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1. Introduction 
The concept of fuzzy set was initiated by L.A.Zadeh in 1965 [11]. Since then these ideas 
have been applied to other algebraic structures such as groups, rings, modules, vector 
spaces and topologies. K.Iseki and S.Tanaka [1] introduced the concept of BCK-algebras 
in 1978 and K.Iseki [2] introduced the concept of BCI-algebras in 1980. It is known that 
the class of BCK –algebras is a proper subclass of the class of BCI algebras. T.Priya and 
T.Ramachandran [5,6.7] introduced the class of PS-algebras , which is an another 
generalization of BCI / BCK/Q / KU algebras. In this paper, we introduce the concept of 
fuzzy dot PS-subalgebras of PS-algebras as a generalization of a fuzzy PS-subalgebra of 
a PS-algebra and we investigate few basic properties related to fuzzy dot                                      
PS-subalgebra in detail. 
 
2. Preliminaries        
In this section we site the fundamental definitions that will be used in the sequel. 
 
Definition 2.1.[1] A BCK- algebra is an algebra (X,*,0) of type(2,0) satisfying the 

following conditions: 

i) (x * y) * (x * z) ≤ (z * y) 
ii)  x * (x * y) ≤ y 
iii)  x ≤ x 
iv) x ≤ y and y ≤ x ⇒ x=y 
v) 0 ≤ x ⇒ x=0, where x ≤ y is defined by x * y = 0 ,for all x, y, z ∈ X. 
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Definition 2.2.[2] A BCI- algebra is an algebra (X,*,0) of type(2,0) satisfying the 
following conditions: 

i) (x * y) *(x * z) ≤  (z*y)  
ii)  x * (x * y) ≤ y  
iii)   x ≤ x  
iv) x ≤ y  and y ≤ x ⇒ x = y 
v) x ≤ 0 ⇒ x = 0, where x ≤ y is defined by x * y = 0 ,for all x, y, z ∈ X. 

 
Definition 2.3. A Q-algebra is an algebra (X,*,0) of type(2,0) satisfying the following 
conditions: 

i) x * x = 0 
ii)  x * 0 = x 
iii)  (x * y)*z = (x * z) * y ,  where x ≤ y is defined by x * y = 0 ,for all x, y, z 

∈ X. 
 

Definition 2.4.[3] A d-algebra is an algebra (X,*,0) of type(2,0) satisfying the following 
conditions: 

i) x * x = 0 
ii)  0 * x = 0 
iii)  x * y = 0 and y * x = 0 imply x = y ,  for all x, y ∈ X. 

 
Definition 2.5. [4,10] A KU-algebra is an algebra (X,*,0) of type(2,0) satisfying the 
following conditions: 

i) (x * y) * ((y * z) * (x * z)) =0 
ii)  x * 0 = 0 
iii)  0 * x = x 

iv) x * y = 0 and y * x = 0 imply x = y ,  for all x, y, z ∈ X. 
 

Definition 2.6. [5] A nonempty set X with a constant 0 and a binary operation ‘ * ‘ is 
called  PS – Algebra if it satisfies the following axioms. 

1. x *  x  = 0 
2. x * 0 = 0 
3. x * y = 0 and y * x = 0 ⇒ x = y , ∀  x ,y ∈ X. 

 
Definition 2.7. [8] Let S be a non empty sub set of a PS-algebra X. Then S is called a 
subalgebra of X if  x*y ∈  S , for all x , y ∈  S. 
 
Definition 2.8. [6,9] A map f : X →Y is called a homomorphism if f ( x * y ) = f(x)*f(y) , 
for all x ,y ∈ X, where X and Y are PS-algebras. 
 
Definition 2.9. [11] Let X be a non-empty set. A fuzzy subset µ of the set X is a mapping 
µ  : X → [0,1] . 
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Definition 2.10. [11] For any subsets λ and µ of a set X , (λ∩µ)(x) = min { λ(x) , µ(x) }. 
 
Definition 2.11. [3,11] A fuzzy relation µ on a set X  is of  a fuzzy subset of X x X, that 
is , a map µ : X x X → [ 0,1]. 
 
