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1. Introduction

The concept of fuzzy set was initiated by L.A.Zadeli965 [11]. Since then these ideas
have been applied to other algebraic structureb sscgroups, rings, modules, vector
spaces and topologies. K.Iseki and S.Tanaka [dddnted the concept of BCK-algebras
in 1978 and K.Iseki [2] introduced the concept &l&lgebras in 1980. It is known that
the class of BCK —algebras is a proper subclasiseo€lass of BCI algebras. T.Priya and
T.Ramachandran [5,6.7] introduced the class of IB&bksas , which is an another
generalization of BCI / BCK/Q / KU algebras. Inghgaper, we introduce the concept of
fuzzy dot PS-subalgebras of PS-algebras as a dieatom of a fuzzy PS-subalgebra of
a PS-algebra and we investigate few basic progertielated to fuzzy dot
PS-subalgebra in detail.

2. Preliminaries
In this section we site the fundamental definitithmet will be used in the sequel.

Definition 2.1.[1] A BCK- algebra is an algebra (X,*,0) of type(2,0) satisfyithe
following conditions:

) (x*y)*(x*2z)<(z*y)

i) x*(xX*y)<y

i) x<x

iv) x<yandy<x= x=y

v) 0<x= x=0, where xxy is defined by x *y =0 ,for all x, y, @ X.
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Definition 2.2.[2] A BCI- algebra is an algebra (X,*,0) of type(2,0) satisfythe
following conditions:

) (x*y)*(x*2z) < (z*Y)

i) x*(x*y) sy

i) x<x

V) X<y andys X=> X=y

V) X< 0= x =0, where x y is defined by x *y =0 ,forall x, y, @ X.

Definition 2.3. A Q-algebra is an algebra (X,*,0) of type(2,0) siiing the following
conditions:

i) X*x=0

i) X*0=x

iii) (x*y)y*z=(x*z)*y, where x<y is defined by x*y =0 ,forall x, y, z
O X.

Definition 2.4.[3] A d-algebra is an algebra (X,*,0) of type(2,0) siing the following
conditions:

i) X*x=0

ii) 0*x=0

iii) x*y=0andy*x=0imply x =y, forall x, ¥ X.

Definition 2.5. [4,10] A KU-algebra is an algebra (X,*,0) of type(2,0)isBting the
following conditions:

D x*y)*(ly*2z)*(x*2)=0

ii) Xx*0=0

i) O0*x=x

iv) x*y=0andy*x=0implyx =y, forall x,,yz X.

Definition 2.6. [5] A nonempty set X with a constant 0 and a binaryratjen ‘- * is
called PS — Algebra if it satisfies the followiagioms.

1. x*x =0

2. x*0=0

3. x*y=0andy*x=0=>x=y,0 x,yOX

Definition 2.7. [8] Let S be a non empty sub set of a PS-algebra Xn Bhes called a
subalgebra of X if x*1 S, forall x, yd S.

Definition 2.8.[6,9] A map f: X - Y is called a homomorphism if f ( x * y) = f(x)] ,
for all x ,yd X, where X and Y are PS-algebras.

Definition 2.9. [11] Let X be a non-empty set. A fuzzy subgeif the set X is a mapping
h X - [0,1].
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Definition 2.10. [11] For any subsets andu of a set X , Xn )(X) = min { A(X) , u(x) }.

Definition 2.11. [3,11] A fuzzy relationy on a set X is of a fuzzy subset of X x X, that
is,amapgl: XxX - [0,1].

Definition 2.12. [6] A fuzzy setu in a PS-algebra X is called a fuzzy PS- sub akmelbr
Xif p(x * y) > min{p(x),p(y)},for all x,ydd X.

Remark :
® For any fuzzy subsedsandp of a set X, we definé O = A(X) < u(X).
(i) Let f: X Y be a function from a set X to a set Y andJdde a fuzzy subset

of X. Then the fuzzy subsatof Y is defined by

sup p(x) if 7 (y)# @, 0y0Y
-1

A(yy =4 x0T

0 Otherwise

is called the image qf under f, denoted by {{).If A is a fuzzy subset of Y , then the fuzzy
subsetu of X is given byu(x) = A(f(x)), for all x O X, is called the pre-image afunder f and
is denoted by T(A).

