {X, ,%,} if & is the U- structure oﬂxa generated by

U{ﬂ,}l(Ua)|Ua 0w}, whererm, :|_| X, - X, is the projection map.
a

a

Theorem 4.2.(XxY, /) is the product of (X;z4) with (Y, T5) iff ¢ is the U-
structure generated by {8Y: G, I ¢4} U {X xG;: G, 1] ¢}

Our next theorems are generalizations of (Theor@2s-2.4, p. 102 -103, in [7]).

Theorem 4.3.The product of any nonempty class of Hausdorff shhces is Hausdorff.
Proof: Let {X;} be the product of a nonempty class of Hausdorfspaces Xand X

= |_| X, . Suppose x, i X, x # y. If x = {xi} and y = {y;} are two distinct points in X,
then we must have x#y, for at least one index.iSince X is a Hausdorff
U- space, there exist two disjoint U- open sets\d ¥ of X, such that x [JU and y

OV. Let G = |_|Gi and H =|_| H;, where U =G, and V = H, and for i# i,

| 1
G O H;=X;. Thus G and H are two disjoint U- open sets @fnd x[1G and y1H.
Therefore X is Hausdorff.

Definition 4.5. Let (X, 7/ ) be a U- space and R an equivalance relation.dfoKeach
UD 7, let U'={cls x |x0 @} Let 7'={U’ |UD w}. Then'et’ is a U- structure on

1. (%,"(J’) will be called theusual U—space%, unless otherwise statee% will

R
denote this U- space.

Theorem 4.4, Let X be a U- space and R is an equivalence relaioX. If R is a U-

closed subset of the product U- spacexXX then% is Hausdorff .

Proof: Letp: X - % be projection mapping i. e. p(x) = clsx. Letﬂ%.

So z = p(x), z= p(X), where x, X1X. Since R is a U- closed subset ok X, there exist
two U-open sets U and V such that (k) Xx1UxV [R'. Since p is U- open mapping,

p(V), p(V) are U-open. Clearly, @ p(U), 2L p(V). Since WKV LR, p(U)n pV) =

d. Hence% is Hausdorff.
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Theorem 4.5.Let X be a U- space and Y a Hausdorff U- spacelenfl: X - Y be a

U- continuous mapping. TheHF\% is Hausdorff.
[Here R(f) is an equivalence relation of X,givan(x, X)L R(f )= f(x) = f(x') ].
Proof: Let clsx and clsy be two distinct eIements—lgf(f—). So f(x) and f(y) are two

distinct elements of Y. Since Y is Hausdorff , thexist two disjoint U-open sets G and
H of Y such that f(x)JG and f(y) OH. Since f is U- continuous, f(G) and f*(H) are
disjoint U- open sets of X. Hencélxf (G) and yL f (H).

Againp: X - is projection mapping, this implies that p(fG)) and p(f'(H)) are

X
R(f)
I X - . X
two disjoint U- open sets OfF\ﬁ containing clsx and clsy respectively. Henﬁ?ﬁ
is Hausdorff .

Definition 4.6. A U- space X issaidtobdg—T 21 space or, completely Hausdorfff,
2

for each x, y1 X, x # vy, there exist U-open sets G and H such thaiGand yIH and
Gn H=0.

Example 4.5. Let X ={a, b, ¢, d}, @ ={X, ¥, {a, b}{a, c}{a, d},{ b, c}, {b, d}, {c,
d}, {a, b, c},{a, b, d},{a, c, d},{b, c, d}}. ThenX is aproper completely Hausdorff U-
space.

Definition 4.7. A U- space X is calledegular if for any U- closed set F of X and any
point XL X, such that XIF there exist two disjoint U-open sets G and H gheh x[1G
and H1H.

For U- spaces, ‘Hausdorff’ and 'regular' are inaelgmt concepts.

Example 4.6.(A proper U- space which is regular but not Haudor

Let X ={a, b, ¢, d};&Z = {X, ¥, {a},{d}.{a, d}.{a, b, c},{b, c, d}}. Here the U-
closed sets are Xp, {a},{d},{b, c},{a, b, c},{b, c, d}. We easily seethat X is a regular
but it is not Hausdorff , since b and c cannot égasated by disjoint U- open sets. Also
(X, &) is not a topological space.

Example 4.7. (A proper U-space which is Hausdorff but not regul
Let X =R and# is the structure generated ¢ [1 ¢, where¥ is the usual

space oR and?, = {Q¢%, where Qis the set of all rational numbers. Then @¢,) is
a proper Hausdorff U- space, siricg, [ .

