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Abstract. The goal of this paper is concerned to numerical approach of the unsteady 
Navier-Stokes equations for incompressible Newtonian fluids based on finite element 
method and we present here the numerical simulations implemented with FreeFem++. 
We first give the constitutive formulation of these equations. The unknowns are u the 
velocity and p  the pressure. The constitutive equations lead to a non-linear elliptic 

system of partial differential equations for ),( pu . We find the variational formulation of 

the unsteady Navier-Stokes equations and obtain the results of numerical simulations 
through a programming code developed in FreeFem++. The approximation of the 
velocity and pressure are P2 continuous and P1 continuous finite element respectively.   
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1. Introduction 
In this paper we study the numerical solutions of the unsteady Navier-Stokes equations 
for incompressible Newtonian fluids based on finite element method (FEM) and we use 
FreeFem++ (see Hecht [10]) to obtain the numerical simulations. We deduce the 
constitutive equations of unsteady Navier-Stokes problem. These constitutive equations 
consist of highly non-linear system of partial differential equations of elliptic type. The 

velocity u  and the pressurep  are the unknowns. We assume that the solution ),( pu  is 

regular enough. The approximate velocity and pressure are respectively P2 continuous 
and P1 continuous finite element. We first introduce the conservation of laws (see 
Shaughnessy, Katz and Schaffer (2005) [14], Chorin and Marsden (2000) [6], Quarteroni 
and Valli (1994) [12]) and formulate the constitutive equations of unsteady Navier-
Stokes for incompressible Newtonian fluids. Then  the variational formulation of these 
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constitutive equations is derived and finite element approximation of this problem is 
introduced (see [5, 11, 12, 16]). All meshes and simulations are done in FreeFem++. 
Using the variational formulation we develop a programming code in FreeFem++ to find 

),( pu from the Navier-Stokes equations. We consider a well known benchmark flow 

problem, namely the Kim-Moin model problem whose exact solution is known, to 
validate the code. Finally, some conclusions and perspective of future works are 
discussed. 
 
2. The conservation laws 
Conservation laws states the physical principles governing the fluid motion. Taking into 
account the Lavoisier law: “in nature nothing is created, nothing is lost, everything is 
transformed”, we can deduce the basic principles of conservation. According to the 
conservation laws, a particular measurable property of an isolated physical system does 
not change as the system evolves. We consider flows of an incompressible Newtonian 
homogenous fluid in a bounded domain Ω� ��  with boundary .Ω∂  The mathematical 
formulations of these conservation laws are as follows:  
 
Conservation law of mass: Conservation of mass is a fundamental principle of classical 
mechanics. This means that “mass is neither created nor destroyed”. This way, during 
motion the mass of the body remain unchanged. In a fixed region, the total time rate of 
change of mass is identically zero.  
The differential equation expressing conservation of mass is 

                                  0)( =⋅∇+
∂
∂

uρρ
t

                                                               (1) 

where ρ  is the density of the fluid, u  is the velocity vector. This equation is also called 
the continuity equation. 
If the density is a constant, then the flow of the fluid is incompressible and the 
conservation of mass is expressed as  

                                    0=⋅∇ u                                                                              (2)        
Conservation law of momentum: The consequences of body motion cannot be 
described only by a velocity, they also depend on the mass. So, we use the momentum of 
mass (mass× velocity) to relate them. The conservation law of momentum is the 
extension of the famous Newton’s second law of motion, “force= mass×acceleration”. 
For a moving flow field this law describe that the total time rate of change of linear 
momentum or acceleration of a fluid element is equal to the sum of externally applied 
forces on a fixed region. The equation of conservation of momentum is given by  

