Annals of Pure and Applied Mathematics Vol. 6, No. 2, 2014, 125-132 ISSN: 2279-087X (P), 2279-0888(online) Published on 16 June 2014 www.researchmathsci.org

r*g*-Closed Sets in Topological Spaces

N. Meenakumari and T. Indira

PG and Research Department of Mathematics, Seethalakshmi Ramaswami College Tiruchirappalli-620 002, Tamilnadu, India Email: meenamega25@gmail.com ; drtindira.chandru@gmail.com

Received 16 May 2014; accepted 5 June 2014

Abstract. The aim of this paper is to introduce a new class of sets called r^*g^* - closed sets and investigate some of the basic properties of this class of sets which is obtained by generalizing regular closed sets via g-open sets.

Keywords: rcl, rint, r*g*-closed sets, r*g*-open sets, r*g*int, r*g*cl.

AMS Mathematics Subject Classification (2010): 54A05

1. Introduction

Levine introduced generalized closed sets in topology. b- open sets have been introduced and investigated by Andrijevic. Veerakumar introduced g* closed sets and studied its properties. The aim of this paper is to introduce r*g* closed sets and investigate some fundamental properties and the relations with the predefined sets like g* closed, regular closed, α g-closed, g* Ψ -closed, gsp-closed, gsp-closed etc.

2. Preliminaries

Definition 2.1. A subset A of a space (X, τ) is called

- (1) a generalized closed (briefly g-closed) set if cl (A) \subseteq U whenever A \subseteq U and U is open in (X, τ); the complement of a g-closed set is called a g-open set.
- (2) a generalized semi-closed (briefly gs- closed) set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) . ; the complement of a gs-closed set is called a gs-open set
- (3) a semi-generalized closed (briefly sg- closed) set if $scl(A) \subseteq U$ and $A \subseteq U$ and U is semi-open in (X, τ) ; the complement of a sg-closed set A is called a sg-open set.
- (4) a Ψ -closed set if scl(A) \subseteq U whenever A \subseteq U and U is sg-open in (X, τ). ; the complement of a Ψ -closed set is called a Ψ -open set
- (5) a α -generalized closed set (briefly α g- closed) if α cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ); the complement of an α g-closed set is called a α g-open set.
- (6) a generalized α closed set (briefly gα closed) if α cl(A) ⊆ U whenever A ⊆ U and U is α open in (X, τ). ; the complement of a gα closed set is called a gα open set.

- (7) a generalized pre-closed set (briefly gp- closed) if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .; the complement of a gp-closed set is called a gp-open set.
- (8) a generalized semi- pre closed set (briefly gsp- closed) if spcl(A)⊆U whenever A ⊆ U and U is open in (X, τ).; the complement of a gsp closed set is called a gspopen set.
- (9) a g*-closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g open in (X, τ) ; the complement of a g*-closed set is called a g*-open set.
- (10) a gp*-closed set if cl (A) \subseteq U whenever A \subseteq U and U is gp-open in (X, τ); the complement of a gp*-closed set is called a gp*-open set.

Definition 2.2. rcl (A) is defined as the intersection of all regular closed sets containing A.

3. r* g*-closed sets and their properties

Definition 3.1. A subset A of a space (X,τ) is called a r^{*} g^{*}-closed set if rcl(A) \subseteq U whenever A \subseteq U and U is g-open.

Example 3.2. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Regular open sets = $\{\phi, X, \{a\}, \{b\}, \}$, Regular closed sets are $\{\phi, X, \{a, c\}, \{b, c\}\}$ g-closed sets = $\{\phi, X, \{c\}, \{b, c\}, \{a, c\}\}$, g-open sets = $\{\phi, X, \{a, b\}, \{a\}, \{b\}\}$. Then r*g*-closed sets are $\{\phi, X, \{c\}, \{b, c\}, \{a, c\}\}$.

(1)

Theorem 3.3. If A is regular closed then A is r^*g^* -closed. **Proof:** Let $A \subseteq U$ where U is g-open. TPT: A is r^*g^* -closed. Since A is Regular closed, rcl (A) = A \subseteq U. \Rightarrow A is r^*g^* closed.

Note: Every open set is g-open.

Theorem 3.4. If A is r^*g^* -closed then A is g-closed. **Proof:** Let $A \subseteq U$ where U is open. Now cl (A) \subseteq rcl (A) \subseteq U Where U is g-open. \therefore cl (A) \subseteq U which implies that, A is g-closed.

