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Abstract. The goal of this paper is concerned to numericgir@gch of the unsteady
Navier-Stokes equations for incompressible Newiorflaids based on finite element
method and we present here the numerical simukatimplemented with FreeFem++.
We first give the constitutive formulation of thesguations. The unknowns aughe
velocity and p the pressure. The constitutive equations lead tmrmlinear elliptic

system of partial differential equations o p) . We find the variational formulation of
the unsteady Navier-Stokes equations and obtairrabelts of numerical simulations

through a programming code developed in FreeFenThe approximation of the
velocity and pressure arg €ontinuous andRcontinuous finite element respectively.
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1. Introduction

In this paper we study the numerical solutionshef tinsteady Navier-Stokes equations
for incompressible Newtonian fluids based on firitement method (FEM) and we use
FreeFem++ (see Hecht [10]) to obtain the numerkgiaiulations. We deduce the
constitutive equations of unsteady Navier-Stokexbl@m. These constitutive equations
consist of highly non-linear system of partial difntial equations of elliptic type. The
velocity U and the pressure are the unknownsVe assume that the solutiga, p) is

regular enough. The approximate velocity and pressue respectively ,Rcontinuous

and R continuous finite element. We first introduce tbenservation of laws (see
Shaughnessy, Katz and Schaffer (2005) [14], Chemith Marsden (2000) [6], Quarteroni
and Valli (1994) [12]) and formulate the constitetiequations of unsteady Navier-
Stokes for incompressible Newtonian fluids. There variational formulation of these
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constitutive equations is derived and finite elemapproximation of this problem is
introduced (see [5, 11, 12, 16]). All meshes amdutitions are done in FreeFem++.
Using the variational formulation we develop a pesgming code in FreeFem++ to find

(u, p) from the Navier-Stokes equations. We consider d ewn benchmark flow

problem, namely the Kim-Moin model problem whoseaaxsolution is known, to
validate the code. Finally, some conclusions andspmetive of future works are
discussed.

2. The conservation laws

Conservation laws states the physical principleseging the fluid motion. Taking into
account the Lavoisier lawin nature nothing is created, nothing is lost, exting is
transformed’; we can deduce the basic principles of consemvathccording to the
conservation laws, a particular measurable proparign isolated physical system does
not change as the system evolves. We consider fidvesn incompressible Newtonian
homogenous fluid in a bounded dom&ix R? with boundarydQ. The mathematical
formulations of these conservation laws are as\l

Conservation law of mass: Conservation of mass is a fundamental principleladsical
mechanics. This means tHatass is neither created nor destroyedrhis way, during
motion the mass of the body remain unchanged.fired region, the total time rate of
change of mass is identically zero.

The differential equation expressing conservatibmass is

9p =
5 THHeu) =0 @

where o is the density of the fluid is the velocity vector. This equation is also adlle
the continuity equation.
If the density is a constant, then the flow of tt&id is incompressible and the
conservation of mass is expressed as

Olu=0 2
Conservation law of momentum: The consequences of body motion cannot be
described only by a velocity, they also dependhenmassSo, we use thmomentum of
mass (mass velocity) to relate them The conservation law of momentum is the
extension of the famous Newton’s second law of amtiforce= massacceleration”.
For a moving flow field this law describe that ttwal time rate of change of linear
momentum or acceleration of a fluid element is éqoahe sum of externally applied
forces on a fixed region. The equation of cons@matf momentum is given by

p(g—l:+uﬂ]]uj:DEr+,of (3)

whereT is the symmetric tensor field, called Cauchy stremisor and is an external
force.
3. The congtitutive law and problem formulation
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The constitutive law relates the Cauchy stressotemsth the kinematics of different
guantities, in particular, the velocity field. Tleeselations allow us to characterize the
mechanic behavior of fluid. In this work we are cemed with fluids, obeying a
Newtonian behavior. The Newtonian fluids are a kg of isotropic (direction

independent) viscous fluids to which the stressden is the sum of the tension caused
by the thermodynamic pressure in the fluid, thesimthat causes deformation fluid and
the tension due to volumetric expansion. Thesaldluare called Stokesians Fluids.
Newtonian fluids are isotropic viscous fluids toieththe stress tensdr is given by

T =-pl +p00u +2uD(u)
where/}, the volumic viscosity, multiplies the tension dimevolumetric expansion and
M, the hydrodynamic viscosity multiplies the tenswnich contributes to the motion of
the fluid. These viscosities verify the relatioig+ 24 > 0and £ = 0. In a Newtonian

incompressible fluid, the Cauchy stress tensoliisear function of the strain tensor. The
Cauchy stress tensor can be written in the form

T =-pl +2D() =-PI + [0u + (Ou)'] (4)
where the tern24D(U)is often referred as viscous stress componenteotifess tensor.