                          fTuu
u ρρ +⋅∇=







 ∇⋅+
∂
∂

t
                                                        (3)     

where T  is the symmetric tensor field, called Cauchy stress tensor and f is an external 
force. 
3. The constitutive law and problem formulation 
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 The constitutive law relates the Cauchy stress tensor with the kinematics of different 
quantities, in particular, the velocity field. These relations allow us to characterize the 
mechanic behavior of fluid. In this work we are concerned with fluids, obeying a 
Newtonian behavior. The Newtonian fluids are a subclass of isotropic (direction 
independent) viscous fluids to which the stress tensor T is the sum of the tension caused 
by the thermodynamic pressure in the fluid, the tension that causes deformation fluid and 
the tension due to volumetric expansion. These fluids are called Stokesians Fluids. 
Newtonian fluids are isotropic viscous fluids to which the stress tensor T  is given by 

)(2 uDuIT µη +⋅∇+−= p  
where η , the volumic viscosity, multiplies the tension due to volumetric expansion and 
µ , the hydrodynamic viscosity multiplies the tension which contributes to the motion of 

the fluid. These viscosities verify the relations 023 ≥+ µη and .0≥µ  In a Newtonian 
incompressible fluid, the Cauchy stress tensor is a linear function of the strain tensor. The 
Cauchy stress tensor can be written in the form 

            ])([)(2 tPp uuIuDIT ∇+∇+−=+−= µµ                                           (4) 

where the term )(2 uDµ is often referred as viscous stress component of the stress tensor. 
As example of compressible Newtonian fluids, we refer the following gases: oxygen, 
hydrogen, air, methane and ammonia. As example of incompressible Newtonian fluids 
we refer the following liquids: water, gasoline, olive oil. 

            Considering that µ  is constant and T  as in (4), for the Newtonian incompressible fluid, 
conservation law of momentum (3) can be written as 

fTuu
u ρρ +⋅∇=







 ∇⋅+
∂
∂

t
 

         

fuDIuu
u ρµρ ++−⋅∇=







 ∇⋅+
∂
∂

⇒ )](2[ p
t

 

After simplifying we get 

fuDuu
u ρµρ +⋅∇+−∇=







 ∇⋅+
∂
∂

⇒ )(2p
t

 

Considering  ρ
 
as a constant, we define the kinematic viscosity 

ρ
µν =  (m2/s) and the 

scaled pressure 
ρ
p

 
(m2/s2) still denoted by p and we obtain 

                               fuDuu
u =⋅∇−∇+∇⋅+

∂
∂

⇒ )(2νp
t

                                      (5) 

The Navier-Stokes equations for incompressible fluids is the system of equations formed 
by the partial differential equations of the law of conservation of mass (2) and the 
momentum equations (5) 
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Ω=⋅∇

Ω=∆−∇+∇⋅+
∂
∂

,in0

,in

u

fuuu
u νp
t                                        (6) 

            If  0=⋅∇ u (from (2)),then [ ] uuuuD ∆=∇+∇⋅∇=⋅∇ t)(
2
1

2)(2 . 

So, the conservation of momentum can be written as   

                                fuuu
u =∆−∇+∇⋅+

∂
∂ νp

t
                                                   (7) 

Using (7), we can rewrite the Navier-Stokes equations for the incompressible fluids as 
follows:  

                  







Ω=⋅∇

Ω=∆−∇+∇⋅+
∂
∂

.in0

,in

u

fuuu
u νp
t                                                    (8) 

Here Ω  is a bounded domain of �� , � � 2,3 with Lipschitz continuous boundary Ω∂
.To close mathematical formulation and obtain a well-posed problem, the above 
equations need to be supplemented by some boundary conditions. For simplicity, we 
consider the case in which the system of differential equations (8) is equipped with the 
Dirichlet boundary conditions gu = on Ω∂  (adherence conditions). The condition 

0=g  is called the homogeneous Dirichlet boundary conditions (or no-slip boundary 

conditions) i.e., 0=u  on Ω∂ , which describes a fluid confined into a domain  with 
fixed boundary (the boundary is at rest).  
      So, with the homogeneous Dirichlet boundary conditions defined over Ω , we can 
write the unsteady Navier-Stokes problem as follows: 

                 












Ω∂=
Ω=⋅∇

Ω=∆−∇+∇⋅+
∂
∂

.on0

,in0

,in

u

u

fuuu
u νp
t                                                           (9) 