Theorem 3.5. If A is r^*g^* -closed then A is g^* -closed. The converse is true whenever A is regular closed. **Proof:** Let $A \subseteq U$ where U is g-open. To prove that, A is g^* -closed. Now $cl(A) \subseteq rcl(A) \subseteq U$. Hence $cl(A) \subseteq U$ which implies that A is g^* -closed. Conversely, suppose A is regular closed. By theorem 3.3, A is r^*g^* -closed.

Theorem 3.6. If A is r^*g^* -closed then A is $g^* \Psi$ -closed.

r*g*-Closed Sets in Topological Spaces

Proof: Let $A \subseteq U$ where U is g-open. Then rcl (A) \subseteq U where U is g-open Ψ Cl (A) \subseteq rcl (A) \subseteq U \Rightarrow H Cl (A) \subseteq U \Rightarrow A is g* Ψ -closed.

Theorem 3.7. If A is r^*g^* -closed then A is gp-closed. **Proof:** Let $A \subseteq U$ where U is open. Now pcl (A) \subseteq cl (A) \subseteq rcl (A) \subseteq U \therefore pcl (A) \subseteq U where U is open.

A is gp-closed.

Theorem 3.8. If A is r^*g^* -closed then A is gsp-closed. **Proof:** Let $A \subseteq U$ where U is open. TPT: A is gsp – closed. Now spcl (A) \subseteq rcl (A) \subseteq U where U is g-open.

 $\Rightarrow \quad \text{spcl}(A) \subseteq U \text{ where } U \text{ is open } By(1)$ $\therefore A \text{ is gsp-closed.}$

Theorem 3.9. If A is r^*g^* -closed then A is gs-closed. **Proof:** Let $A \subseteq U$ where U is open. Now scl (A) \subseteq cl (A) \subseteq rcl(A) \subseteq U

 \therefore scl(A) \subseteq U where U is open.

A is gs-closed.

Note: Regular open \Rightarrow g-open.

Theorem 3.10. If A is r^*g^* -closed then A is rg-closed. **Proof:** Let A be r^*g^* -closed. Then rcl (A) \subseteq U where U is g-open. Let A \subseteq U where U is regular open. But cl (A) \subseteq rcl (A) \subseteq U where U is regular open \Rightarrow A is rg-closed.

Theorem 3.11. If A is r^*g^* closed then A is α g-closed. **Proof:** Let $A \subseteq U$ where U is open. Now $\alpha \operatorname{cl}(A) \subseteq \operatorname{cl}(A) \subseteq \operatorname{rcl}(A) \subseteq U$ $\therefore \alpha \operatorname{cl}(A) \subseteq U$ where U is g-open by(1)

 \therefore A is α g-closed.

Theorem 3.12. If A is r^*g^* -closed then A is gp^* -closed. **Proof:** Follows from the fact that $pcl(A) \subseteq cl(A)$.

The converse of the above theorems need not be true as seen from the following examples.

Example 3.13. X = {a, b, c} and $\tau = \{\phi, X, \{a\}, \{a,c\}\}$. Here {b} is g-closed but not r*g*-closed.

Example 3.14. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Here $\{a\}$ is $g^* \Psi$ -closed but not r^*g^* -closed.

Example 3.15. Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}, \{a,b,c\}\}$. Here $\{c\}$ is gp-closed but not r^*g^* - closed.

Example 3.16. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a,b\}\}$. Here $A = \{b\}$ is gsp -closed but not r*g*-closed.

Example 3.17. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a,c\}\}$. Here $\{b\}$ is gs-closed but not r^*g^* -closed.

Example 3.18. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a,b\}\}$. Let $A = \{a,b\}$. Here $\{a,b\}$ is rg-closed but not r^*g^* -closed.

Example 3.19. Let $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{b\}, \{a,b\}\}$. Here $\{a\}$ is α g- closed but not r*g*-closed.

Theorem 3.20. Let A and B be closed subsets of (X, τ) , then (i) If A is r* g*-closed then rcl(A)–A does not contain any nonempty g-closed set. (ii) If A is r* g* closed and A \subseteq B \subseteq rcl(A) Then B is r*g* closed.

Theorem 3.21. If A is g -open and r*g*-closed then A is regular closed.

Proof: Since A is r^*g^* -closed $rcl(A) \subseteq U$ where $A \subseteq U$, U is g-open. Taking U = A, $rcl(A) \subseteq A$. But $A \subseteq rcl(A)$ $\Rightarrow A = rcl(A)$ Ais regular closed.

Theorem 3.22. If A is regular open and r^*g^* -closed then A is regular closed and regular open.

Proof: Since A is regular open it is g –open. By the above theorem A is regular closed. Hence A is both regular open and regular closed.