As example of compressible Newtonian fluids, wesrdhe following gases: oxygen,
hydrogen, air, methane and ammonia. As examplaafmpressible Newtonian fluids
we refer the following liquids: water, gasolineivel oil.

Considering that is constant and as in (4), for the Newtonian incompressible fluid,
conservation law of momentum (3) can be written as

p(g—?+uﬂﬂuj=mtr+pf

= p(%—fw Dﬂuj =0[-pl +2uD(u)] + pof
After simplifying we get

= p(%—;‘ +u Dﬂuj = —Up+240D(u) + pf
Considering 0 as a constant, we define the kinematic viscosiwﬁ (mf/s) and the

yo,
scaled pressureE (m?/<?) still denoted by p and we obtain
yo
ou
:E+uﬂﬂu+Dp—2vD [(D(u) =f (5)

The Navier-Stokes equations for incompressiblailis the system of equations formed

by the partial differential equations of the law ainservation of mass (2) and the
momentum equations (5)
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Z—l:+uDDu+Dp—vAu =f in Q,

(6)
Om=0 in Q,
If lu = O(from (2)),then20] (D(u) = 201 G;—[Du +(Ou)]=au.
So, the conservation of momentum can be written as
Z—L:+u[[Du+Dp—vAu:f @

Using (7), we can rewrite the Navier-Stokes equatior the incompressible fluids as
follows:

a—u+uD]]u+Dp—|/Au =f in Q,
ot 8)
=0 in Q.

Here Q is a bounded domain &%,d = 2,3 with Lipschitz continuous boundagQ
.To close mathematical formulation and obtain alyesed problem, the above
equations need to be supplemented by some bourdaditions. For simplicity, we
consider the case in which the system of diffeedrtquations (8) is equipped with the
Dirichlet boundary conditionsi =g on 0Q (adherence conditions). The condition

g =0 is called the homogeneous Dirichlet boundary diml (or no-slip boundary

conditions) i.e..u =0 on 0Q, which describes a fluid confined into a domainthw
fixed boundary (the boundary is at rest).
So, with the homogeneous Dirichlet boundampditions defined ovef), we can
write the unsteady Navier-Stokes problem as follows
%—l:+uDDu +0p-vAu=f in Q,
O=0 in Q,

u=0 on 0Q.

(9)

4. Variational formulation

We use different function spaces with differentations details of which can be found in
(Adams and Fournier (2003)[1], Brezis(2011) [4]).ithdut loss of generality, we
consider an incompressible fluid confined into amdm;m with fixed boundary.

Mathematically, for each [t,,T] (to simplify, we take from now, = 0), we write the

unsteady Navier-Stokes equations as
Givenf , find (u, p) such that
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(;—l:+uD]]u+Dp—vAu=f in [0T]xQ,

Ow=0 in [0T]*xQ, (10)
u=0 on [0, T]x0Q,

u(t =0,x) =u,(x), IxJ Q.

wheref is a given external force field per unit massis the velocity fieldu, is the

known initial velocity field , p is the rate between the pressure and the denmsityas
the constant kinematic viscosity.

The variational or weak formulation of Navigtokes equation consists of the integral
equations ovef obtained by integration, after multiplying the marhen equation and

continuity equation by appropriate test functiozst us suppose that JC2([0,T]x Q)
and POCY[0,T] ><§) are the classical (or strong) solution of (10)n€lder two Hilbert

spaces V =H(Q) andQ=L3%(Q) and takevJV and q0Qbe two arbitrary test

functions. Applying the Green’s formula for the dgtation by parts and taking into
account thatv vanishes on the boundary and after simplifying ge¢ the variational
formulation of the Navier-Stokes problem as:

Ot0[0,T], givenf OL*(0,T;H™(Q)) andu, OH(Q) with O, = 0, find
(u, P OL*(O,T;V)xL*(0,T;Q) such that