Definition 2.12. [6] A fuzzy set µ in a PS-algebra X is called a fuzzy PS- sub algebra of  
X if µ(x * y) ≥ min{µ(x),µ(y)},for all x,y∈ X. 
 
Remark : 

(i) For any  fuzzy subsets λ and µ of a set X, we define  λ ⊆ µ ⇔ λ(x) ≤ µ(x). 
(ii)  Let f : X →Y be a function from a set X to a set Y and let µ be a fuzzy subset 

of X. Then the fuzzy subset λ of Y is defined by  
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is called the image of µ under f, denoted by f( µ).If λ is a fuzzy subset  of Y , then the fuzzy 
subset µ of X is given by µ(x) = λ(f(x)), for all x ∈ X, is called the pre-image of λ under f and 
is denoted by  f -1(λ). 
 
4. Fuzzy Dot PS-Subalgebras of PS-algebras 
For braveity, here X denotes PS-algebra, unless otherwise specified. 
 
Definition 3.1. A fuzzy subset µ of X is called a fuzzy dot PS-subalgebra of a PS-algebra X, 
if  µ(x * y) ≥ µ(x ). µ( y), for all x,y∈ X. 
 
Example 3.2. Consider a PS-algebra X = { 0,a,b} having the following Cayley table. 
 

*  0 a b 
0 0 b a 
A 0 0 b 
B 0 b 0 

Define a fuzzy set µ in X by µ(0) = 0.8 , µ(a) = µ(b) = 0.7. It is easy to verify that µ is a 
fuzzy dot PS-subalgebra of a PS-algebra X. 
 
Example 3.3. Consider a PS-algebra X = { 0,1,2,3}having the following Cayley table. 
 

*  0 1 2 3 
0 0 2 1 3 
1 0 0 0 2 
2 0 0 0 2 
3 0 2 2 0 
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Define a fuzzy set µ in X by µ(0) = 0.8 , µ(1) = 0.5 ,  µ(2) = 0.4 and µ(3) = 0.7. It is easy 
to verify that µ is a fuzzy dot PS-subalgebra of a PS-algebra X. 
 
Remark : 

1. Every fuzzy PS-subalgebra is a fuzzy dot PS-subalgebra of a PS-algebra but 
the converse is not true. 

2. From the above example 3.3, it is seen that , the fuzzy dot PS-subalgebra µ is 
not a fuzzy PS-subalgebra, because  µ(1*3) = µ(2) = 0.4 < µ(1) = min { µ(1) 
, µ(3) }. 

 
Theorem 3.4. If λ and µ are fuzzy dot PS-subalgebras of a PS-algebra X , then λ ∩ µ is 
also a fuzzy dot PS-subalgebra of X.   
Proof :  Let  x , y ∈ X. Then  
  (λ∩µ)(x * y) = min { λ ( x * y) , µ(x * y) } 
             ≥ min {λ (x) . λ (y) , µ(x) . µ(y) } 
             ≥ (min  {λ (x), µ(x)}) .( min { λ (y), µ(y) }) 
             = ((λ∩µ)(x)). ((λ∩µ)(y)) 
   Thus (λ ∩ µ) is also a fuzzy dot PS-subalgebra of X. 
 
Theorem 3.5. If µ is a fuzzy dot PS-subalgebra of a PS-algebra X , then µ(0) ≥ (µ(x))3, 
∀x ∈ X. 
Proof :  For every x ∈ X , we have      µ(0) = µ(x * 0) 
          ≥ µ(x). µ(0) 
          = µ(x). µ(x *x) 
          ≥ µ(x). µ(x). µ(x) 
          = (µ(x))3 , which completes the proof. 
 