Theorem 3.23. If A is r*g*-closed and B is regular closed then $A \cap B$ is r*g*-closed. **Proof:** Since A is r*g*-closed rcl(A) $\subseteq U$, whenever $A \subseteq U$, U g – open. Let B be such that $A \cap B \subseteq U$ where U is g –open. Now rcl $(A \cap B) \subseteq rcl(A) \cap rcl(B) \subseteq U \cap B \subseteq U$ r*g*-Closed Sets in Topological Spaces

 \Rightarrow A \cap B is r*g*- closed.

Theorem 3.24. Let A be r^*g^* -closed and regular closed then A is midly g –closed. **Proof:** We have $rcl(A) \subseteq U$ where U is g –open. Also A = cl(int(A))Let $A \subseteq U$ where U is g –open. $\therefore cl(int(A)) \subseteq U$ $\Rightarrow A$ is midly g –closed.

Theorem 3.25. If $A \subseteq Y \subseteq X$ and suppose A is r^*g^* -closed set in X then A is r^*g^* closed set relative to Y. **Proof:** $A \subseteq Y \subseteq X$ and A is r^*g^* -closed. To prove that A is r^*g^* -closed set relative to Y. Assume $A \subseteq U$ where U is g-open. Since A is r^*g^* -closed, rcl $(A) \subseteq U$ when $A \subseteq U$ $Y \cap \text{rcl}(A) \subseteq Y \cap U$ which is g-open in Y $\Rightarrow \text{rcl}_Y(A) \subseteq Y \cap U \Rightarrow A$ is r^*g^* - closed set relative to Y.

4. r*g* open sets

Definition 4.1. A set $A \subset X$ is said to be r^*g^* -open if its complement is r^*g^* -closed set.

Definition 4.2. rint(A) is defined as the union of all regular open sets contained in A.

Theorem 4.3. A subset $A \subset X$ is g*-open iff there exists a g-closed set F such that $F \subset r$ int (A) where $F \subset A$. **Proof:** Let A be r^*g^* -open. Let F be regular closed and $F \subset A$. Now X – A is r^*g^* -closed. rcl (X – A) \subset U where U is g – open. Let U = X - F. rcl $(X - A) \subset X - F$ But rcl $(X - A) = X - rint (A) \subset X - F \Longrightarrow F \subset rint (A)$ Conversely, suppose $F \subset \text{rint } A$ where $F \subset A$ TPT: A is r*g*-open Let $X - A \subseteq U$ where U is g – open set $X - U \subset A$ and X - U is g-closed By our assumption $X - U \subset rint(A)$ \Rightarrow X – rint (A) \subset U But X - rint(A) = rcl(X-A) \Rightarrow rcl (X-A) \subset U \Rightarrow X–A is r*g* -closed \Rightarrow A is r*g*-open.

Theorem 4.4. If rint (A) \subset B \subset A and if A is r*g*-open then B is r*g*-open **Proof:** B \subset A \Rightarrow X – A \subset X – B rint (A) \subset B \Rightarrow X – B \subset X – rint (A) X – A \subset X – B \subset rcl (X – A)

Since X –A is r*g*-closed by theorem 3.20, X – B is r*g*-closed \Rightarrow B is r*g*-open.

Theorem 4.5. A set A is r*g*-closed iff rcl(A) – A is r*g*-open. **Proof:** Let A be r*g*-closed. Let F be a g-closed set such that F⊂ rcl(A) – A then F = φ (by theorem 3.20). Conversely, suppose rcl(A) – A is r*g*-open. TPT: A is r*g*-closed Let A ⊂ U where U is g-open. TPT: rcl(A) ⊂ U If not, rcl (A) ∩ U^c ≠ φ then rcl (A) ∩ U^c ⊂ rcl (A) ∩ A^c = rcl (A) – A By theorem (3.20), rcl (A) ∩ U^c ⊂ rint (rcl (A) – A) = φ ∴rcl (A) ⊂ U ⇒ A is r*g*-closed.

Theorem 4.6. Let A, B \subset X. If B is regular open and rint (B) \subset A then A \cap B is r*g*open. **Proof:** Now rint (B) \subset A and also rint(B) \subset B rint (B) \subset A \cap B \subset B By theorem(4.4), A \cap B is r*g*-open.

Defnition 4.7. For every set $A \subset X$ we define r^*g^* -closure of A to be the intersection of all r^*g^* -closed sets that contains A and is denoted by r^*g^* -cl(A) and r^*g^* -interior of A to be the union of all r^*g^* -open sets contained in A and is denoted by r^*g^* -int(A).