4. Fuzzy Dot PS-Subalgebr as of PS-algebras
For braveity, here X denotes PS-algebra, unlesnoetbe specified.

Definition 3.1. A fuzzy subsef of X is called a fuzzy dot PS-subalgebra of a R@faa X,
if u(x*y) >pu(x). u(y), for all x,yd X.

Example 3.2. Consider a PS-algebra X ={ 0,a,b} having the failog Cayley table.

* 0 a b
0 0 b a
A 0 0 b
B 0 b 0

Define a fuzzy sefi in X by u(0) = 0.8 ,u(a) =u(b) = 0.7. It is easy to verify thatis a
fuzzy dot PS-subalgebra of a PS-algebra X.

Example 3.3. Consider a PS-algebra X ={0,1,2,3}having théol@ing Cayley table.

WIN| R O| *
ellellolleolle]
NOIOIN|F
NOIO|IFRIN
OININWlw
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Define a fuzzy st in X by u(0) = 0.8 ,u(1) = 0.5, u(2) = 0.4 andu(3) = 0.7. It is easy
to verify thatu is a fuzzy dot PS-subalgebra of a PS-algebra X.

Remark :
1. Every fuzzy PS-subalgebra is a fuzzy dot PS-subadgef a PS-algebra but
the converse is not true.
2. From the above example 3.3, it is seen that ,ubeyfdot PS-subalgebgais
not a fuzzy PS-subalgebra, becayg&*3) = u(2) = 0.4 <u(1) = min { (1)
, H(E3) }-

Theorem 3.4. If A andpu are fuzzy dot PS-subalgebras of a PS-algebrah®&nX n L is
also a fuzzy dot PS-subalgebra of X.
Proof : Let x, ydX. Then
Anpx*y)=min {A (x*y),ux*y)}
Zmin {A (X) . A (y) , H(X) . u(y) }
> (min {A (x), YD -(min { A (y), 1(y) 1)
= @np()). (Anp)(y)
Thus A n ) is also a fuzzy dot PS-subalgebra of X.

Theorem 3.5. If p is a fuzzy dot PS-subalgebra of a PS-algebrahén(0) > (u(x))?,
Ox O X.
Proof . For every X1 X, we have p(0) =p(x * 0)

> H(x). 1(0)

=H(X). J(X *x)

> H(X). 1(X). U(X)

= (1(x))? , which completes the proof.

Definition 3.6. The characteristic function of a non-empty subsef A PS-algebra X,
1, xOA

denoted by, , is defined bya(x) =
0 , xOA

Theorem 3.7. Let AQ X. Then A is a subalgebra of a PS-algebra X if anly if X, is a
fuzzy dot PS-subalgebra of a PS-algebra X.

Proof : Let x, yOO A. Then x*yA. Hence we geta(X *y) = 1> Xa(X). Xa(y).

If x JA and yOA (or x JA and yOA) ,then we gega(X *y) > Xa(X). Xa(y) =1.0=0,
since , Xa(X) =1 andxa(y) = 0.

Thusxa is a fuzzy dot PS-subalgebra of a PS-algebra X.

Conversely, assume that is a fuzzy dot PS-subalgebra of a PS-algebra X.

Now let x, yO A. Thenxa(X *y) > Xa(X). Xa(y) = 1.1 = 1, hence by definition, we have
x*y OA, which completes the proof.

Remark :
14



Some Properties of Fuzzy Dot PS- Subalgebras dl@§sbras

1. Afuzzy subseti of X is a fuzzy subalgebra of PS-algebra X i tvel subset
ut={x O X | p(x) > t}, the upper level subset pf is a subalgebra of X , for every
t o, 1].

2. But from example 3.2, it is clear that ,ifis the fuzzy dot PS-subalgebra of X,
then there existsd[0 , 1] such thap' ={x 0 X | pu(x) >t} is not a subalgebra of
X . Wis a fuzzy dot PS-subalgebra of X in example i&n consider p°° ={x
0 X | u(x) > 0.5}= { 0,1,3}, is not a subalgebra of X , since 3 = 20p°>.