4. Variational formulation 
We use different function spaces with different notations details of which can be found in 
(Adams and Fournier (2003)[1], Brezis(2011) [4]). Without loss of generality, we 
consider an incompressible fluid confined into a domain with fixed boundary. 
Mathematically, for each ],[ 0 Ttt ∈  (to simplify, we take from now 00 =t ), we write the 

unsteady Navier-Stokes equations as 
Given f , find ),( pu  such that 
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Ω∈∀==
Ω∂×=

Ω×=⋅∇

Ω×=∆−∇+∇⋅+
∂
∂

.),(),0(

,],0[on0

,],0[in0

,],0[in

0 xxuxu

u

u

fuuu
u

t

T

T

Tp
t

ν

                                      (10) 

where f  is a given external force field per unit mass, u  is the velocity field, 0u  is the 

known initial velocity field , p  is the rate between the pressure and the density and  ν is 
the constant kinematic viscosity.  
       The variational or weak formulation of Navier-Stokes equation consists of the integral 
equations over Ω obtained by integration, after multiplying the momentum equation and 

continuity equation by appropriate test functions. Let us suppose that )],0([2 Ω×∈ TCu  

and )],0([1 Ω×∈ TCp  are the classical (or strong) solution of (10). Consider two Hilbert 

spaces  )(1
0 Ω= HV   and )(2

0 Ω= LQ   and take Vv ∈ and Qq∈ be two arbitrary test 

functions. Applying the Green’s formula for the integration by parts and taking into 
account that v  vanishes on the boundary and after simplifying we get the variational 
formulation of the Navier-Stokes problem as: 

],0[ Tt ∈∀ , given ))(;,0( 12 Ω∈ −Hf TL and )(1
00 Ω∈ Hu with 00 =⋅∇ u , find  

);,0();,0(),( 22 QTLTLp ×∈ Vu  such that 

                               















=

=⋅∇

=+∇−∇⋅+⋅
∂
∂

∫

∫∫∫∫∫

Ω

ΩΩΩΩΩ

0)0(

0

.)(:)(2.).(

uu

u

vfvDuDvvuuv
u

q

p
t

ν

        (11)                           

for all  ).()(),( 2
0

1
0 Ω×Ω∈ LHv q  Here ))((

2

1
)( TuuuD ∇+∇= is the deformation 

tensor. 
Taking into the definitions of the following bilinear and trilinear forms: 

)(:)(2))(),((2),( vDuDvDuDvu ∫
Ω

== ννa ,             

∫
Ω

⋅∇−=⋅∇−= vvv pppb ),(),( , 

and               ∫
Ω

⋅∇⋅=∇⋅= vuwvuwvuw )(),)((),,(c  

we can reformulate the variational formulation of the Navier-Stokes problem as 
follows: 
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],0[ Tt ∈∀ , given ))(;,0( 12 Ω∈ Hf TL and )(1
00 Ω∈ Hu with 00 =⋅∇ u , find  

);,0();,0(),( 22 QTLTLp ×∈ Vu  such that                                                                                                               
                                                                                 













=
=

=+++
∂
∂

0)0(

0),(

),(),(),,(),(),(

uu

u

vfvvuuvuv
u

qb

pbca
t

                                                         (12)   

for all  ).()(),( 2
0

1
0 Ω×Ω∈ Lq Hv  

It can be proved [9] that the problem (12) is well-posed and equivalent to (10). The 
existence and uniqueness of theorem for the solutions of Navier-Stokes system can be 
found in (Galdi (1994) [7], Girault and Raviart  (1986) [8], Temam (1984) [15], Girault 
and Raviart (1979) [9]). 
 