Iau M+.|'(u D]]u).v—J. pD.v+2vID(u) :D(v) :_[f.v

ot

qum:o (11)
Q

u@©) =u,

for all (v,q) OH(Q)xL%(Q). HereD(u) :%(Du +(0u)") is the deformation

tensor.
Taking into the definitions of the following biline and trilinear forms:

a(u,v) = 2v(D(u),D(V)) = 2v j D(u): D(V),
b(v, p) =~(p,0) =] pOLV,

and c(w,u,v):((WDD)u,v):I(WDD)uD/

we can reformulate the variational formulation bf tNavier-Stokes problem as
follows:
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Ot 0[0,T], givenf OL*(0,T;HY(Q))andu, OH(Q) with O, =0, find
(u, p)OL%(0,T;V)xL?(0,T;Q) such that

(g—l:,v) +a(u,v) +c(u,u,v) +b(v, p) = (f,v)

b(u,q) =0 (12)
u(0) =u,

forall (v,q) OH(Q)xL2(Q).

It can be proved [9] that the problem (12) is wamlked and equivalent to (10). The
existence and uniqueness of theorem for the sokitad Navier-Stokes system can be
found in (Galdi (1994) [7], Girault and Raviart 986) [8], Temam (1984) [15], Girault
and Raviart (1979) [9]).

5. Finite element approximation

We consider finite element method (FEM) to appratenthe numerical solutions of
Navier-Stokes problem (12). The FEM is a methodcWwhapproaches the solution of
partial differential equations (PDEs) and is a gehdechnique for constructing
approximate solutions to boundary value problemdiimensiond, (d <3). All results

will be presented here for the two-dimensional cadere we will do the application of
these concepts and presentation of numerical sfionga Although there are several
types of finite elements, in the following, we deally with the discretization of the

Navier-Stokes problem, using a Lagrange Finite Eletmof typeP, — F. The solution

(u, p) of the problem (12) lives in a space of infinitenéinsion. In this circumstance, it
is generally impossible to calculate the exact tgsmiu Then we determine an
approximation ofu and p , respectivelyu, and p,, each one defined in finite

dimensional appropriate spac&4 , such that dinV, =1(h)(limI(h)=+) and
h-0

dependent on a paramete> 0. These spaces are formed by polynomials and for al
function v, inV, (in particularu, and p, for the appropriate spaces) we have

Vi :ZIZGWUO'D IR,i =1---,1 ,wherd@,,@,, -, @} is a basis o¥/,,.

This is the principle of the Finite Element Methdde FEM can be studied in details in
(Brenner and Scott (1994) [3], [12], Becker et(4P81) [2],Girault and Raviart(1979)
[9D).

We use classical Galerkin method to find slodution. We consider Galerkin's
method for constructing approximate solutions te thariational boundary-value
problem (11) or its abstract formulation (12). Gkile's method consists of seeking an

approximate solution (11) in a finite-dimensionalbspaceV, of the space of
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admissible functions where the solution lies irsthubspace rather than in the whole
space. The natural Galerkin approximation for peob(10) is a mixed method which is
based on Lagrange multiplier formulations of camsied problems. We refer to mixed
approximation methods as those associated to tlpeodmation of saddle point
problems, in which there are two bilinear forms atweb approximation spaces
satisfying a compatibility condition (see [12]).

We discretize problem (12). K&t },., be a family of triangulations arfddenotes
a discretization parameter and M and Q, be two finite dimensional spaces such that
V, OHY(Q) andQ, OL*(Q). We letV; =V, n H5(Q)and M, =Q, n Li(Q).
In these spaces, the discrete finite element appedion problem of (12) can be written
as follows:

for eacht [0, T] ,u,, OV, find(u,, p,) = (u, ¢,0 p,(t.0) OV.xM, such that
d
a(uh,vh) +a(u,,v,)+cu,,u,,v,)+b(v,,p,) =(f,v,) Ov,0OV.,

bu,,q,)=0  Og,OM,, (13)
u, 0) =u,,

which can be written as

for eacht O[O0, T] ,u,, OV, find(u,, p,) = (u, ¢,0 p,(t,0) OV, xM, such that
J'% M, +J'(uh Mu,).v, —J' p, O, +2|/J D(u,):D(v;) =J'f.vh Ov, OV
Q at Q Q Q Q

(14)
[a0m,=0  Og,0M,
Q

u, () =u,,

As motion is non-stationary we need to dicretize Mavier-Stokes equations over time.
There are several methods of time discretizatianthis paper we use Characteristic
Galerkin Method which associates backward Euleesehof first order defined by

ow, ..o u(t™, ) —uh,.)
E(t ")_ tn+1_tn

The Characteristic Galerkin Method evaluates timeivdtives of vector field on
Lagrangian frame, appealing to characteristic limesajectories described by a material
particle when it has been driven by the field & welocity of the field. We describe the
motion of material particle of Newtonian fluid dog the time intervalt,, t;] c
[0,T], (T > 0), which was in positiog at instant, by