If F =Q and x is an irrational number, then F is U-clossidceQ° [J ¢ and
xF. But x and F cannot be separated by disjointpéncsets.
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Here (X, /) is not regular.
Thus a Hausdorff U- spaceed not be regular.

Definition 4.8. A U- space X is said to beompletely regular if for any U- closed
subset F of X and XX which does not belongs to F, there exists a Uitinaous
function f: X — [0, 1] such that f(xX) = 0 and f(F) = 1. Here [Q,i4 considered as a
subspace of the usual U- spdte

Example 4.8. Let X = [0,1] and ¥ = {X, ®,{{[(a, 1)], [(O, b)] | 0<a, b<1}and their

unions}}. Then the U — open sets of X are &, and the sets of the form [(0,b)],[(a,1)]
and [(0,b)]LI [(a,1)], b < a.

Hence, the U- closed sets of X are of the forn®X[(0, a)], [(b, 1)] and [(a, b)],
a < b. [ Here [(a, b)] stands for any of (a, b),i{a[a, b) and [a, b]

Clearly, (X,%£) is a proper U- space.
Let F be a proper U- closed set, i®# F# X. Let cLIX, clIF.

Then, (i) F =][(a, b)], for somesa, b<1, a < b; or,
@i  F=](0, b)], or, (iii) F =[(a, 1)P<a, b<1.

We now consider Y = [0,1] as a subspace of thelusuapaceR. We first consider case
() Define f: X - Y by
(a) f(x) = 1, xJ(c, 1],
=0,¥[0, c], if cis on the left of F;
(B) f(x) = 1, X[c, 1),
= 0,M(c, 1], if c is on the right of F.
Then in both the cases ofr() and (3), f is U- continuous and f(F) = 1, f(c) = 0. Next,
we consider the case (ii)
Define f: X - Y by
f(x) =1, Kl[c, 1],
=0,X(0, c);
Then fis U — continuous and f(F) = 1, f(c) = 0.
Finally, we consider the case (iii)
Define f: X Y by f(x) = 1, XJ[0, c],
=0,MX(c, 1].
Here again fis U — continuous and f(F) = 1, f(d.=
Hence (X,%£) is completely regular.

Comment: The above U- space X of Example 4.8 is also Hadsdwrmal and regular.
We prove these below:

+
® Let x, yLIX, x#Yy. Then for the disjoint U- open sets & [0, X—zy) and

+
G, = (%, 1], xtUGy, yUG,. Thus, X is Hausdorff.
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(i) Let F, and k be two disjoint U- closed sets in X. We shall shinat there
are disjoint U- open sets;Gand G such that FLG;, R, G, We see that
F, is the form [0, a)], or [(b, 1], or [(a, b)].

If F1= [0, a)], k is the form (a, 1], or [(c, 1], or [(c, d)], foome ¢ > a. In the first

two cases, both;Fand k are U- open sets also, we takeeG,, G, = F.

a+c
If F,= [(C, d)], we take G=F, G = (T,l]

Here X is normal.
(i) Similarly, we can prove thaf is regular.

Definition 4.9. A regular U- space X is call€lk-U- spaceif for each one point subset of
X is U-closed.

Definition 4.10. A T;-U- space X is said to b& 31 -U- spaceif X is completely
2

regular.

Theorem 4.6. Every completely regular U- space is regular.
Proof: Let X be completely regular U- space. F is a Usetbset of X andXX which
does not belongs to F, there exists a U- continfianustion f: X — [0, 1] such that f(x)
=0andf(F) =1.

Let a, 1[0, 1] and a < b. Then [0, a] and [b, 1] are twsjaint U- open set of
[0, 1].
Therefore, xf [0, 1] and FUIf [b, 1].
Therefore X is regular.

One can prove that a subspace of regular (a coefpletgular) U- space and a product of
regular (a completely regular) U- spaces is regi@ampletely regular).

Definition 4.11. A U- space X is said to beormal if for each pair disjoint U- closed
sets ir and K, there exist U- open sets @nd G such that FU G;, R U G; and

Gln GZ:CD.

Theorems in U- spaces corresponding to the stanbdlaodems regarding regular,
normal and completely regular topological spacesbmshown to be valid. In particular,
Urysohn's Lemma and Tietze Extension Theorem Haeie analogues for U- spaces.

We shall give here examples to shoat tiroper regular and normal U- spaces
exist and are distinct.

Example 4.9(A proper U- space which is normal and regular.)

Let X ={a, b, c, d},7¢ = {X, @, {a}, {d}, {a, d}, {a, b, c},{b, c, d}}.
(X, &) is a proper U- space , since {a, byclb, c, d} = {b, c} 1] .
U-closed sets are Xp, {a}, {d}, {b, c}, {b, c, d}, {a, b, c}.

