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1. Introduction 
In this paper we have introduced and studied U- spaces and their properties. These spaces 
have been called supratopological spaces by some authors ([1, 2,8,12]). However the U- 
spaces we have considered here are more general than those considered in the above 
papers. In this general set up we have studied some properties of Hausdorff, normal, 
regular and completely regular U-spaces, and compact and locally compact U- spaces. 
We have also defined one- point-compactification of locally compact U- space and 
studied its properties.  
 
2.  Definitions and preliminaries 
We begin with some basic definitions and examples related to U- spaces. 
 
Definition 2.1. [11]  A subfamily M  of the power set P(X) of a nonempty set X is called 
a minimal structure  (briefly M - structure) on X if, Φ ∈ M and X ∈ M.  
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By (X, M  ), we denote a nonempty subset X with a minimal structure M on X and call it 
an M-space. Each member of M is said to be M-open and complement of an M-open set 
is said to be M-closed set.  
 
Example 2.1.  Let X = {a, b, c, d}, M = {X, Φ, {a, b}, {b, c}}. Then (X, M   ) is an M - 
space. 
 
Definition 2.2.  A U-structure on a nonempty set X is a collection UUUU of subsets of X 
having the following properties: 

(i) Φ and X are in UUUU , 
(ii)  Any union of members of UUUU is in UUUU. 

 The ordered pair (X, UUUU ) is called a U- space. A U- space which is not a 
topological space is called a proper U- space.  The members of UUUU are called U-open 
sets and the complement of a U- open set is called a U- closed set. 

 
A U-structure and a U-space have been called a supratopology and a 

supratopological space respectively by some authors (see [1,2,8,12]). 
In general we have  
           Topological space ⇒ U-space ⇒ M-space 
           Topological space ⇐  U-space ⇐   M-space 
 

Example 2.2. Let X = {a, b, c, d}, U = {X, Φ, {a, b}, {a, c}, {a, b, c}}. Here (X,    U) is a 
U- space but not a topological space. 
 
Example 2.3. Let X be a totally ordered set with order relation ≤  and UUUU the set of all 
unions of the sets of the forms {x∈X: x < a} and {x∈X: x > b}. Then UUUU is called order 
U- structure on X.   
 
Example 2.4. Let R denote the real numbers and let U consist of the empty set, all open 
rays and their unions, then (R, U) is a U-space. This U- space will be called the usual U- 
space R and will be denoted simply by R. We note that U is not a topology on R, since 
(2,3) = (- ∞ , 3)∩ (2, ∞ )∉     U.        

 
Definition 2.3. Let (X,U ) be a U- space and A XΦ ≠ ⊆ .Let U / ={A ∩ G│G∈ U } is 

a U- structure in A.For, )()( αααα
GAGA ∪∩=∩∪ and αα

G∪ ∈U. Then (A, UUUU / ) is a 

U-space and is called a U-subspace of (X,U ). Also, we say that A is a U-subspace of X. 
 
Example  2.5.  Let X = (0, 1) and U   the union of the sets{(0,b) : b∈R,  0 < b < 1} and  
{(a,1) : a∈R, 0 < a < 1}. Then (X, U  ) is a U- space but not a topological space , since 
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U . In fact this is the U- space obtained by considering (0,1) 

as a U- subspace of R
 with the usual U-structure . 

 
In the usual U-space R, every singleton set {a} is closed in R, since {a} = (- ∞ ,a]∩ [a, 
∞ ). However, every finite set need not be closed. 
 
Definition  2.4. A subset A of a topological space X is said to be: 
1. Pre-open [5] if A⊆ Int(Cl(A)) 
2. Semi-open [5] if A⊆ Cl(Int(A)) 
3.α -open [10] if A⊆ Int(Cl(Int(A))) 
4. β-open [10] if A⊆ Cl(Int(Cl(A))) 
5. δ-open [13] if Int(Cl(A)) ⊆ Cl(Int(A)). 
6. b-open [1,5] if A⊆ Cl(Int(A)) ∪ Int(Cl(A)) 
7. *b-open [5] if A⊆ Cl(Int(A)) ∩ Int(Cl(A)) 
8. b**-open [5] if A⊆ Int(Cl(Int(A))) ∪ Cl(Int(Cl(A))) 
9. **b- open [5] if A ⊆ Int(Cl(Int(A))) ∩ Cl(Int(Cl(A))) 
10. Locally open [6] if A = G ∪ F, for an open subset G and a closed subset F of X.  
11. Locally closed [6] if A = G∩F, for some open subset G and closed subset F of X. 

 
Remark 2.1. Let X be a topological space. Let the classes of all b-open (resp.                 
b*-open, b**- open, **b- open) sets in X be denoted by b(X) (resp. b*(X), b**(X), 
**b(X)). We shall now consider which of (X, PO(X)), (X, SO(X)), (X, β(X)), (X, 
LO(X)), (X, LC(X)), (X, α(X)), (X, δ(X)) and (X, b(X)), (X, b*(X)), (X, b**(X)), (X, 
**b(X)) are M-spaces and which are U-spaces. 
 
