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Abstract. This paper represents our first attempt on modettme effects of social,
economical and cultural factors on the S-lI epidedigeases. The analysis of these
models suggests that the lack of health cares anttat of infected pregnant women
aided the spread of the diseaddost of the findings are supported by systematic
mathematical analysis including local and globab8ity results. The evaluations are
carried out using numerical simulations with Matlab
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1. Introduction

The models described incorporate to accommodatarra br elaborate demographic
consideration of the influence of age stages (jilweand adult) on new infections.
Modeling what is known, or suspected, about theoiamce of age of partners in the
spread of the disease is a formidable problem, botiteptually and practically, but
sexual gender has also an influence in the studthefse models about STD’s. In
populations without female dominance, both sexestnme incorporated in order to
provide an appropriate representation of the pdijpmalynamics. The main difference
between one-sex and two-sex epidemic models (extept the introduction of the
second sex) is that the birth and survival schedotelonger are assumed to be constant,
but depend on the size of the population, andpitdegnic-sex composition.

It is not unknown that mathematical modeling hag ha important role in the
understanding of the HIV virus dynamics. We can timensome of the works, which are
related to extensions in different aspects of thé #élynamics. As a consequence of the
above mentioned articles, a big number of modeleevatudied trying to include or
exclude biological facts into the mathematical s$tation, some of them are
compartmental models [2], and some more recent svasing delay differential models
as in [4]. It is recommended [9] to get more refiess and interesting reading about
mathematical models in HIV dynamics. Our researehls] with the spread of STDs
infections and in particular HIV epidemics. It issirable to consider future work that
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could include the importance of the role of HIVudrdynamics into the spread of the
STDs for the models described in our research.

2. Two sex S| epidemic model

In this thesis we derive the mathematical modelenf infections in consideration of sex
structure. The infection will be spread through tf@mation of hetero sexual
partnerships among active populations of males fanthles. The population will be

disaggregated by sex and by whether or not infect@®dt) (I = f,m) denote all
sexually active susceptible individuals (femalenaale) and lli(t)denotes all sexually
active infected individuals (female or male) wNh(t) =S (t)+1,(t)(1 = f,m) and
N(t) =S, (t)+1,(t) being the total population size. It is assumed tieav sexually
active  susceptible  (or infected respectively) famal arrive at  the
rategB,S; (or gp,l;)where o (0<o <1) is the probability to be a female newborn
and B (i =1,2) is the birth rate of susceptible (infected) indiséls respectively. In the
other hand, for new sexually active susceptible ifdected respectively) male, they
arrive at the rate(l-0)S.S, (t)(or @—0)BS; (t) respectively) with=12. The
parameterC, (or C,) denote the average number of contacts per pdeamale-male

(or male-female), assumedC,, =C_, =C then CS (t) denotes the total number of

contacts per unit of time of all susceptible (feenal male) individuals at time t. In
addition, we assume that only a fractto{0O < 0 <1) of the new born are female and a

fraction £ (0< & <1) describe the infected portion of birth from infedttmothers. The
parametef could be considering like a control parametet thaasure the quality of
medical services of the infected mothers. If wesider the fractiory (0< ¢ <1) of the
sexual contacts which don't use condom it develops new cases of infection. We
define the transmission rate for womenCa®” and for men a8(l-0){, the
expressions for the new cases of infection per timi¢ (incidence rate) in female and
male population at€a{S; (I, /N,) and CA-0){S,(I;/N;) respectively. By
natural death the individuals leave active popotetiat the ratg/S (or4,) respectively

and that infected Individuals leave their clasthatdeath rate by infectigh, (I = f,m).
Then the model

S =gB,S, +ol-&)B,, ~CacS,| IN_ S, —mS, N,
Sn=W1-0)BS; +1-0)A-¢)B,1; ~C(L-0){S, |,/ N; ‘ﬂsm‘mSmM(l)
Iy =d&f,l, +CalS1,,IN, —(u+y)l; —ml N
I =A-0)¢B,1 +CA-0){S, 1INy =(u+ )1, —ml N.
And initial conditionsS; (0) =S} >0, 1{ >0,S,(0)=S> >0 and 1 ,(0) =1, >0.
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3. Basic properties of solutions
The basic properties discussed here will be udefuiext results about stability of the
equilibria and persistence.