5. Finite element approximation  
We consider finite element method (FEM) to approximate the numerical solutions of 
Navier-Stokes problem (12). The FEM is a method which approaches the solution of 
partial differential equations (PDEs) and is a general technique for constructing 
approximate solutions to boundary value problems in dimension )3(, ≤dd . All results 
will be presented here for the two-dimensional case, where we will do the application of 
these concepts and presentation of numerical simulations. Although there are several 
types of finite elements, in the following, we deal only with the discretization of the 
Navier-Stokes problem, using a Lagrange Finite Element of type 12 PP − . The solution 

),( pu of the problem (12) lives in a space of infinite dimension. In this circumstance, it 
is generally impossible to calculate the exact solution. Then we determine an 

approximation of u  and p , respectively hu  and hp , each one defined in finite 

dimensional appropriate spaces hV , such that dim
0

))(lim)((
→

+∞==
h

h hIhIV and 

dependent on a parameter 0>h . These spaces are formed by polynomials and for all 

function hv  in hV  (in particular hu  and hp  for the appropriate spaces) we have  

∑
=

=∈=
I

i
iih IiIRv

1

,,1,, ⋯αϕα  ,where },,,{ 21 Iϕϕϕ ⋯  is a basis of hV . 

This is the principle of the Finite Element Method. The FEM can be studied in details in 
(Brenner and Scott (1994) [3], [12], Becker et al. (1981) [2],Girault and Raviart(1979) 
[9]). 
       We use classical Galerkin method to find the solution. We consider Galerkin’s 
method for constructing approximate solutions to the variational boundary-value 
problem (11) or its abstract formulation (12). Galerkin’s method consists of seeking an 
approximate solution (11) in a finite-dimensional subspace hV  of the space of 
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admissible functions where the solution lies in this subspace rather than in the whole 
space. The natural Galerkin approximation for problem (10) is a mixed method which is 
based on Lagrange multiplier formulations of constrained problems. We refer to mixed 
approximation methods as those associated to the approximation of saddle point 
problems, in which there are two bilinear forms and two approximation spaces 
satisfying a compatibility condition (see [12]). 
       We discretize problem (12). Let 0}{ >Τ hh  be a family of triangulations and h denotes 

a discretization parameter and let hV and hQ  be two finite dimensional spaces such that 

)(1 Ω∈ HVh  and ).(2 Ω∈ LQh  We let )(: 1
0

0 Ω∩= HVV hh and )(: 2
0 Ω∩= LQM hh . 

In these spaces, the discrete finite element approximation problem of (12) can be written 
as follows: 

for each ],0[ Tt ∈  , 0
,0 hh Vu ∈ , find hhhhhh Mtptp ×∈⋅⋅≡ 0)),(),,((),( Vuu  such that

                      













=
∈∀=

∈∀=+++

hh

hhhh

hhhhhhhhhhhh

Mqqb

pbca
dt

d

,0

0

)0(

,0),(

,),(),(),,(),(),(

uu

u

Vvvfvvuuvuvu

                     (13) 

which can be written as  

for each ],0[ Tt ∈  , 0
,0 hh Vu ∈ , find hhhhhh Mtptp ×∈⋅⋅≡ 0)),(),,((),( Vuu  such that 

      















=

∈∀=⋅∇

∈∀=+∇−∇⋅+⋅
∂

∂

∫

∫∫∫∫∫

Ω

ΩΩΩΩΩ

hh

hhhh

hhhhhhhhhhh
h

Mqq

p
t

,0

0

)0(

0

.)(:)(2.).(

uu

u

VvvfvDuDvvuuv
u ν

                         (14)                

As motion is non-stationary we need to dicretize the Navier-Stokes equations over time. 
There are several methods of time discretization. In this paper we use Characteristic 
Galerkin Method which associates backward Euler scheme of first order defined by ��� ����, . � � �����, . � � ���, . ���� � �  

The Characteristic Galerkin Method evaluates time derivatives of vector field on 
Lagrangian frame, appealing to characteristic lines or trajectories described by a material 
particle when it has been driven by the field at the velocity of the field. We describe the 
motion of material particle of Newtonian fluid during the time interval ��, �� ��0, ��, �� � 0�, which was in position � at instant � by  ��;� : � " ��; �, �� 
and define its characteristics line or trajectory, with the same flow direction, by the only 
solution of Cauchy problem  