                (i) (X, α(X)) is a topological space. So, it is both an M-space and U-space. 
                (ii) (X, PO(X)) is a U- space.  
                (iii) (X, SO(X)) is a U-space.([6], Them.15(i), (ii)). 
                (iv) (X, β(X)) is a U-space, but not a topological space. ([6], Them.18(i)). 

  (v) (X, LO(X)), (X, LC(X)), (X, δ(X)) are not  U-spaces but are M-spaces. 
([6], Them. 16(i), 17(i), 19(i)).   

                 (vi) (X, b(X)), (X, b*(X)), (X,b**(X)) and (X, **b(X))  are U-spaces. 
 
Remark 2.2.  Let (X, U ) be  a U- space. Let T U    denote the topology generated by UUUU  
on X. This will be called the topology indeed by UUUU. Also, if (X, T   ) is a topological 
space, (X, T   ) is a U- space. Also, for any subcollection or supercollection UUUU of  T    in P 
(X) which is closed under union is a U- structure on X. (X, U ) is supratopology on X, 
associated with T  . A. S. Mashhour and others have considered and studied these 
supratopologies associated with a topology. We have dealt with U- spaces in general. 
 
Definition 2.5.  Let (X, UUUU) be a U-space. For a subset A of X, the U-closure of A  
(UCl(A )) and  the U-interior of A  (UInt(A) ) are defined as follows: 
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                                  UCl(A) = ∩{F:A ⊆ F, Fc        ∈UUUU }, UInt(A) = ∪{U:U ⊆ A, U    ∈UUUU }. 
Clearly, we have   UCl(A) is U- closed and UInt(A) is U-open. 
 
Lemma 2.1. Let X be a U-space and A a subset of X. Then x∈UCl(A) if and only if 
G∩A ≠ Φ, for every U-open set G containing x. 
The proof is exactly similar to that in the case of topological spaces. 
 
As in the case of supratopological spaces [8], we define 3 types of continuity in the 
following. 
 
Definition 2.6.  Let (X, UUUU ) and (Y, U U U U ′ ) be two U- spaces. A function f: X →Y is said 
to be U-continuous if for each U-open set G′ in Y, f -1(G′)  is U-open set in X.  
 
Example 2.6. Let X = {a, b, c, d }, U  = {X,Φ,{a},{a, b},{a, c, d},{b, c, d}} 
Y = {p, q, r}, U ′ = {Y,Φ,{p},{p, q},{p, r},{q, r}}.Let f: X →Y be defined by  f(a) = p, 
f(b) = q, f(c) = r, f(d) = r. Then f is U- continuous.  
Here (X, UUUU ) and (Y, UUUU ′) are two U- spaces but not a topological spaces. 
 
Definition 2.7.  Let (X, UUUU ) be a U- space and (Y, T    T    T    T    ) a topological space. A function f: 

X →Y is said to be U - continuous if for each open set H in Y, f -1(H)  is U-open set in 
X. 
 
Example 2.7. Let X= {a, b, c}, UUUU  = {X,Φ,{a},{b, c},{a, c}}. Y = {p, q, r },  
T T T T   = {Y,Φ,{p},{p, q},{p, r}}. (X, UUUU ) is a U- space but not a topological space and  
(Y, T ) is a topological space. The function f: X →Y defined by f(a) = r,f(b) = q,            

f(c) =q, f is U - continuous. 
 
Definition 2.8.  Let (X, T T T T  ) be a topological space and ( Y, UUUU ) a U- space. A function f: 

X →Y is said to be ∗U -continuous if for each U-open set H in Y, f -1(H)  is open set in 
X. 
 
Example 2.8.  Let X = {a, b, c, d}, T T T T   = {X, Φ, {a},{b},{c},{a, b},{b, c},{a, c},            
{c, d},{a, b, c}, {a, c, d},{b, c, d}}. Then (X, T T T T   ) is a topological space.Y = {p, q, r },  UUUU 

= {Y,Φ,{p},{p, q},{p, r}, {q, r}}. Then (Y, UUUU ) is a U- space but not a topological space. 

The function f: X →Y defined by f(a) = p, f(b) = q, f(c) = r, f(d) = r,  f is ∗U - 
continuous. 
 
3. Compact U-spaces 
Definition 3.1. Let (X, UUUU ) be a U- space. A U- open cover of a subset K of X is a 

collection {Gα } of U - open sets such that K⊆ α
α

GU . 
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Definition 3.2. A U-space X is said to be compact if for every U-open cover of X has a 
finite sub-cover. 

A subset K of a U- space X is said to be compact if every U-open cover of K has 
finite sub- cover. 