Xtitg: § = X(& 80, ¢)
and define its characteristics line or trajectavith the same flow direction, by the only
solution of Cauchy problem

d
d—f(t: to, ) = u(t; x(t;t0,8)),t €]0,T[
x(to; to, &) = ¢
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Now taking an uniform mesh of [0,T] defined By = nAt,n = 0,...,%, At being the
time step and applying the backward Euler schemecave write the scheme for the
problem (10), denoting™ox™(x) ~ u™(x — Atu(t"*1,x)) = u"(x*)
u™t + AtVpPt — 2vALV. D (utY) = Acf + ut(x),
V.u™tl =0, (15)

n+1

ul =0, u’=u,

The discrete variational formulation of (15) isfabows:
for eacht™ = (n+1)AtO[0,T], (nON,) givenu? =u, (0), find
(UM, pryOVe xM,, such that
(up™,v,) - AL(PE™, O V) + 20t (D(Up™), D(v,)) = (V) inQ,
{(D W, pry=0 in Q.
whereg™™ = Atf "™ +u"(x").
Let {#}.y. v, @nd{¢;},-. ., be the Lagrange bases of the spagdsand M,

(16)

respectively. Givenu, , we express the corresponding approximate sokition
up™ = (uyh,uy’h) and pi™ in the basis ol andM

Uy = ZU”+l g, Uy = Zu"+l¢1, prt = anﬂl/lk and with the test functions

¢ 0 Vﬁ andy, UM, , we obtain the following linear algebraic systenmatricial
form as:

A, A, B, [|u™]| [b,
A, A, B,||u?|=|b, 17)
B, B, O|lp™| |O

n+l n+l

whereup™ = [uk,l’ ukN] and p™* [p””, ,pxl] are the vectors of unknown
degree of freedom and

B 6¢ ¢ ¢u%
Al—[Am]thNh _D[¢¢ v At( X 0x ay oy Jﬂ

. 09,
A, = [AZii]thNh - I%ai; By = [BXJk]N W { J. }
Npxm,

Nh Nh

B, = [Byik]thnh = J.a¢ 2 Dgnﬂ }
L ANy, NpxL

We can rewrite the above matricial equation in aersmple way
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6. Numerical smulations

The solution can be evaluated using a direct methroderative method applied to
symmetric matrices as CG (conjugate gradient méthoetails can be found in (Saad
(2003) [13]). All meshes and simulations were dame-reeFem++ which is a free
software with its own high level programming langaabased on the finite element
method (FEM) to solve partial differential equasoi\n automatic mesh generator is
used in FreeFem++ based on Delaunay-Voronoi algorivhere the number of internal
points is proportional to the number of points lo@ boundaries.

The direct numerical simulation from the iadonal formulation for the time
discretization can be straightforwardly implemendedthe general finite element solver
FreeFem++ which we use to make numerical experisndifie graphics were generated
in FreeFem++ and Mathematica.

We develop the programming code in FreeFerfiem the varaitional problem
and use Crout method and Conjugate Gradient methablvers to solve the system.
Towards the validation of the code, choosing sohrat error analysis, we consider the
Kim-Moin model problem with known exact solutiorvgn by

u(t, x) = (— cos(2mx) sin(2my) e 8™Vt sin(27x) cos(2my) e 87Vt ) (18)

p(t,x) = — % (cos(4mx) + cos(4my)) e =167Vt (19)
The velocity and pressure field remain in space dextease monolithically with time.
The Kim-Moin model problem is solved on the unitiaeQ= [0.25, 1.25] x [0.5, 1.5]
and prescribes the exact velocity according to @) (19) along the boundary of the
fluid domain. The calculations have been performétth a kinematic viscosity of =
0.01 which results the null external force. Thebem has been discretized in space with
two meshes with 2048 and 8192 Hood-Taylor elemétsthe finer mesh we have 4225
nodes P2 for the velocity and 1089 nodes P1 fopthssure and for the coarse mesh we
have 16641 nodes P2 for the velocity and 4225 né&dedor the pressure. The time
interval [0, 1] was discretized into subintervai§equal amplitudest = 27% with k = 5,
6, 7, 8, of typed™, t"*1] (n=0, ..., 2k - 1).