Theorem 1. For all S?,S°,17,12 >0 ,there existS, , S, , 1,1, which solves (1) and
the initial conditionsS; =S7,S,, =S}, 1, = 17,1, =1,

Proof: We define (Th. A2 [11]),
S,
F.() =0B,S; +a-V)B,1 ~Con——"- S, —mSN

Nm
.00 = 1-0)AS, +(-0)1-0)f,1 , ~Ca-0) " - 15, ~mS, N
Fy(X) =0vB,|, +Con I; T —(ut+ )l —m N,
.09 = A-0WB,1, +CA-0)) "= (+ Y, =N,

f

wherex=(S;,S,,1;,1,,)

By assumption (2) and the properties of continaitgr operations, we have the
continuity of F;, for all i = 1,2,3,4. further

oF, I
—=(0B,~u)-Con—"--m(S; +N
ox, (9B, - 1) TN, (S +N)
S
—aFl:Caq L -mS,,
0X, NS
oF,
—=0l-v)B,-mS;,
ox, L-v)B, - mS;
S
6F1:_C0_,7 fzm_rnsf’
0X, N

These partial derivatives exist and are continuimuie same way the other partial
derivatives are proved that exist and are contisulmuconsequence

F is locally Lipschitz continuous.

Let X, =S, =0 andx, =S, >0,x; =1, >0,x, =1, >0, then
F.(X)=o@l-¢)B,1; >0.
Nowletx, =S, =0, andx, =S; >0,x, =1, >0,%x, =1, >0,them
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F,(xX) = @-0)(B,S; + A1-¢)B,1-) > 0. Further, letx, =1, =0, and

S|
X =S, >0,x,=S,>0,x, =1, themF,(x) =Co¢ ’il m

> Qand finally let

m

X, =1,=0andx =S; >0,x,=S,>0,x, =1, >0, then

L0 = (- 0)¢B, +CZ2>0)1, >0

f
In consequence by Th.A2 in [11] evexry = (S?,S%,1?,12)OR?, there exists a unique
solution of wx' = F(x), X(0) = x, with values enR’ which is defined in some
interval(o, 1 with b[J (0, ]. If b < co, them

SUP(S, (1) + S, ()1 (1) +1 (1)) = o.
Suppose thab < co, them
N':ﬁlsf+ﬁ2|fy(|f+|m)_,UN_mN2. )
If we take = max{f,5,}, them we have N'< /N, < /N,

!

in consequenceN— <p.
f

Integrating the above inequality

N{t)< InN©O)+ 4 ,
it meandN(t) < N(0)e® . SoN(t) is bounded, a contradiction. In consequénsex .
Then the solutions of the system are positive @fitheld on[0, o).

4. Boundedness of solutions
We will need the boundedness property to provegtbieal stability of some of the

steady. We established the following result

Theorem 2. All the solution of the system (1) are bounded.

Proof: Set 8 = max{s,.5,}.
From equation (4.2), we have

N'=BS, +B,1; —y(l; +1,)— N -mN?
N'< AN, —mN?,
<N -mN? ,
Claim: N(t) <M forall t 20, whereM = max{N (O),ﬁ +1} .
m

We have two cases:
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Case 1: 1M :£+1
m

Suppose the claim is not true: there exists a0 such that,

N(t1)=§+1 N(t)<§+lt<tl, N'(t,) =0

N’(tl) < IBN(tl) - mNz(tl),

2
Al il
m m m
then N'(t,) <O, itis a contradiction. In consequence, the clamue.
Case 2: IfM = N(0).
Suppose the claim is not true: there exist & Osuch that
N(t,) =M, N'(t;) 20.
N'(tl) < AN(t) - mN z(tl) '
=AM -mM?=M(B-mM) ,

as 5 < I +1<M,themf-mM <0 andN'(t,) <0, it is a contradiction. In
m

consequence, the claim is true.
It means thatN(t) < M for all t 2 0, them the theorem is proved.

5. Equilibria and stability
We first dimensionalize the system (1) with theédaing scaling:

ul o S oS o | o |
t:'ut, Sf:_f, Sm:_m’ |f:_f, lm:_m'
H H H H
Dropping the hats on the variables, system is edgi to
S

S, =rS, +sl, -u ,il““—mst,

m

S,
S, =-S,+da, -p ,r\“l L +uS, -mS N,
f
3
S| 3)

f'm

Iy =r,l, +u -ml N,
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where r:M u:% r:M 5:0(1‘5),32
1 P J U v 12 ,U ) 1 ,
w=179=0B u = a-0)5, p=C(1—a)Z’ =49,
H H 7] U
q= Kty
Y7

The question about local stability of the systejniginore conveniently studied by
considering the proportions of individuals in th#etent classes. Consequently we
define the variables
S I
X - _f y —_ _f’ Z = _m
N N N

m m m

where x and y are non-negative, while the variatderequiresO< z< 1. A simple
calculation transforms (3) into the following systef equations

X'=@Q+r)x+((@-u-Dz-(wtv,)y - v, X)x+sy

Y =@+r)y+((q-Dz-(w+0,)y-U,X)y +uxz (4)
Z= (1—q)((q—1)z—(w+u2>y—u1x— pLJz{uz +L]y
X+y X+y

The complete dynamics of the population can beimdttby solving the system (4) and
them using the following differential equation (ailnted form system (2))

Ni =0,S; +(w+0,)l —ql, —mN_ N
written as a Bernoulli equation, we g&t’ (t) +a(t)N_(t) = b(t)N 2 (t)
wherea(t) = u;x(t) - - z(t)) = (w+0,) y(t) —gz(t), b(t) = —(x(t) + y(t) +1)
and we obtainA(T) in the following mannerN’ (t) = v (t)

where u(t) = rxp( j; a(s)ds)j; —-b(s) ex;{— IOS a(a)da)ds +0(0) exp{ Lt a(s)ds]

In consequence, the analysis of systems (1), BY®2leads to equivalent results for
consideration of nonnegative solutions.