 

Example 3.1. Let X = N, U = {2 N, 4 N, 8 N, 16N, ……. , 2n
N, ......, N, Φ}. Then 

X is a compact U- space. 
          Let Φ ≠ A ⊆ X and CCCC  be a U open cover of A. Let n0 be smallest +ve integer such 

that 2 0n
N ∈     CCCC.  Then  A⊆ 2 0n

N. So {2 0n
N } is a finite sub-cover of CCCC. Therefore 

every subset of X is compact. 
 
Example 3.2. Let X = N and U = {m N: m∈  N } ∪ {Φ}. Then X is a compact                
U- space. 
 
Heine-Borel Theorem is an important result for compactness in Topology.  This states 
that a subspace A of the real line R is compact if and only if A is closed and bounded. 
 
However, the corresponding theorem does not hold for the usual U- space R. For, N is a 
compact subspace of the usual U- space R but it is neither closed nor bounded.   
 
As for topological spaces, the following result is true. 
Theorem 3.1. Let (X, U ) and (Y, U ′) be two U- spaces. If f: X →Y is a                    
U-continuous function and B is a compact subset of U- space X, then f(B) is             
compact. 
Proof: Let {H Iii ∈: } be any U-open cover of f(B). For each x∈B, there exists         i(x) 

∈I such that f(x) ∈Hi(x). Since f is U- continuous, there exists a U-open set G(x) 
containing x such that f(G(x)) )(xiH⊆ . The family {G(x): x ∈B} is a U- open cover of 

B. Since B is compact, there exists a finite number of points, say x1,x2,x3,…….,xn in B 
such that B }1,:)({ nkBxxG kk ≤≤∈∪⊆ . Therefore, we have  

                     f(B) }1,:))(({ nkBxxGf kk ≤≤∈∪⊆ }1,:{ )( nkBxH kxi k
≤≤∈∪⊆ . 

Thus f(B) is compact. 
 
We can similarly prove the following two results: 
 
Theorem 3.2. Let (X, U ) be a U- space and (Y,T  ) a topological space. If f: X →Y is a 

U -continuous function and B is a compact subset of U- space X, then f(B) is compact. 
 
Theorem 3.3. Let (X, T  ) be a topological space and (Y, U ) be a U- space. If  f: X →Y 

is a ∗U -continuous function and B is a compact subset of U- space X, then f(B) is 
compact U- space. 
 
Theorem 3.4. Every U- closed subspace of a compact U- space is compact.        
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Proof: Let X be a compact U-space and F be closed subspace of X. Let {V i } be          U-

open cover of F.  So F iV∪⊆  and Vi = G ∩i F, where Gi is a U-open set of X. Therefore 

F }{ i
C G∪ is a U-open cover of X. Since X is a compact U- space. There exists i1, i2, 

i3,........,in such that X = F
niii

C GGG ∪∪∪∪ ........
21

 

 
niii VVVF ∪∪∪⊆∴ .......

21
. ∴ F is compact.  

 
Definition 3.3.  A U-space X is called Hausdorff if, for each x, y ∈X, x ≠ y, there exists 
disjoint  U-open sets G and H in X such that  x∈G, y∈H. 
 
Example 3.3. Let X = {a, b, c, d}, 
U ={{a},{d},{b, c},{b, d}, {a, d}, {a, c},{a, b, c}, {b, c, d},{a, c, d},{a, b, d}, X, Φ }.  
Then (X, U ) is a Hausdorff U- space.                                                                            
 
Example 3.4.   The usual U- space R is Hausdorff , for any x, y ∈R with x≠ y (say    x 

< y), there exist two disjoint U- open sets (- 
2

,
yx +∞ ) and ( ∞+

,
2

yx
) containing x and 

y respectively. 
 
Example of a U- space which is not Hausdorff is given below. 
 
Example 3.5. Let X be an infinite set and U = { X, Φ,{G ⊆ X cG is a singleton set}} . 

Then (X, U ) is a proper U- space which is not Hausdorff. 
 
Theorem 3.5.   Every subspace of Hausdorff U- space is Hausdorff. 
Proof: It is trivial.   
 
Theorem 3.6. In a topological space every compact subspace of a Hausdorff space is 
closed.  
 
However, we note that the following is true. 
Remark 3.1. A compact subset of a Hausdorff U- space need not be closed.  Its truth is 
proved by the following example: 
 
Example 3.6. Let A = {1,2,3}⊆R, then clearly A is compact U- space, but it is not 
closed. Because every U-closed set in R is of the form [b, ∞ ), or (-∞ , a ] or their 
intersection. 
 
4. Separation axioms and Compactification in U- spaces 
 
Definition 4.1.  A U- space X is a T0 -U-space if for each x, y∈ X, with x ≠  y, there 
exist two distinct U-open sets G and H in X such that x∈G, y∈H. 
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Example  4.1. Let X = {a, b, c, d},U = {{a},{d},{b, c}, {b, d},{a, d},{a, c},{a, b, c},  {a, 
b, d}, {b, c, d}, {a, c, d}, X, Φ  }. 
Then (X, U ) is a T0- U space. But (X, U ) is not a topological space. 
 