#��� �; �, �� � �$; ��; �, ��%,  & �0, �����; �, �� � � ' 
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Now taking an uniform mesh of [0,T] defined by � � (∆, ( � 0, … , *
∆�, ∆ being the 

time step and applying the backward Euler scheme we can write the scheme for the 

problem (10), denoting ��+���,� - �.$, � ∆t0�t1��, 2�% � 01�23�  

  #���� 4 ∆t5p1�� � 2ν∆t5. 7������ � ∆9��� 4 01�23�,5. 01�� � 0,01�� � 0 , 0� � 0� '                                     (15) 

 
The discrete variational formulation of (15) is as follows: 

for each )(],,0[)1( 0
1 N∈∈∆+=+ nTtnt n   given )0(0

hh uu = , find

hh
n
h

n
h Mp ×∈++ 011 ),( Vu  such that 

         





Ω=⋅∇

Ω=∆+⋅∇∆−
++

+++

.0),(

,),())(),((2),(),(
11

111

inp

intpt
n
h

n
h

hh
n
hh

n
hh

n
h

u

vgvDuDvvu ν
                 (16) 

where )(11 ∗++ +∆= xufg nnn t .  

Let 
hNii ,,1}{

⋯=ϕ  and 
hmjj ,,1}{

⋯=ψ  be the Lagrange bases of the spaces 0
hV  and hM

respectively. Given n
hu , we express the corresponding approximate solutions 

),( 1
,2

1
,1

1 +++ = n
h

n
h

n
h uuu and 1+n

hp  in the basis of 0
hV and hM   

∑
=

++ =
hN

j
j

n
j

n
h uu

1

1
,1

1
,1 ϕ  , ∑

=

++ =
hN

j
j

n
j

n
h uu

1

1
,2

1
,2 ϕ , ∑

=

++ =
hm

k
k

n
k

n
h pp

1

11 ψ  and with the test functions 

0
hi V∈ϕ  and hk M∈ψ  , we obtain the following linear algebraic system in matricial 

form as: 

                           
















=
































+

+

+

00
2

1

1

1
2

1
1

12

21

b

b

BB

BAA

BAA

n

n

n

t
y

t
x

y
t

x

p

u

u

                                                       (17) 

where [ ]tn
Nk

n
k

n
k h

uu 1
,

1
1,

1 ,, +++ = ⋯u  and  [ ]tn
m

nn

h
ppp 11

1
1 ,, +++ = ⋯  are the vectors of unknown 

degree of freedom and 

[ ]
hNhN

hh yyxx
t jiji

jiNNij

×




























∂
∂

∂
∂+

∂
∂

∂
∂∆+== ∫

Ω
×

ϕϕϕϕνϕϕ 211 AA

[ ]
hNhN

hh yx
ji

NNij

×










∂
∂

∂
∂== ∫

Ω
×

ϕϕ
22 AA [ ]

hh

hh

mN

k
i

mNxjkx x
×Ω

× 








∂
∂−== ∫ ψϕ

BB  

[ ]
hh

hh

mN

k
i

mNyjky y
×Ω

× 








∂
∂−== ∫ ψϕ

BB  
1

1
,

×Ω

+








= ∫

hN

i
n

jii ϕgb  

We can rewrite the above matricial equation in a more simple way 
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=
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1

u
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=
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1

b

b
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6. Numerical simulations 
The solution can be evaluated using a direct method or iterative method applied to 
symmetric matrices as CG (conjugate gradient method). Details can be found in (Saad 
(2003) [13]). All meshes and simulations were done in FreeFem++ which is a free 
software with its own high level programming language based on the finite element 
method (FEM) to solve partial differential equations. An automatic mesh generator is 
used in FreeFem++ based on Delaunay-Voronoi algorithm where the number of internal 
points is proportional to the number of points on the boundaries.  
       The direct numerical simulation from the variational formulation for the time 
discretization can be straightforwardly implemented on the general finite element solver 
FreeFem++ which we use to make numerical experiments. The graphics were generated 
in FreeFem++ and Mathematica. 
        We develop the programming code in FreeFem++ from the varaitional problem 
and use Crout method and Conjugate Gradient method as solvers to solve the system. 
Towards the validation of the code, choosing solver and error analysis, we consider the 
Kim-Moin model problem with known exact solution given by 
                                            ��, ,� � �� cos�2=>� sin�2=A� BCDEF