We use a linear direct and an iteratodlees available in FreeFem++: Crout

method is a direct method. It is a variant of thetdrization method U whereU
=[u;jlnxn is an upper triangular matrix with unitary diagbandL = [l;;],x, Matrix is
an lower triangular, with its coefficients definky

= I o
_ < _ k=1 ltikUkj, S
Lj=a;j— ) lgugj,j<i Ujj = » , >l
k=1 124
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BeingA a nonsingular matrix, as well as the matrixandU, in this way the diagonal
elements are not null. In this case, we can dpitslystenAx = b into triangular systems
of simpler resolution as follows
LY =b
Ux=1y
Conjugate Gradient method (CG) is amative method that applies to linear systems in
which the matrix is symmetric positive definite.i¥method is normally used in large
sparse matrices.

Taking the different meshes and using the two ssl¢€rout and CG) in FreeFem++
we obtain the following numerical results:

First test case: In this test case, we take the mesh with 204fhefs andAt = 27
with k=5, 6, 7, 8 and solve the problem with Crout radtirhe figure 1.1
shows the errors of the fluid velocity field andethressure for each instant of time

AXx=b orLUx=bor{

1/2
2
evaluated in thel” -norm i.e., 8V, (t") = ||u _uh"Lz(Q) = [ZJ.(Ui - uh,i)zj and
i=1
1/2
_ _ 2
ePosslt") = ||p— ph”LZ(Q) - U(p— Ph) j |
Q
lutty)-u"l
0007 e (el
0.008 "
—a— dtaljfd
0005 000418
D004 - 0003k \'““"‘““‘*u.
0003 H"‘-.
0.002 —— 26 UUDE-\\“"‘
u.uu% UUD1E
t
0 02

00 0.2 04 06 08 10

Figure 1.1: Error on the fluid velocity field (on the left) drihe pressure (on the right)
in L?-norm for each instant of time, for differefAt using a mesh with 2048 elements.

Second test case; In this test case, we take the mesh with 819&ehts andAt = 2k
with k = 5, 6, 7, 8 and solve the problem with Crout radthlrhe figure 1.Zhows the

ev,,,(t") and ep,q,(t") , the errors of the fluid velocity field and theepsure
respectively for each instant of tireealuated in thd_? -norm.
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Figure 1.2: Error on the fluid velocity field (on the left) drihe pressure (on the right)
in L?-norm for each instant of time, for differefAt using a mesh with 8192 elements.

Comparison of both tests. Comparing the solutions computed by the two meébres
different time stepAt, we notice that there is no remarkable differebemveen both

solutions, although the errd?® is decreasing which can be observed from the didut
and figure 1.2, which we can easily conclude fromm figure 1.3. The figure 1.3 shows

the errorev,,q(1) and ey, 4,(1) of the fluid velocity field (on the left) and therer
€P,4s() and ep,,q,(1) of the pressure (on the right) for the instant iofiett =1
evaluated in the” -norm.

ot -7

A 0‘0%216_%2.‘
0.00sf P 0020p
p
.
J’ S
- -
0.004F pd -
- _a .o01sf -
- ~ A
0.003f J,/ - '
P
S -
. .0010f ra
0.0020 s s
/’ e
0.001F S 0.0005| e
< S
At ol
1 1 1 1 L L L L
= = = = TR i At
%6 128 [~ k-

Figure 1.3: Comparison of errors of the fluid velocity fieldn(the left) and the pressure

(on the right) inL?-norm for each instant of tinte=1, for different At using the both
meshes.

Given the behavior of the error we can speculat thhen At — O we have
€045 = €5,4,(1) . Comparing the CPU time for each test, clearly fime mesh
demands for a large CPU time, for different timepst (figure 1.4). From the point of

view of CPU time, it is better to employ a mestiditrefined and a smalleht to
achieve the same accuracy level.
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L

1
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Figure 1.4: Comparison of CPU of times used as a functiombfin solving the
problem by the method @rout for the two meshes.

Third test case: In this test case, we take the mesh with 204fefes andAt = 27
with k=5, 6, 7, 8 and solve the problem with CG methd.compare the results with
the first test. The figure 1.8hows the comparison of errors of the fluid velodisid

and the pressure respectively for each instaritaf évaluated in the* -norm, for the
both methods Crout and CG. It is evident that thegsent the same behavior and the
same precision. The difference of error values betwthe Crout method and CG

method are of the orddi0” .