Definition 4.2.  A U- space X is T1 -U-space if for each x, y∈ X, x ≠  y, there exist two 
U-open sets G and H in X such that x∈G, y∉ G and  x∉H, y∈H. 
 
Example  4.2. Let X be an infinite set. Let U consist of the sets {a}c, for each a∈X and 
their unions. Clearly, X, Φ∈  U. Then (X, U ) is a T1- U space.However, (X,U ) is not a 
topological space. Since {a}c ∩ {b} c = {a, b}c∉ U. 
 
Example 4.3. Let X = {a, b, c}, U = {{a, b},{a, c}, X,  Φ }.    
Then (X, U ) is T0 -U-space but not T1 -U-space. 

Here  T1 -U-space ⇒  T0 -U- space, but T0 -U- space   ⇒T1 -U- space.  
 
Theorem  4.1. A U- space X is T1 -U-space iff every subset of X which consisting of 
exactly one point of X is U- closed. 
Proof: Let X be a T1 -U-space and x∈ X. We shall show that X – {x} is U-open. Let y∈ 
X – {x}. Since X is T1 -U-space, for each y∈X, y ≠ x, there exist U-open set Gy  such 

that y∈ G y  but  x ∉ G y . So, Gy ⊆  X – {x}. Therefore X – {x} is U- open.  

          Conversely, let every subset containing one point of X be U-closed and let x, y∈ X 
and x ≠  y . Since {x} and {y} are U- closed, G = X – {y}, H = X – {x} are  U- open and 
x∈G, y∉ G and x∉H, y∈H. Therefore X is T1 -U-space. 
 
Definition 4.3. A Hausdorff  U- space  is called a T2 -U-space. 
 
Example   4. 4. Let X = {a, b, c}, U = {X, Φ, {a}, {b},{b, c},{a, c}, {a, b}}. Then    
(X,U ) is a U- space but not a topological space. Here ( X,U) is a T2- U- space. 
 ( X, U ) in Ex.- 4.2 is a T1 -U-space but it is not a T2- U- space. 
Hence every T2 – U- space is a T1 -U-space, but not conversely.  
 
Definition 4.4. Let (X, UX) and (Y, U Y) be U- spaces. (X×Y, U  ), where U  is a 
collection of subsets of X×Y,  is called the product of X with Y  if U is the U- structure 

on X×Y generated by { } { }








∪






 −

∈

−
∪∪

y
yy

Xx
xx GG 11 ππ , where xπ : X×Y →X and yπ : 

X ×Y →Y are the projection maps.  
          Hence if (X×Y, U  ) is the product of (X, UX) with (Y, UY), then U  is the 

smallest  U - structure on X×Y such that the projection maps xπ : X×Y → X and               

yπ : X×Y →Y are U-continuous.  
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          In general, let {Xα ,U α }be any non- empty family of  non- empty U- spaces. 

Then, ( ∏
α

αX , U  ), where U  is a collection of subsets of ∏
α

αX , is called the 

product of {X α     ,U,U,U,U α } if U  is the U- structure on∏
α

αX  generated by 

{ ∈−
α

α
ααπ UU∪ )(1

 U α }, where α
α

ααπ XX →∏: is the projection map. 

 
Theorem  4.2. (X ×Y, U ) is the product of (X, U1) with (Y, U2) iff U  is the U- 
structure generated by {G1×Y: G1 ∈  U1} ∪ {X ×G2: G2 ∈  U 2}.  
  
Our next theorems are generalizations of (Theorems- 2.2- 2.4, p. 102 -103, in [7]). 
 
Theorem  4.3. The product of any nonempty class of Hausdorff   U- spaces is  Hausdorff. 
Proof:  Let {X i} be the product of a nonempty class of Hausdorff U- spaces  Xi and X 

=∏ iX . Suppose x, y∈ X, x ≠  y. If x = {x i} and y = {yi} are two distinct points in X, 

then we must have x
0i

≠ y
0i
 for at least one index i0. Since X

0i
 is a Hausdorff                

U- space, there exist two disjoint U- open sets U and V of X
0i   such that x

0i  ∈  U and y
0i  

∈V. Let G = ∏
i

iG and H =∏
i

iH , where U = 
0i

G  and V = 
0i

H  and for i≠ i0,            

Gi ∪ Hi = Xi.  Thus G and H are two disjoint U- open sets of X and  x ∈G and y∈H. 
Therefore X is Hausdorff.  
 
Definition 4.5. Let (X, U  ) be a U- space and R an equivalance relation on X. For each 

U∈  U, let U/ = {cls x x∈  U }. Let U / = {U / U∈  U }. Then U /
 is a U- structure on 

X

R
. (

X

R
,U / ) will be called the usual U-space 

X

R
, unless otherwise stated, 

X

R
 will 

denote this U- space. 
 