ν�, sin�2=>� cos�2=A� BCDEF
ν�  �          �18� 

                                                                              I�, ,� � � �J �cos�4=>� 4 cos�4=A�� BC�LEF
ν�                                         �19� 

The velocity and pressure field remain in space and decrease monolithically with time. 
The Kim-Moin model problem is solved on the unit square Ω= [0.25, 1.25] × [0.5, 1.5] 
and prescribes the exact velocity according to (18) and (19) along the boundary of the 
fluid domain. The calculations have been performed with a kinematic viscosity of ν = 
0.01 which results the null external force. The problem has been discretized in space with 
two meshes with 2048 and 8192 Hood-Taylor elements. For the finer mesh we have 4225 
nodes P2 for the velocity and 1089 nodes P1 for the pressure and for the coarse mesh we 
have 16641 nodes P2 for the velocity and 4225 nodes P1 for the pressure. The time 
interval [0, 1] was discretized into subintervals, of equal amplitude ∆t = 2CN with k = 5, 

6, 7, 8, of type [�, ���] (n = 0, … , 2N – 1). 
          We use a linear direct and an iterative solver available in FreeFem++: Crout 
method is a direct method. It is a variant of the factorization method LU where U 
=�OPQ��R�  is an upper triangular matrix with unitary diagonal and L = �SPQ��R�   matrix is 

an lower triangular, with its coefficients defined by 

SPQ � TPQ � U SPNONQ  ,QC�
NV� W X Y                OPQ � TPQ � ∑ SPNONQ,   PC�NV�SPP , W � Y 
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             Being A a nonsingular matrix, as well as the matrix L and U, in this way the diagonal 
elements are not null. In this case, we can split the system Ax = b into triangular systems 
of simpler resolution as follows 

 Ax = b  or LUx = b or [\] � ^_, � '̀ 
            Conjugate Gradient method (CG) is an iterative method that applies to linear systems in 

which the matrix is symmetric positive definite. This method is normally used in large 
sparse matrices.  
Taking the different meshes and using the two solvers (Crout and CG) in FreeFem++ 
we obtain the following numerical results: 

First test case: In this test case, we take the mesh with 2048 elements and kt −=∆ 2  
with k = 5, 6, 7, 8 and solve the problem with Crout method. The figure 1.1 
shows the errors of the fluid velocity field and the pressure for each instant of time 

evaluated in the 2L -norm i.e., 

2/1
2

1

2
,)(2048 )()( 2 










−=−= ∑∫

= Ω
Ω

i
ihih

n uutev
L

uu and 

2/1

2

)(2048 )()( 2 









−=−= ∫

Ω
Ω hLh

n pppptep . 

 
 
Figure 1.1: Error on the fluid velocity field (on the left) and the pressure (on the right) 

in 2L -norm for each instant of time, for different t∆  using a mesh with 2048 elements. 
 
Second test case: In this test case, we take the mesh with 8192 elements and kt −=∆ 2  
with k = 5, 6, 7, 8 and solve the problem with Crout method. The figure 1.2 shows the 

)(8192
ntev  and )(8192

ntep , the errors of the fluid velocity field and the pressure 

respectively for each instant of time evaluated in the 2L -norm. 
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Figure 1.2: Error on the fluid velocity field (on the left) and the pressure (on the right) 

in 2L -norm for each instant of time, for different t∆  using a mesh with 8192 elements. 
 
Comparison of both tests: Comparing the solutions computed by the two meshes for 
different time stepst∆ , we notice that there is no remarkable difference between both 

solutions, although the error 2L  is decreasing which can be observed from the figure 1.1 
and figure 1.2, which we can easily conclude from the figure 1.3. The figure 1.3 shows 
the error )1(2048ev and )1(8192ev of the fluid velocity field (on the left) and the error 

)1(2048ep and )1(8192ep of the pressure (on the right) for the instant of time 1=t

evaluated in the 2L -norm. 