17¢
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Here {b, c}1{a, b, c} and {d}[1{d}. {b, c} and {d} are U- closed and disjoint arttiere
exist disjoint U- open sets containing {b, c} ard} fespectively. Similarly, we can show
that for any pair of disjoint closed sets, therestedisjoint U- open sets containing them
respectively.Hence X is U- normal space.

Here {b, c, d} is closed set[&a{b, c, d} and there exist disjoint U- open sets
containing a and {b, c, d} respectively. So, Xégular U-space.

We note that the U- space X in the alexaample is regular but not a-TU - space

Example 4.10.(A proper U- space which is normal but not regular)

Let X ={a, b, ¢, d}, @ = {X, ®,{a, b}{a, c}, {a, b, c}}. (X, &) is proper
U- space , since {a, b} {a, c}={a} 0 .
U-closed sets are X, {a}, {c, d}, {b, d}, {d}.
Here Wl{c, d}, all{c, d} but none of these can be separated by disjor open sets.
Hence (X, %) is not regular.
However, (X,7¢) is normal, since there are no pair of disjointcldsed sets.

We shall now prove a few theorems.

Theorem 4.7. Every infinite Hausdorff U- space has countableanité discrete U-
subspaces.
Proof: Let X be an infinite Hausdorff U- space. Letaxd % be distinct two points of
X. Then there exist two disjoint U-open setsddd G of X such that x[1G; and %Ll
G..

Let x [OX which is separate fromyand %. Then there exist U-open setg H.,
H; and H, such that ¥.1 H; x, LI H, %3 Hz and %L1 H, and Hn Hz = ®. Let H, n Hy4
= ®. Suppose kin H, =U; Hi= U;and H = U,. Then U, U, and U are disjoint U- open
sets. Since X is an infinite, by using inductioimpiple, we have for every: 1, X, X,

X3, ===--- , % UXand U, Uy, U, ------- , U,are U-open sets such that for eadh; and
foriZj, x Zx;andy n U= @, (i, j = 1, 2, 3------------ n).
Let Y ={ X, X, X, ------- }. Then Y is a countable infinite U-sulmpe whose

U-open sets are {x=Y n U..

Definition 4.12 Let X be a U- space and let,pbe a sequence in X. An elemenit/X
is called aimit of {x .} if, for each U- open set G of X with[xG, then there exists a
positive integer fisuch that for each positive integer L G.

Theorem 4.8. The limit of every convergent sequence of a Hauétbrspace is unique.
Proof. Let X be a Hausdorff U- space and e a convergent sequence of X. Assume
that - X, X, » Yy and x#y. Since X is Hausdorff U- space, there exist tugjoiht U-
open sets G and H of X such thatdx and y1 H. Since x and » are limits of {x},
there exist two natural numberg n, such that n > max {nny}, then %G and x LJH.
Therefore Gh H # @ which is a contradiction.
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Theorem 4.9. Let (XXY, &) be the U- product of (X¢¢£1) with (Y, 7/,). Then XxY
is compact if X and Y are compact.
Proof: Let C ={G_,} ... be a U- cover of XY. Then for eachy ,

G,=JG., N O J(XxG,, ) for someG, , 'sin%iand G, s in %>

Ther;‘ll)re, -
XXY=
U[_U(Gmi xY)|U [_U(X xG,, )=l UU(Gl,ai xY)1O[ _U(X XG4 )1

Then G ={G,, },0ai is @ U-coverof Xand €={G,, } ;o oy is a U- cover of
Y. Since X and Y are compact,; @nd G have some finite U- sub covers, say
{Glﬂrvis}lsfSUiSSﬁV and {Gl,a,,,isl}lsr’su’,1ss’sv’ then {Glﬂr XGZO’[/}lsrsu,]sr’su’ is a

finite sub cover of C. Therefore,XY is compact.

Definition 4.13. A U- space X is said to bedally compactif for each x1X there
exists a U- open set G containing x of X whoseuwess compact.

Example 4.11.The U- spaceR is locally compact. Because, for a neighborhoodrof
real number x of the form &) = (<o, x + @), a > 0,5, (X) = (=0, X + a], which is

compact. However,R is not a compact U- space, since the U-open cover
{(- o0, a)| all R } of R does not have a finite sub cover.

Every compact U- space is locally compact but lgcabmpact U- space need not be
compact.

Theorem 4.10.Every locally compact Hausdorff U- space is regular
Proof: Let X be a locally compact Hausdorff U- spaceehX has one- point -

compactification X, and it is Hausdorff and compact U- space.