Theorem 4.4.  Let X be a U- space and R is an equivalence relation on X. If R is a U- 

closed subset of the product U- space X×X,  then 
R

X
 is Hausdorff . 

Proof:  Let p : X→
R

X
 be projection mapping i. e. p(x) = clsx. Let z, z′∈

R

X
.  

So z = p(x), z′ = p(x′), where x, x′∈X. Since R is a U- closed subset of X×X, there exist 
two U-open sets U and V such that (x, x′ ) ∈U×V ⊆ R′. Since p is U- open mapping, 
p(U), p(V) are  U-open. Clearly, z ∈ p(U), z′∈ p(V). Since  U×V ⊆ R′,  p(U)∩ p(V) = 

Φ. Hence 
R

X
 is Hausdorff. 
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Theorem  4.5. Let X be a U- space and Y a Hausdorff U- space and let f : X→Y be a  

U- continuous mapping. Then  
)( fR

X
 is Hausdorff. 

[Here R(f ) is an equivalence relation of  X,given by (x, x′)∈ R(f )⇒ f(x) = f(x′) ]. 

Proof:  Let clsx and clsy be two distinct elements of 
)( fR

X
. So f(x) and f(y) are two 

distinct elements of Y. Since Y is Hausdorff , there exist two disjoint U-open sets G and 
H of Y such that f(x)∈G and f(y) ∈H. Since f is U- continuous, f -1(G) and f -1(H) are 
disjoint U- open sets of X. Hence x∈  f -1(G) and y ∈  f -1(H). 

Again p : X →
)( fR

X
 is projection mapping, this implies that p(f -1(G)) and p(f -1(H)) are 

two disjoint U- open sets of 
)( fR

X
 containing clsx and clsy respectively.  Hence 

)( fR

X
 

is Hausdorff .  

Definition 4.6.  A U- space X is said to be U – T 2
2

1  space or, completely Hausdorff if, 

for each x, y∈  X, x ≠  y, there exist U-open sets G and H such that x ∈G and y∈H and 

G ∩ H = Φ. 
 
Example  4.5.   Let X = {a, b, c, d}, U = {X,  Φ, {a, b},{a, c},{a, d},{ b, c}, {b, d}, {c, 
d}, {a, b, c},{a, b, d},{a, c, d},{b, c, d}}. Then X is a proper completely Hausdorff U- 
space. 
 
Definition 4.7.   A U- space X is called regular if for any U- closed set F of X and any 
point x∈ X, such that x∉F there exist two disjoint U-open sets G and H such that x ∈G 
and F⊆ H. 
 
For U- spaces, ‘Hausdorff’ and 'regular' are independent concepts. 
 
Example 4.6. (A proper U- space which is regular but not Hausdorff ). 
             Let X = {a, b, c, d},U = {X, Φ, {a},{d},{a, d},{a, b, c},{b, c, d}}. Here the U- 
closed sets are X, Φ, {a},{d},{b, c},{a, b, c},{b, c, d}. We easily see that X is a regular 
but it is not Hausdorff , since b and c cannot be separated by disjoint U- open sets. Also 
(X, U  ) is not a topological space.  
 
Example 4.7.  (A proper U-space which is Hausdorff but not regular). 
              Let X = R and U is the structure generated by U1 ∪  U 2, where U1 is the usual 
space on R and U 2 = {Qc}, where Q is the set of all rational numbers. Then  (X, U ) is 
a proper Hausdorff U- space, since U 1⊆U. 
             If F = Q and x is an irrational number, then F is U-closed, since Qc ∈U2 and 
x∉F. But x and F cannot be separated by disjoint U- open sets. 
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Here (X, U ) is not regular.  
Thus a Hausdorff U- space need not be regular.  
 
Definition 4.8.  A U- space X is said to be completely regular if for any U- closed 
subset F of X and x∈X which does not belongs to F, there exists a U- continuous 
function f: X →  [0, 1] such that f(x) = 0 and f(F) = 1. Here [0, 1] is considered as a 
subspace of the usual U- space R. 

 

Example 4.8.  Let X = [0,1] and U = {X, Φ,{{[(a, 1)], [(0, b)] 0≤ a, b≤ 1}and their 

unions}}. Then the U – open sets of X are X, Φ, and the sets of the form [(0,b)],[(a,1)] 
and [(0,b)]∪ [(a,1)], b < a.  

Hence, the U- closed sets of X are of the form X, Φ, [(0, a)], [(b, 1)] and [(a, b)],        
a < b. [ Here [(a, b)] stands for any of (a, b), (a, b], [a, b) and [a, b]. ] 
 
Clearly, (X, U ) is a proper U- space. 