 
Figure 1.3: Comparison of errors of the fluid velocity field (on the left) and the pressure 

(on the right) in 2L -norm for each instant of time 1=t , for different t∆  using the both 
meshes. 
 
Given the behavior of the error we can speculate that when 0→∆t we have

)1()1( 81922048 ee ≈ . Comparing the CPU time for each test, clearly the fine mesh 

demands for a large CPU time, for different time steps (figure 1.4). From the point of 
view of CPU time, it is better to employ a mesh little refined and a smaller t∆  to 
achieve the same accuracy level. 
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Figure 1.4: Comparison of CPU of times used as a function of t∆  in solving the 
problem by the method of Crout for the two meshes. 

Third test case: In this test case, we take the mesh with 2048 elements and kt −=∆ 2  
with  k = 5, 6, 7, 8 and solve the problem with CG method. We compare the results with 
the first test. The figure 1.5 shows the comparison of errors of the fluid velocity field 

and the pressure respectively for each instant of time evaluated in the 2L -norm, for the 
both methods Crout and CG. It is evident that they present the same behavior and the 
same precision. The difference of error values between the Crout method and CG 

method are of the order 710− . 

 
Figure 1.5: Comparison of errors of the fluid velocity field (on the left) and the pressure 

(on the right) in 2L -norm for each instant of time, for different t∆  using a mesh with 
2048 elements, for the both methods: Crout and CG. 

  
Figure 1.6: Comparison of errors of the fluid velocity field (on the left) and the pressure 

(on the right) in 2L -norm for each instant of time 1=t , for different t∆  using the both 
methods. 
       As it was expected, by a-priori estimates for the error in time, we obtain a linear 
convergence in order to time (figure 1.6). 
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Fourth test case: In this test case, we take the mesh with 8192 elements and kt −=∆ 2  
with  k = 5, 6, 7, 8 and solve the problem with CG method. We compare the results with 
the third test. We also notice for this method that there is no remarkable difference 

between both solutions, although the error2L decrease. The figure 1.7 shows the 
comparison of errors of the fluid velocity field and the pressure respectively for each 
instant of time evaluated in the 2L -norm, for the both methods Crout and CG. It is 
evident that they present the same behavior and the same precision. The difference of 

error values between the Crout method and CG method are of the order 710−
. 

 
Figure 1.7: Comparison of errors of the fluid velocity field (on the left) and the pressure 

(on the right) in 2L -norm for each instant of time, for different t∆  using a mesh with 
8192 elements, for the both methods: Crout and CG. 
 
         Since the both methods have the same accuracy, we have to decide which method 
to use based on CPU time. As we can see (figure 1.8), the method CG expends much 
CPU time than the method Crout, in the case of mesh to be refined. In the case of less 
fine mesh, the time spent by the two methods are approximately equal, although in this 
case the Crout method is slightly faster (figure 1.9). 
 

 
Figure 1.8: Comparison of CPU of times used as a function of t∆ , in solving the 
problem with  the two meshes. 
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Figure 1.9: Comparison of CPU of times used as a function of t∆ , in solving the 
problem by the method of Crout for  the two meshes.  
       In large sparse matrix, the Conjugate Gradient method should be more efficient 
than the method of Crout, but we don’t know if the implementation of this solver is 
optimized. Given the previous study we choose to use the method of Crout. 
       The following figures illustrate the exact solution and corresponding approximation 
obtained for a mesh with 2048 elements and 128/1=∆t at time 1=t . 

 
Figure 1.10: Exact solution at 1=t .  First component of velocity (on the left), second 
componenet of velocity (on the centre) and pressure (on the right). 

 
Figure 1.11: Approach solution at 1=t . First component of velocity (on the left), 
second component of velocity (on the centre) and pressure (on the right).  
 