Since every compact Hausdorff U- space is regilar,is regular U- space.

Since the U- subspace of regular U- space is redhierefore X is regular U- space as
X is U- subspace of X.

Theorem 4.11Every locally compact Hausdorff U- space is conadietegular.
Proof: Let X be a locally compact Hausdorff U- space. Thérhas one -point-

compactification X, and it is Hausdorff and compact U- space. By Taeo4.11, X is

normal.
Let F be U- closed subset of X andFx Then the definition of U- open set of

X . ,F is U- closed subset of Xthere exists a U- continuous function f ; X [0, 1],
where f(x) = 0, f(F) =1. Let the functiorf : X — [0, 1] is defined byf f (x) = f(x),
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xUX. Then f is U-continuous andf x) =0, ?(F) = 1. Therefore X is completely
regular.

Definition 4.14. If Y is a compact Hausdorff U- space and X is gogro U- subspace of
Y whose closure equals to Y, then Y is said to berapactification of U- space X.

Two compactifications Yand Y, of U- space X are said to leguivalent if there
is a U-homeomorphism h:;Y¥> Y, such that h(x)= x for everylxX.
If Y- X consists of a single point, then Y is @laone-point-compactificationof X.

Theorem 4.12 A U -space X has a one- point -compactificatibrand only if X is
locally compact but not itself compact.

Proof: To see this, let X be a locally compact U- spageniot itself compact, and let Y =
{y}, where yL1X. Let Z = XL Y. Declare a subset V to be U- open in Z if eithids U-
open in X or V is the Kthe complement of a compact U- space K in X. TAdiecomes
a compact U- space, and is the one - point- corifjgation of X. Z will be denoted by
X o (as in topology) and y denoted ky.

Example 4.12.The onepoint-compactification of the usual U-spaBes homeomorphic
Wlith the circle. Theone -point- compactificationof R ? is homeomorphic to the sphere
S.

Let $denote the unit circle {(x, ) R% x* + y* = 1 } regarded as a U- subspace
of the producR xR of the usual U- spack with itself. The imbedding h: (0, 1)- S*
given by h(t) = (coszit) x (sin27t) induces a compactification. This is equivalemt t
the one-point -compactification of the U- space X.

Theorem 4.13.f X is a Hausdorff locally compact U- space, thém is also Hausdorff
U- space.

Proof: To prove this theorem it is enough to show thatafiay point x of X there exist
two U-open sets G and H ofesuch that XIG, oo [IH and Gn H = ®. Let x[IX, then

there exists a U-open set G such tHatxandG is a compact U- space of X. LetH=Y
- G, then G and H are U- open sets of Y ahtl3 o [1H and Gn H = ®.

Definition 4.15. [7](pp. 134). Let A and B be two U- spaces and h-8 is a
U- continuous, open and one-to-one map. Then KA) U-homeomorphic subspace of
A contained in B. Here A is called U-imbedded invBh U-imbedding h.

If A and h(A) are identified with each other, th&ns a U-subspace of B.

Definition 4.16. A compact Hausdorff U- space Y is equivalently edll a
compactification (see above) of a U —space X ifehe a U- imbedding h: X Y such
that h(X) is U- dense in Y. i. e. if Y is an extemsU- space of h(X).

We conclude the paper with generalization of arth@ in Munkres [9](pp. 238).

Theorem 4.14.Let X be a U- spce. Let h: X Z be a U-imbedding of X in the compact
Hausdorff U-space Z. Then there exists a correspgnd
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compactification Y of U- space X; which has theg@dy that there is a U-imbedding H:
Y — Zthat equals h on X.
Proof. Given h, let X denote the U- subspace h(X) of Z, angdénote its closure in Z.

Then Y, is a compact Hausdorff U- space and = Y, therefore, ¥ is an

compactification of X.

We now construct a U- space Y containkiguch that the pair (X, Y) is U-
homeomorphic to the pair (XY,). Let us choose a set A disjoint from X that is in
bijective correspondence with the sgt-¥X, under some map k: A Y, - X,. Define Y
= XA, and define a bijective correspondence H-YY, by the rule H(x) = h(x) for
x X, H(a) = k(a) for a UA.

Make Y into a U- space by declaring V to be U- opelr if and only if H(V) is U- open
in Yo,. The map H is automatically a U-homeomorphism; #re U-space X is a U-
subspace of Y because H equals the U-homeomorphisvhen restricted to the U-
subspace X of Y. By expanding the range of H, wiialthe required U-imbedding of Y
into Z.
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