Theorem 3.8. Let :X—Y be a homomorphism of a PS-algebra X into a PSkalgY. If
W is a fuzzy dot PS subalgebra of Y, then the jpnege of u denoted by'f(i), defined
as {f* (W}X) = u(f(x)) , 0 x O X, is a fuzzy dot PS subalgebra of X.
Proof: Let u be a fuzzy dot PS-subalgebra of Y. Let xJ ¥.
Now, {f (L)}x* y) = L (f (x*Y))

= () *f(y))

> (f () - u(f(y))

=Tt} 09 - {FXY)

= f* (u) is a fuzzy dot PS-subalgebra of X.

Theorem 3.9. Let f:X—Y be an onto homomorphism of PS-algebras. If ufiszay dot
PS -subalgebra of X, then the image f(u) of u ufider fuzzy dot PS subalgebra of Y.
Proof: Foranyyy, OY, Let A, = fi(yy), A, = f(y,) and A, = f(y1* yo).
Consider the set & A, ={x O X/ x=a* a, for some ald A; and a[JA, }
If x OA;* A, then x = x* x, for some xD A; and % OA, so that

fox) = f (xl X2) = f(x1) * f(Xx2) =y *
that is, xO f (yl y2) = A, Hence A* Az O Aq. It follows that

flul(y1*y2) = sup (X) i (x)

( Y1*Y2) XU Ag
2 sup |l (X) = sup (X X))
XA*A O A, X% UA,
> Suml 9. ](XZ)
X A1, Xo DAZ

since . : [0,1] x [0,1] is continuous, for evegy> 0 there existd > 0 such that if
%, =sup W (x) -0and¥, = sup p (¥-6, then
x| 0A; KA,
Xy . X Zsup p(¥). Sup |t (- .
xU Aq % U A;
Choose g A; and a 0A, such that
H@ = SUp K (¥ -0 and u(d iasxp H (¥-9, then

XA
u@a) - H(Eh) >?5ur3 MY - sur> M (x) € .

Consequently,
fIul(%*y2) =sup (9. 1 (%)
1MAL, X 2
>sup 09 - sup @ = ARICya) - fl(ys)
1 XA, % LA,

Hence f(u) is a fuzzy dot PS-subalgebra of Y.
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Theorem 3.10. Let f : X—X be an endomorphism on a PS-algebra X. If u hezayfdot
PS- subalgebra of X. Define a fuzzy pet X - [0,1] by i (X) = u(f(x)) ,0 x O X. Then
s is a fuzzy dot PS-subalgebra of X.
Proof: Let u be fuzzy dot PS- subalgebra of X. Let x(J .
Now , p(x*y)=p(f(x*y))

= () *f(y) )

> (f (X)) - u(f(y))

=) - ke (Y)

= |k is a fuzzy dot PS-subalgebra of X.

Definition 3.11. Let A andp be two fuzzy sets in a set X.. The Cartesian Ribdu | :
X x X -[0,1] is defined byX x ) (X,y) =A(X) . u(y).

Theorem 3.12. If A andp are fuzzy dot PS-subalgebras of a PS-algebreh&nX x p is
also a fuzzy dot PS- subalgebra of X x X.
Proof : Forany x x,, y1, Y O X.
Then & X )((X1,y1) *(X2, ¥2)) = A XI)( X1 * X2, Y1 * Y2)
A (X% X) - WY1 *Y2)
> ((A(x0)- A(X2)) - (M Y1)- K( Y2)
= (A(x2). H(¥1)) - A(X2). H( Y2))

=QXI(xLY) - AxW) (X2, Y2))
This completes the proof.

Definition 3.13. Let B be a fuzzy subset of X. The strongest fupzselation on PS-
algebra X is the fuzzy subgaf of X x X given byug (X , y) =B(x).B(y), for all x , yO X.