7. Discussion and conclusions 
We have presented in this paper the Glerkin finite element method to simulate the motion 
of fluid particles which satisfies the unsteady Navier-Stokes equations. Time 
discretization is obtained using Characteristic Galerkin method. We use FreeFem++ to 
implement the simulations straightforward from the variational formulation. The velocity 
and pressure, i.e. the solution of Navier-Stokes equation is obtained. Comparing different 
test cases using different meshes and solvers we conclude that the Crout solver in 
FreeFem++ is more effective. From figure 1.10 and figure 1.11, we observe that the exact 
solution and approach solution is approximately same. The approximation of the velocity 
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and pressure are P2 continuous and P1 continuous finite element respectively. All the 
simulations were done in two dimensional case. We can extend it to the three-
dimensional case using 3-D Navier-Stokes solver in FreeFem++  for further work. 
Furthermore, discontinuous Galerkin finite element method can be used in case of 
unstructured mesh and simulations can be implemented with FreeFem++. 
 

REFERENCES 
 

1. R.A.Adams and J.F.Fournier, Sobolev Spaces, 2ed, Academic Press, NY, 2003.  
2. E.Becker, G.Carey and J.Oden, Finite Elements. An Introduction Vol. 1, Prentice   

Hall, Inc., Englewood Cliffs, New Jersey, 1981. 
3. S.Brenner and L.R.Scott, The Mathematical Theory of Finite Element Methods, 

Springer-Verlag, New York, 1994. 
4. H.Brezis, Functional Analysis, Sobolev Spaces and PDE,   Springer, 2011.   
5. G.F.Carey and J.T.Oden, Finite elements, Vol.VI. Fluid mechanics, The Texas Finite 

Element Series, VI. Prentice Hall, Inc., Englewood Cliffs, New Jersey, 1986. 
6. A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, 3  

Ed., Springer, 2000. 
7. G.P.Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes  

Equations: Nonlinear Steady Problems, Springer Tracts in Natural Philosophy,Vol. 
38, Springer, New York, 1994. 

8. V.Girault and P.A.Raviart, Finite Element Approximation of the Navier-Stokes 
Equations,Computational Mathematics, Springer-Verlag, Berlin, 1986. 

9. V.Girault, and P.A.Raviart, Finite Element Approximation of the Navier-Stokes   
Equations, Lecture Notes in Math., 749, Springer-Verlag, Berlin, 1979. 

10. F. Hecht, ‘FreeFem++’, 3rd Edition, Version 3.17,   http://www.freefem.org/ff++ 
11. P.Lesaint, and P.A.Raviart, On a finite element method for solving the neutron 

transport equation, in C. de Boor, editor, Mathematical Aspects of Finite Elements in  
Partial Differential Equations, 89-123, New York, Academic Press, 1974. 

12. A.Quarteroni and A.Valli, Numerical Approximation of Partial Differential 
Equations,  Springer-Verlag, 1994. 

13. Y.Saad, Iterative Methods for Sparse Linear Systems, 2ed, Society for Industrial and 
Applied Mathematics, Philadelphia, 2003. 

14. E.J.Shaughnessy, I.M.Katz and J.P.Schaffer, Introduction to Fluid Mechanics, 
Oxford University Press, 2005. 

15. R.Temam, Navier-Stokes Equations, Theory and Numerical Analysis, 3ed, North-
Holland, Amsterdam, 1984.   

16. M.Pal, Numerical Analysis for Scientists and Engineers: Theory and C Program, 
Narosa, New Delhi and Alpha Science, Oxford, United Kingdom, 2007. 

17. M.A.Rahman, M.A.Alim and Md. Jahurul Islam, thermophoresis effect on MHD 
forced convection on a fluid over a continuous linear stretching sheet in presence of 
heat generation and power-law wall temperature, Annals of Pure and Appl. Math., 
4(2) (2013) 192-204. 

18. N.N.Anika and Md.M.Hoque, Thermal buoyancy force effects on developed flow 
considering hall and ion-slip current, Annals Pure and Appl. Math., 3(2) (2013) 179-
188. 