Let F be a proper U- closed set, i.e., Φ ≠ F≠ X. Let c∈X, c∉F. 
Then, (i)      F = [(a, b)], for some 0≤ a, b≤ 1, a < b; or, 

    (ii)      F = [(0, b)], or, (iii) F = [(a, 1)], 0≤ a, b≤ 1. 
 

We now consider Y = [0,1] as a subspace of the usual U- space R. We first consider case 
(i) Define f: X→ Y by  
(α )          f(x) = 1, x∈(c, 1],   
                        = 0, x∈[0, c], if c is on the left of F; 
( β )          f(x) = 1, x∈[c, 1),   
                       = 0, x∈(c, 1], if c is on the right of F. 
Then in both the cases of (α ) and (β ), f is U- continuous and f(F) = 1, f(c) = 0. Next, 
we consider the case (ii)  
 Define f: X→Y by 
                  f(x) = 1, x∈[c, 1],   
                         = 0, x∈(0, c);  
Then f is U – continuous and f(F) = 1, f(c) = 0. 
Finally, we consider the case (iii) 
                                  Define f: X→Y by f(x) = 1, x∈[0, c],   
                                                                          = 0, x∈(c, 1].                                       
Here again f is U – continuous and f(F) = 1, f(c) = 0.  
Hence (X, U ) is completely regular. 
 
Comment: The above U- space X of Example 4.8 is also Hausdorff, normal and regular. 
We prove these below: 

(i) Let x, y∈X, x ≠ y. Then for the disjoint U- open sets G1 = [0, 
2

x y+
) and                      

G2 = (
2

x y+
, 1], x∈G1, y∈G2. Thus, X is Hausdorff. 
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(ii)  Let F1 and F2 be two disjoint U- closed sets in X. We shall show that there 
are disjoint U- open sets G1, and G2 such that F1⊆ G1, F2 ⊆ G2. We see that 
F1 is the form [0, a)], or [(b, 1], or [(a, b)]. 

If F1= [0, a)], F2 is the form (a, 1], or [(c, 1], or [(c, d)], for some c > a. In the first 
two cases, both F1 and F2 are U- open sets also, we take G1= F1, G2 = F2. 

If F2 = [(c, d)], we take G1 = F1, G2 = ( ,1
2

a c+
]. 

Here X is normal.  
(iii)     Similarly, we can prove that X is regular. 

  
Definition 4.9.  A regular U- space X is called T3-U- space if for each one point subset of 
X is U-closed. 

Definition 4.10. A T1-U- space X is said to be T 3
2

1  -U-  space if X is  completely 

regular. 
 
Theorem  4.6.   Every completely regular U- space is regular. 
Proof:   Let X be completely regular U- space. F is a U- closed set of X and x∈X which 
does not belongs to F, there exists a U- continuous function f: X →  [0, 1] such that  f(x) 
= 0 and f(F) = 1. 
              Let a, b ∈[0, 1] and a < b. Then [0, a] and [b, 1] are two disjoint U- open set of 
[0, 1].   
Therefore, x ∈f -1[0, 1] and F ⊆ f -1[b, 1].  
Therefore X is regular. 
 
One can prove that a subspace of regular (a completely regular) U- space and a product of 
regular (a completely regular) U- spaces is regular (completely regular). 
 
Definition 4.11.  A U- space X is said to be normal if for each pair disjoint U- closed 
sets F1 and F2 , there exist U- open sets G1 and G2 such that F1 ⊆  G1,  F2 ⊆  G2 and 
G1∩ G2 = Φ.  
 

Theorems in U- spaces corresponding to the standard theorems regarding regular, 
normal and completely regular topological spaces can be shown to be valid. In particular, 
Urysohn's Lemma and Tietze Extension Theorem have their analogues for U- spaces.  
 
             We shall give here examples to show that proper regular and normal U- spaces 
exist and are distinct. 
 
Example 4.9 (A proper U- space which is normal and regular.)  
             Let X = {a, b, c, d}, U = {X, Φ, {a}, {d}, {a, d}, {a, b, c},{b, c, d}}.  
(X, U ) is a proper U- space , since {a, b, c}∩ {b, c, d} = {b, c}∉  U. 
U-closed sets are X, Φ, {a}, {d}, {b, c}, {b, c, d}, {a, b, c}. 
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Here {b, c}⊆ {a, b, c} and {d}⊆ {d}. {b, c} and {d} are U- closed and disjoint and there 
exist disjoint U- open sets containing {b, c} and {d} respectively. Similarly, we can show 
that for any pair of disjoint closed sets, there exist disjoint U- open sets containing them 
respectively.Hence X is U- normal space.  

Here {b, c, d} is closed set, a∉ {b, c, d} and there exist disjoint U- open sets 
containing a and {b, c, d} respectively. So, X is regular U-space.  
 