Definition 3.6. The characteristic function of a non-empty subset A of a PS-algebra X , 

denoted by χA , is defined by χA(x)  = 
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Theorem 3.7. Let A ⊆ X. Then A is a subalgebra of a PS-algebra X if and only if  χA is a 
fuzzy dot PS-subalgebra of a PS-algebra X. 
Proof :  Let x , y ∈ A. Then x*y ∈A. Hence we get χA(x *y) = 1 ≥ χA(x). χA(y). 
If  x ∈A and y ∉A (or x ∉A and y ∈A) ,then we get χA(x *y)  ≥ χA(x). χA(y) = 1.0 = 0,  
since ,  χA(x) = 1 and  χA(y) = 0. 
Thus χA is a fuzzy dot PS-subalgebra of a PS-algebra X. 
Conversely,  assume that χA is a fuzzy dot PS-subalgebra of a PS-algebra X. 
Now let  x , y ∈ A. Then χA(x *y)  ≥ χA(x). χA(y) = 1.1 = 1, hence by definition, we have  
x*y ∈A, which completes the proof. 
 
Remark : 
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1. A fuzzy subset µ of X is a fuzzy subalgebra of  PS-algebra X iff the level subset  
µt ={x ∈ X µ(x) ≥ t}, the upper level subset of µ, is a subalgebra of X , for every 
t ∈[0 , 1] . 

2. But from example 3.2, it is clear that , if µ is the fuzzy dot PS-subalgebra of X, 
then there exists t ∈[0 , 1] such that µt ={x ∈ X µ(x) ≥ t} is not a subalgebra of 
X .  µ is a fuzzy dot PS-subalgebra of X in example 3.2, then consider   µ0.5 ={x 
∈ X µ(x) ≥ 0.5}= { 0,1,3}, is not a subalgebra of X , since 1 * 3 = 2 ∉µ0.5. 
 

Theorem 3.8. Let f:X→Y be a homomorphism of a PS-algebra X into a PS-algebra Y. If 
µ is a fuzzy dot PS subalgebra of Y, then the pre- image of µ denoted by f-1 (µ), defined 
as {f-1 (µ)}(x) = µ(f(x)) , ∀ x ∈ X, is a fuzzy dot PS subalgebra of X. 
Proof: Let µ be a fuzzy dot PS-subalgebra of Y. Let x , y ∈ X. 
Now, {f -1 (µ)}(x* y) = µ ( f (x *y) ) 
                                   = µ ( f (x) * f(y) ) 
                                   ≥ µ (f (x)) . µ(f(y))  
                                   = {f-1(µ)} (x) . {f -1(µ)}(y)  
⇒  f-1 (µ) is a fuzzy dot PS-subalgebra of X.  
 
Theorem 3.9. Let f:X→Y be an onto homomorphism of PS-algebras. If µ is a fuzzy dot 
PS -subalgebra of X, then the image f(µ) of µ under f is a fuzzy dot PS subalgebra of Y. 
Proof: For any y1, y2  ∈ Y, Let A1 = f-1(y1), A2 = f-1(y2) and A12 = f-1(y1 * y2). 
Consider the set A1 * A 2 = { x ∈ X / x= a1 * a2  for some a1 ∈ A1 and a2 ∈A2 } 
If x ∈ A1 * A 2, then x = x1 * x2 for some x1 ∈ A1 and x2 ∈A2 so that  
    f(x) = f (x1 * x2) = f(x1) * f( x2) = y1 * y2, 

that is, x ∈ f-1(y1 * y2) = A12.  Hence  A1 * A 2 ⊆ A12. It follows that  
 f[µ]( y1 * y2) =  sup µ (x) = sup   µ (x) 

                                                    x ∈ f-1(y1 * y2)  x ∈ A12 
                       ≥  sup µ (x)   =  sup  µ (x1 * x2) 

                                     x ∈ A1 * A 2    x1 ∈ A1 , x2 ∈A2             
                       ≥  sup µ (x1). µ (x2) 

                                       x1 ∈ A1 , x2 ∈A2             
since . : [0,1] x [0,1] is continuous, for every  ε > 0 there exists δ > 0 such that if                                               

 sup  µ (x1) -δ and    sup  µ (x2)-δ, then 
       x1 ∈ A1                           x2 ∈ A2              

 sup  µ (x1). sup µ (x2)-ε  . 
              x1 ∈ A1       x2 ∈ A2   

Choose  a1 ∈ A1 and a2 ∈A2  such that  
          µ(a1)  ≥  sup  µ (x1) -δ and µ(a2)  ≥  sup  µ (x2)-δ, then 
                     x1 ∈ A1                            x2 ∈ A2     