Theorem 3.14. Let pyg be the strongest fuzfyrelation on PS-algebra X , whefes a
fuzzy subset of a PS-algebra X.flfis a fuzzy dot PS-subalgebra of a PS-algebra X ,
thenpg is a fuzzy dot PS-subalgebra of X x X.
Proof : Let be a fuzzy dot PS-subalgebra of a PS-algebra&lednx X, , v, ¥» O X.
Thenpg ((X,Y1) *(X2, ¥2)) =Hp (X * X2, Y1 ¥ Y2)

B (X * %) B(y1*Y2)

= (B (x1). B (x2)) - B(yn)- B(y2)

= B(x1). B(yn) - B(x2)- B(y2))

=Hp (%,Y1) -Hp (X2, Y2)
Thereforey; is a fuzzy dot PS-subalgebra of X x X.

Theorem 3.15. Let yg be the strongest fuz4}+relation on PS-algebra X , whefeis a
fuzzy subset of a PS-algebra Xplf is a fuzzy dot PS-subalgebra of X x X, th@ris a
fuzzy dot PS-subalgebra of a PS-algebra X.
Proof : Let x, yOI X.
Now, (B(x*y)) =B(x*y).B(x*y)
He ((x*y)* (x*y))
16
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> Mg (X*Y) . Mg (xX*Y)
=B[x) - BY) I’
=B (x*y)>B(X). B(y), which completes the proof.

Definition 3.16. Let B be a fuzzy subset of a PS-algebra X. A fuzzy imtat on PS-
algebra X is called a fuzfy+product relation if1(x,y) > B(x).B(y), for all x , yOX.

Definition 3.17. Let B be a fuzzy subset of a PS-algebra X. A fuzzy imigt on PS-
algebra X is called a right fuzzy relation @product ifu(x,y) =B(y), for all x , yOX.

Remark :
1. Letp be afuzzy subset of a PS-algebra X. A fuzzy imtgt on PS-algebra X is
called a left fuzzy relation og-product ifu(x,y) =B(x), for all x , yOX.
2. Left (right) fuzzy relation o8 is a fuzzyp3-product relation.

Theorem 3.18. Let 4 be a right fuzzy relation on a fuzzy subBedf a PS-algebra X. |ii
is a fuzzy dot PS-subalgebra of X x X , theis fuzzy dot PS-subalgebra of a PS algebra
X.
Proof:
Blyr*y2) =H (X ™* X2 , Y1 *Y2)

= ((X,Y1) * (X2, ¥2)

> (X,y1) (X2, Y2)

=B (y1). B (y2) , forall x, o, y1, y2 O X.
HenceB is a fuzzy dot PS-subalgebra of a PS-algebra.

Theorem 3.19. Let X and Y be PS-algebras. Let p be a fuzzy dos#slgebra of X x
Y.Define a fuzzy sef3, (1) of X such thatP, (U)(X) = 1 (x,0),0 x O X. Then By (1) is a
fuzzy dot PS- subalgebra of X.
Proof: Letx, yd X.
Bx (W) (x*y)=p(x*y,0)

H((x*y),(0%0))

#((x0)*(.0))

> [ (%,0) .1 (y,0)

B (1) ) - B (W) (y)

O Bx (W) is a fuzzy dot PS-subalgebra of X.

Theorem 3.20. Let X and Y be PS-algebras. Let u be a fuzzy desi#slgebra of X x
Y. Define a fuzzy setf, (1) of Y such thatP, (u)(y) = (0,y),0y 0O Y. ThenB, (1) is a
fuzzy dot PS subalgebra of Y.
Proof: Letx,yOY.
By () (x*y) =u(0,x™y)
#((0*0), (x*y))
E((0,x)*(0y))
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>H(0.x) .1 (0y)
By (W) (x) - By (W) (¥)
O By (1) is a fuzzy dot PS-subalgebra of Y.

4. Conclusion

In this article authors have been discussed fuptyP&-subalgebra in fuzzy PS-algebra.
The relationship between fuzzy dot PS-subalgebdafaazy subalgebra also established.
It has been observed that PS-algebra as a gemi@aiizof BCK/BCI/Q/d/TM/KU-
algebras. This concept can further be generalipethtuitionistic fuzzy sets, interval
valued fuzzy sets, Anti fuzzy sets for new resultsur future work.
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