          We note that the U- space X in the above example is regular but not a T3- U - space 
 
Example 4.10. (A proper U- space which is normal but not regular)  
             Let X = {a, b, c, d}, U = {X, Φ,{a, b},{a, c}, {a, b, c}}. (X,  U ) is proper           
U- space , since {a, b}∩ {a, c}={a} ∉  U. 
U-closed sets are X, Φ, {a}, {c, d}, {b, d}, {d}. 
Here b∉{c, d}, a∉{c, d} but none of these can be separated by disjoint U- open sets. 
Hence (X, U )  is not regular.  
 However, (X, U ) is normal, since there are no pair of disjoint U- closed sets. 
 
We shall now prove a few theorems. 
 
Theorem 4.7.  Every infinite Hausdorff U- space has countable infinite discrete U- 
subspaces.  
Proof:   Let X be an infinite Hausdorff  U- space. Let x1 and x2 be distinct two points of 
X. Then there exist two disjoint U-open sets G1 and G2 of X such that x1 ∈G1 and x2∈  
G2.  
              Let x3 ∈X which is separate from x1 and x2. Then there exist U-open sets H1, H2, 
H3 and H4 such that x1∈ H1, x2 ∈ H2, x3∈ H3 and x3∈ H4 and H1∩ H3 = Φ. Let H2∩ H4 
= Φ. Suppose H3∩ H4 =U3, H1= U1 and H2 = U2. Then U1, U2 and U3 are disjoint U- open 
sets. Since X is an infinite, by using induction principle, we have for every n≥  1, x1, x2, 
x3, ------, xn ∈X and U1, U2, U3,  -------, Un are U-open sets such that for each xi∈Ui and 
for i ≠ j, xi ≠ xj and Ui ∩ Uj= Φ, (i, j = 1, 2, 3------------,n). 
              Let Y = { x1, x2, x3, ------- }. Then Y is a countable infinite U-subspace whose 
U-open sets are {xi} = Y ∩ Ui.   
 
Definition  4.12. Let X be a U- space and let {xn} be a sequence in X. An element x∈X 
is called a limit of {x n} if, for each U- open set G of X with x∈G, then there exists a 
positive integer n0 such that for each positive integer n> n0, xn∈G. 
 
Theorem 4.8.  The limit of every convergent sequence of a Hausdorff U- space is unique. 
Proof:  Let X be a Hausdorff U- space and {xn} be a convergent sequence of X. Assume 
that xn →  x, xn →  y and x≠ y. Since X is Hausdorff U- space, there exist two disjoint U-
open sets G and H of X such that. x ∈G and y∈ H. Since x1 and x2 are limits of {xn}, 
there exist two natural numbers n1, n2 such that n > max {n1, n2}, then xn∈G and xn ∈H. 
Therefore G∩ H ≠ Φ which is a contradiction. 
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Theorem  4.9.  Let (X×Y, U ) be the U- product of (X, U 1 ) with (Y,U 2 ). Then X×Y 
is compact if X and Y are compact. 
Proof: Let C = {Gα } A∈α be a U- cover of X×Y. Then for each α ,  

Gα = )()( ,2,1 ∪∪
JjIi

ji
GXYG

∈∈

×∪× αα  for some 
i

G α,1  ‘s in U 1 and  
j

G α,2 ’s in U 2. 

 Therefore, 
 X×Y= 

∪ ∪∪ ∪∪∪ ∪
Jj A Ii A JjA Ii

jiji
GXYGGXYG

∈ ∈ ∈ ∈ ∈∈ ∈

×∪×=×∪×
α α

ααα
α

α )]([)]([)]([)]([ ,2,1,2,1  

Then C1 = IiAi
G ∈∈ ,,1 }{ αα   is a U1- cover of X and C2 = JjAj

G ∈∈ ,,2 }{ αα   is a U2- cover of 

Y. Since X and Y are compact, C1 and C2 have some finite U- sub covers, say 

vsurisr
G ≤≤≤≤ 1,1,,1 }{ α  and ///// 1,1,,1

}{
vsurisr

G
≤≤≤≤′α

 then //
/ 1,1,2,1 }{

ururrr
GG

≤≤≤≤
× αα  is a 

finite sub cover of C. Therefore, X×Y is compact. 
 
Definition  4.13.  A U- space X is said to be locally compact if for each x∈X there 
exists a U- open set G containing x of X whose closure is compact.  
 
Example  4.11. The U- space R is locally compact. Because, for a neighborhood of any 

real number x of the form Sa(x) = (-∞, x + a), a > o, aS (x) = (-∞, x + a], which is 

compact. However, R is not a compact U- space, since the U-open cover                         
{(-∞, a)│a∈ R } of R does not have a finite sub cover. 
 
Every compact U- space is locally compact but locally compact U- space need not be 
compact. 
 
Theorem  4.10.  Every locally compact Hausdorff U- space is regular. 
Proof:  Let X be a locally compact Hausdorff U- space. Then X has one- point -
compactification X∞  and it is Hausdorff and compact U- space.  