   µ(a1) . µ(a2) ≥  sup  µ (x1) . sup  µ (x2)-ε  . 
                       x1 ∈ A1        x2 ∈ A2   

Consequently, 
          f[µ]( y1 * y2)  ≥ sup  µ (x1). µ (x2) 

                                          x1 ∈ A1 , x2 ∈A2             
                                          ≥  sup  µ (x1)  .  sup  µ (x2)  = f[µ]( y1 ) . f[µ](y2)       
                                            x1 ∈ A1            x2 ∈A2  
     Hence f(µ) is a fuzzy dot PS-subalgebra of Y.           
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Theorem 3.10. Let f : X→X be an endomorphism on a PS-algebra X. If µ be a fuzzy dot 
PS- subalgebra of X. Define a fuzzy set µf : X → [0,1] by µf (x) = µ(f(x)) , ∀ x ∈ X. Then 
µf is a fuzzy dot PS-subalgebra of X. 
Proof: Let µ be fuzzy dot PS- subalgebra of X. Let x , y ∈ X. 
Now ,  µf (x* y) = µ ( f (x *y) ) 
                        = µ ( f (x) * f(y) ) 
                        ≥ µ (f (x)) . µ(f(y))  
                        = µf (x) . µf (y)  
⇒  µf  is a fuzzy dot PS-subalgebra of X. 
 
Definition 3.11. Let  λ and µ be two fuzzy sets in a set X.. The Cartesian Product  λ x µ : 
X x X →[0,1] is defined by (λ x µ) (x,y) = λ(x) . µ(y). 
 
Theorem 3.12. If λ and µ are fuzzy dot PS-subalgebras of a PS-algebra X , then λ x µ is 
also a fuzzy dot PS- subalgebra of X x X.   
Proof : For any x1, x2 , y1 , y2 ∈ X. 
Then (λ x µ)(( x1, y1) *(  x2 , y2 )) = (λ x µ)( x1  *   x2  , y1 * y2) 
                   = λ ( x1  *   x2) . µ( y1 * y2) 
       ≥ ((λ(x1). λ(x2)) . (µ( y1 ). µ( y2)) 
       = ((λ(x1). µ( y1 )) . (λ(x2). µ( y2)) 
       = (λ x µ)( x1, y1)  . (λ x µ) ( x2 , y2 )) 
This completes the proof. 
 
Definition 3.13. Let β be a fuzzy subset of X. The strongest fuzzy β-relation on PS-
algebra X is the fuzzy subset µβ of X x X given by µβ (x , y) = β(x).β(y), for all x , y ∈ X.  
 
Theorem 3.14. Let µβ  be the strongest fuzzy β-relation on PS-algebra X , where β is a 
fuzzy subset of a  PS-algebra X. If β is a fuzzy dot PS-subalgebra of a PS-algebra X , 
then µβ  is a fuzzy dot PS-subalgebra of  X x X.   
Proof : Let β be a fuzzy dot PS-subalgebra of a PS-algebra X  and let  x1, x2 , y1 , y2 ∈ X. 
      Then  µβ (( x1, y1) *(  x2 , y2 )) = µβ ( x1  *   x2  , y1 * y2) 
                   = β ( x1  *   x2) . β( y1 * y2) 
        ≥ (β (x1). β (x2)) . (β(y1). β(y2)) 
        = (β(x1). β(y1)) . (β(x2). β( y2)) 
        = µβ ( x1, y1)  . µβ ( x2 , y2 ) 
Therefore µβ  is a fuzzy dot PS-subalgebra of X x X.   
 