Ut

[Ip(ta}-pa”l
0.005

Figure 1.5: Comparison of errors of the fluid velocity fieldn(the left) and the pressure

(on the right) inL?-norm for each instant of time, for differeAt using a mesh with
2048 elements, for the both methods: Crout and CG.

g ?
L lIpii-pa” |
- | R 0.0020-
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o ——— CrouMsind yd
0.003 /r” /’
[ >
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D00 _
/.// [ ] G Matbod. //
L 0.0005 /‘/
¥
- at
1 1 1 I I I LAt

FER & ] 1 1 1 1
= 138 (7] =

Figure 1.6 Comparison of errors of the fluid velocity fieldn(the left) and the pressure
(on the right) inL*-norm for each instant of time=1, for differentAt using the both
methods.

As it was expected, by a-priori estimatestf® error in time, we obtain a linear
convergence in order to time (figure 1.6).
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Fourth test case: In this test case, we take the mesh with 819metes andAt = 27
with k=5, 6, 7, 8 and solve the problem with CG methd.compare the results with
the third test. We also notice for this method tthetre is no remarkable difference
between both solutions, although the elrddecrease. The figure 1.3hows the
comparison of errors of the fluid velocity fieldcathe pressure respectively for each
instant of timeevaluated in thed.? -norm, for the both methods Crout and CG. It is
evident that they present the same behavior andah® precision. The difference of

error values between the Crout method and CG metheodf the ordet 0"

ity
TN e
[AgTy . #3- Cm

000 b16. -
0003 18- o ’

0.005 : 1256 - Coost

r(‘_.-g-r T ey
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0.004
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e
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Figure 1.7: Comparison of errors of the fluid velocity fieldn(the left) and the pressure

(on the right) inL?-norm for each instant of time, for differeAt using a mesh with
8192 elements, for the both methods: Crout and CG.

Since the both methods have the same axguve have to decide which method
to use based on CPU time. As we can see (figune th& method CG expends much
CPU time than the method Crout, in the case of med¥e refined. In the case of less
fine mesh, the time spent by the two methods apecapmately equal, although in this
case the Crout method is slightly faster (figu@.1.

CPU's time
L) —— Crout - 2048 Elements
2000¢
\ —— Crout - §1592 Elements
1500 F L
1000 * CG~ 2045 Elements
s00f TTe— — CG - 8192 Element:
'-.__‘ _ A
- =
1 B — 2 At
S 1 X
256 128 B4 32

Figure 1.8: Comparison of CPU of times used as a functioddbf in solving the
problem with the two meshes.
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Figure 1.9: Comparison of CPU of times used as a functionAbf in solving the
problem by the method of Crout for the two meshes.

In large sparse matrix, the Conjugate Gradieethod should be more efficient
than the method of Crout, but we don’t know if ihgplementation of this solver is
optimized. Given the previous study we choose &ths method of Crout.

The following figures illustrate the exaotgion and corresponding approximation

(a) u(1,a,y)=— cos(2rz) sin(2my)e=-057" (b) v(1.2.y)=sin(2rx) cas(2my)e=""5>  (c)

0.1672

p(l.z,t)=—%(cos(drz)+cos(dmy))e™

Figure 1.10: Exact solution at =1. First component of velocity (on the left), sedon
componenet of velocity (on the centre) and pres@urehe right).

(a) wn(l,z,y) =~ u(l,z,y) (b) va(l,z,y) = v(l,z,y) () pr(l, =z, y) = p(1,,y)

Figure 1.11: Approach solution at =1. First component of velocity (on the left),
second component of velocity (on the centre) aedsure (on the right).

7. Discussion and conclusions

We have presented in this paper the Glerkin figitganent method to simulate the motion
of fluid particles which satisfies the unsteady MNaBtokes equations. Time
discretization is obtained using Characteristice@ah method. We use FreeFem++ to
implement the simulations straightforward from ttagiational formulation. The velocity
and pressure, i.e. the solution of Navier-Stokesggn is obtained. Comparing different
test cases using different meshes and solvers welumte that the Crout solver in
FreeFem++ is more effective. From figure 1.10 agdré 1.11, we observe that the exact
solution and approach solution is approximatelyesafie approximation of the velocity
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and pressure are, Rontinuous and jPcontinuous finite element respectively. All the
simulations were done in two dimensional case. Vde extend it to the three-

dimensional case using 3-D Navier-Stokes solvefFiaeFem++ for further work.

Furthermore, discontinuous Galerkin finite elememtthod can be used in case of
unstructured mesh and simulations can be implerdemith FreeFem++.
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