6. Local stability of the disease free equilibrium

~ ~ + +
Theorem3. If R,<1<R, and R, ..R3 4 %, , then the system hasuaique
1-R, Co¢

disease-free equilibriuriDF) given by the expression

DF = (IH?\;l _1)(%’_(1—0);1 ,0,0j and DF s locally asymptotically stable for system
m m

(1)
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Proof: The conditiorls1 >1 gives us the uniqueness of the (DF) equilibriursystem
(1).
Linearizing the system (4) about the correspond@ifgequilibrium (x",0,0)

o . . .
wherex” = 1o we obtain a linear system whose eigenvalues are
-0

oy
A =141 —2ux" = _%P <0
U
and A, eigenvalues of the matrix

1+1, —U;X” ux”
M = (5)
X—pD +u, 1-gq-ux’

Claim: M has negative eigenvalues.
First, we find the trace of (5)

Tr(M) =20-0x) +1, -q = 20-1R) + £V (R, -1 -1 <0
Y7
a simple calculation yields to

det) =@+, 0, )A--0x) = (2 +0,)

(y ”ﬁlj(a 1)- (y ;"My "ﬁlj(Rg _y+C% (R2+R3)j

+ +
under the conditionRz .,R3 <Y %, , we get detM) > 0. In consequenceéyl has
1-R, Co?
negative eigenvalues. The claim is proved.
Therefore the DF equilibrium is locally asymptotigatable for the system (4) the

theorem was proved.

7. Local stability of the susceptible extinction equilibrium
Theorem 4. 1f{ =1 R <1<R, and R, + R, <1, them the system has a unique
susceptible extinction equilibriu(®E) given by the expression
~ + - +
E-R _1)(0,0, a(u+y) A-o)u+y)
m m

j . and SE is locally asymptotically stable

for system(l).
Proof The conditionﬁ2 >1 gives us the uniqueness of the SE equilibrium.
Linearizing the system (4) about the correspon@Bgequilibrium0, y~ 1) where
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we obtain a linear system with Jacobian

n+q-u-u,y" 0 0
M= _UlyD"'u I'2"'q_2UzyD (q_:l-)yD
—u 0 q-1-v,y"=p

whose eigen values are

A=n+q- ‘zD=~—1—'u—+y~—1—C_0'Z
rL+gq-u-u,y’=(R -1 ,U(RQ) u

AZ:[é-Fq-—ZUZyDZZ—E%%J<O

+ ~ ~
and /l3=q—1—p—UzyD=——“ﬂy(1—Rz—Rs)

under the conditions given by the theordﬁg,<1< F~22 and ﬁz + I53 >1, we getd,; <0

Therefore the SE equilibrium is locally asymptadicatable for the system (4), the

theorem was proved.
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Figure 1. Two sex Epidemic Model. Susceptible Extinction (&gilibrium, with

parameter values:

B, =0.0238u, =0.000387 =15 C =0.0193%5a =0.1453 B, =0.003 y =0.072
u, =u, +y, k=41269113 5, = (B, * exptu, *7) —a)/k; n, = 002 n, = 0.1453

M1 =001453¢=0.0822 0 =1/3, £ =1, and Initial conditions;S, =4973
S,=30000 I, =50 I, =27
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Figure2: Two sex Epidemic Model. Endemic Equilibrium (E®)th parameter values:
B, =0.0238u, =0.000387 =15 C=0.01935a = 0.1453 3, =0.003 y =0.072

u, =u, +y, k=41269113 S, = (B, *exptu,* 1) —a)/k; n, = 002 7, =0.1453

41 =0.01453¢=0.0822 0 =1/3, ¢ =0.042and Initial conditions;S, =4973

S, =300001, =50 |, =27
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Figure 3: Two sex Epidemic Model Variation of Infected Malefalation with respect
to the values of portion of Infected Bab{é$ from Infected Mothers, with parameter

values;5, =0.0238 u, =0.000387 =15 C =0.0193%5a =0.1453 B, =0.003
y=0072 u, =u, +y; k=41269113 S, = (B, * exptu,*17)-a)/k; n, = 002
n,=01453 4=001453 ¢=0.0822 0=1/3 ¢=0.042 and Initial conditions;
S, =4973S,=30000 I,=5Q I, =27.
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