Theorem 3.15. Let µβ  be the strongest fuzzy β-relation on PS-algebra X , where β is a 
fuzzy subset of a PS-algebra X. If µβ  is a fuzzy dot PS-subalgebra of X x X, then  β is a 
fuzzy dot PS-subalgebra of a PS-algebra X.  
Proof : Let x , y ∈ X. 
Now,   ( β ( x * y ) )2  = β ( x * y ) . β ( x * y ) 
                                =  µβ ( (x * y) * (x * y) ) 
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                                   ≥  µβ  (x * y) . µβ (x * y)  
                                   =  [ β(x) . β(y) ]2 
⇒⇒⇒⇒ β ( x * y ) ≥ β(x). β(y), which completes the proof. 
 
Definition 3.16. Let β be a fuzzy subset of a PS-algebra X. A fuzzy relation µ on PS-
algebra X is called a fuzzy β-product relation if µ(x,y) ≥ β(x).β(y), for all x , y ∈X. 
 
 Definition 3.17. Let β be a fuzzy subset of a PS-algebra X. A fuzzy relation µ on PS-
algebra X is called a right fuzzy relation on β-product if µ(x,y) = β(y), for all x , y ∈X. 
 
Remark : 

1. Let β be a fuzzy subset of a PS-algebra X. A fuzzy relation µ on PS-algebra X is 
called a left fuzzy relation on β-product if µ(x,y) = β(x), for all x , y ∈X. 

2. Left (right) fuzzy relation on β is a fuzzy β-product relation. 
 

Theorem 3.18. Let µ be a right fuzzy relation on a fuzzy subset β of a PS-algebra X. If µ 
is a fuzzy dot PS-subalgebra of X x X , then β is fuzzy dot PS-subalgebra of a PS algebra 
X.  
Proof: 
  β(y1 * y2)  = µ ( x1  *   x2  , y1 * y2) 
        = µ ( ( x1,y1)  *  ( x2 , y2)) 
        ≥ µ ( x1,y1) .µ ( x2 , y2) 
        = β (y1). β (y2) , for all x1, x2 , y1, y2 ∈ X.  
Hence, β is a fuzzy dot PS-subalgebra of a PS-algebra. 
 
Theorem 3.19. Let X and Y be PS-algebras. Let µ be a fuzzy dot PS subalgebra of X x 
Y.Define a fuzzy set  βx (µ) of X such that  βx (µ)(x) = µ (x,0), ∀ x ∈ X. Then  βx (µ) is a 
fuzzy dot PS- subalgebra of X. 
Proof:  Let x , y ∈ X. 
βx (µ) ( x * y ) = µ ( x * y ,0) 
                       = µ ( (x * y),(0 * 0) ) 
                       = µ ( ( x,0 ) * (y,0) ) 
                       ≥ µ (x,0) . µ (y,0) 
                       = βx (µ) (x) .  βx (µ) (y)   
∴ βx (µ) is a fuzzy dot PS-subalgebra of X. 
 
Theorem 3.20. Let X and Y be PS-algebras. Let µ be a fuzzy dot PS-subalgebra of X x 
Y. Define a fuzzy set   βy (µ) of Y such that  βy (µ)(y) = µ (0,y), ∀ y ∈ Y. Then βy (µ) is a 
fuzzy dot PS subalgebra of Y. 
Proof:   Let x , y ∈ Y. 

βy (µ) ( x * y )  = µ ( 0, x * y ) 
                           = µ ((0 * 0), (x * y) ) 
                                    = µ ( (0, x ) * (0,y) ) 
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                                     ≥ µ (0,x) . µ (0,y) 
                                    = βy (µ) (x) .  βy (µ) (y)   
∴ βy (µ) is a fuzzy dot PS-subalgebra of Y. 
 
4. Conclusion 
In this article authors have been discussed fuzzy dot PS-subalgebra  in fuzzy PS-algebra. 
The relationship between fuzzy dot PS-subalgebra and fuzzy subalgebra also established. 
It has been observed that PS-algebra as a generalization of BCK/BCI/Q/d/TM/KU-
algebras. This concept can further be generalized to Intuitionistic fuzzy sets, interval 
valued fuzzy sets, Anti fuzzy sets for new results in our future work. 
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