Since every compact Hausdorff U- space is regular, X ∞  is regular U- space.  
Since the U- subspace of regular U- space is regular.Therefore X is regular U- space as 
X ∞  is U- subspace of X. 
 
Theorem  4.11. Every locally compact Hausdorff U- space is completely regular.    
Proof:  Let X be a locally compact Hausdorff U- space. Then X has one -point- 
compactification X∞  and it is Hausdorff and compact U- space. By Theorem 4.11,  X is 
normal.  
             Let F be U- closed subset of X and x∉F. Then the definition of  U- open set of  
X ∞ ,F is U- closed subset of X∞ ,there exists a U- continuous function f : X∞ → [0, 1], 

where f(x) = 0, f(F) =1. Let the function f : X → [0, 1] is defined by f  f (x) = f(x), 
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x∈X. Then f is U-continuous and f (x) = 0,  f (F) = 1. Therefore X is completely 
regular. 
 
Definition  4.14.  If Y is a compact Hausdorff U- space and X is a proper  U- subspace of 
Y whose closure equals to Y, then Y is said to be a compactification of U- space X.  
           Two compactifications Y1 and Y2 of U- space X are said to be equivalent if there 
is a U-homeomorphism h: Y1→Y2 such that h(x)= x for every x∈X.  
If Y- X consists of  a single point, then Y is called a one-point-compactification of X.  
 
Theorem 4.12. A U -space X has a one- point -compactification if and only if X is 
locally compact but not itself compact. 
Proof: To see this, let X be a locally compact U- space but not itself compact, and let Y = 
{y}, where y∉X. Let Z = X∪ Y. Declare  a subset V to be U- open in Z if either V is U-
open in X or V is the Kc the complement of a compact U- space K in X. Then Z becomes 
a compact U- space, and is the one - point- compactification of  X. Z will be denoted by 
X ∞ (as in topology) and y denoted by ∞ . 

 

Example 4.12. The one-point- compactification of the usual U-space R is homeomorphic 
with the circle. The one -point- compactification of R 2 is homeomorphic to the sphere 
S1.  
            Let S1 denote the unit circle {(x, y) ∈ R

2: x2 + y2 = 1 } regarded as a U- subspace 
of the product R ×R of the usual U- space R with itself. The imbedding h: (0, 1) →S1 
given by h(t) = (cos2π t) ×  (sin2π t) induces a compactification. This is equivalent to 
the one-point -compactification of the U- space X. 
 
Theorem  4.13. If X is a Hausdorff locally compact U- space, then X ∞ is also Hausdorff  
U- space. 
Proof:  To prove this theorem it is enough to show that for any point x of X there exist 
two U-open sets G and H of X∞ such that x∈G, ∞ ∈H and G∩ H = Φ. Let x∈X, then 

there exists a U-open set G such that x∈G and G is a compact U- space of X. Let H = Y 

- G , then G and H are U- open sets of Y and x∈G, ∞ ∈H and G∩ H = Φ.  
 
Definition 4.15. [7](pp. 134). Let A and B be two U- spaces and h: A→B is a               
U- continuous, open and one-to-one map. Then h(A) is a U-homeomorphic subspace  of 
A contained in B. Here A is called U-imbedded in B with U-imbedding h. 
 If A and h(A) are identified with each other, then A is a U-subspace of B. 
 
Definition 4.16. A compact Hausdorff U- space Y is equivalently called a 
compactification (see above) of a U –space X if there is a U- imbedding h: X→Y such 
that h(X) is U- dense in Y. i. e. if Y is an extension U- space of h(X).  
 
We conclude the paper with generalization of  a theorem in Munkres [9](pp. 238). 
 
Theorem 4.14. Let X be a U- spce. Let h: X→  Z be a U-imbedding of X in the compact 
Hausdorff U-space Z. Then there exists a corresponding                                      
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compactification Y of U- space X; which has the property that there is a U-imbedding  H: 
Y →  Z that equals h on X. 
Proof:  Given h, let Xo denote the U- subspace h(X) of Z, and Yo denote its closure in Z. 

Then Yo is a compact Hausdorff U- space and oX = Yo; therefore, Yo is an 

compactification of Xo. 
          We now construct a U- space Y containing X such that the pair (X, Y) is U-
homeomorphic to the pair (Xo, Yo). Let us choose a set A disjoint from X that is in 
bijective correspondence with the set Yo - Xo under some map k: A→Yo -  Xo. Define Y 
= X ∪ A, and define a bijective correspondence H: Y→  Yo by the rule H(x) = h(x) for 
x∈  X, H(α ) = k(α ) for α ∈A. 
Make Y into a U- space by declaring V to be U- open in Y if and only if H(V) is U- open 
in Yo. The map H is automatically a U-homeomorphism; and the U-space X is a U-
subspace of Y because H equals the U-homeomorphism h when restricted to the U- 
subspace X of Y. By expanding the range of H, we obtain the required U-imbedding of Y 
into Z. 
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