Definition 4.8. If a subset A of (X,τ) is r^*g^* -closed then $A = r^*g^*$ -cl(A).

Theorem 4.9. For an element $x \in X$, $x \in r^*g^*$ -cl (A) iff there exists an g-open set U containing x such that $U \bigcap A \neq \varphi$

Proof: Let $x \in r^*g^*$ -cl (A). Let U be an r^*g^* -open set containing **x**. Suppose $U \bigcap A = \varphi$ then $A \not\subset U$. $\therefore A \subset U^c$. Since U^c is an r^*g^* -closed set containing A, we have r^*g^* -cl(A) $\subset U$

- \Rightarrow x \notin rcl(A) which is a contradiction.
- \Rightarrow U \cap A $\neq \varphi$.

Conversely, suppose $U \bigcap A \neq \varphi$

TPT: $x \in r^*g^*-cl(A)$

Suppose $x \notin r^*g^*cl(A)$, there exists an r^*g^* -closed set F containing A

r*g*-Closed Sets in Topological Spaces

such that $x \notin F$

 \Rightarrow x \in F^c and F^c is r*g*-open set.

Now $F^{c} \bigcap A = \varphi$ which is a contradiction to the hypothesis.

 $\therefore x \in r^*g^*-cl(A).$

Theorem4.10.

i. $[r^*g^*-int(A)]^c = r^*g^*-cl(A^c)$ ii. $[r^*g^*-cl(A)]^c = r^*g^*-int(A^c)$ **Proof:** i. Let $x \in [r^*g^*-int(A)]^c$ then $x \notin r^*g^*-int(A)$. By definition of r^*g^* - interior, $x \notin$ every r^*g^* -open set $\subset A$ If U is an r^*g^* -open set containing x then $U \bigcap A^c \neq \varphi$.

By the above theorem, $x \in r^*g^*$ -cl(A^c)

$$\Rightarrow [r^*g^*-int(A)]^c \subset r^*g^*-cl(A^c)$$
(1)

Conversely, let $x \in r^*g^*$ -cl(A^c) then by above theorem U $\bigcap A \neq \varphi$ for every r^*g^* -open set

U containing x. That is, every r^*g^* -open set U containing x is such that $U \not\subset A$

$$\Rightarrow x \notin r^*g^* \operatorname{-int}(A) \Rightarrow x \in [r^*g^* \operatorname{-int}(A)]^c$$

$$\therefore r^*g^* \operatorname{-cl}(A^c) \subset [r^*g^* \operatorname{-int}(A)]$$
(2)

From (1) and (2),

 $[r^*g^*-int(A)]^c = r^*g^*-cl(A^c)$

Similarly, we can prove (ii).

REFERENCES

- 1. M.E.Abd El-Monsef, S.N.El.Deeb and R.A.Mohamoud, β open sets and β continuous mappings, *Bull. Fac. Sci. Assiut Univ.*, 12 (1983) 77-80.
- 2. D.Andrijevic, Semi-pre opensets, Mat. Vesnik, 38(1) (1986) 24-32.
- 3. K.Balachandran, P.Sundaram and H.Maki, On generalized continuous maps in topological spaces, *Mem. Fac. Kochi Uuniv. Ser.A. Maths.*, 12 (1991) 5-13.
- 4. P.Bhatacharya and B.K.Lahiri, Semi-generalized closed sets in topology, *Indian J. Math*, 29(3) (1987) 375-382.
- 5. N.Biswas, On Characterizations of semi-continuous functions, *Atti, Accad. Naz. Lincei Rend. Cl. Fis. Mat. Natur.*, 48(8)(1970),399-402.
- 6. R.Devi, H.Maki and K.Balachandran, Generalized α-closed maps and α generalized closed maps, *Indian. J. Pure. Appl. Math*, 29(1) (1998) 37-49.
- 7. T.Indira and S.Geetha, τ^* -G α closed sets in topological spaces, *Annals of Pure and Applied Mathematics*, 4(2) (2013) 138-144.
- 8. T.Indira and K.Rekha, Application of *b-open sets **b-open sets in topological spaces, *Annals of Pure and Applied Mathematics*, 1(1) (2012) 44-56.
- 9. N.Levine, Generalized closed sets in topology, *Rend. Circ. Math. Palermo*, 19(2) (1970) 89-96.
- 10. N.Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, 70 (1963) 36-41.

- 11. A.Narmadha and Nagaveni,On regular b-open sets in topological spaces, *Int. Journal of Math. Analysis*, 7(19) (2013) 937-948.
- 12. M.K.R.S.Veerakumar, g[#]-closed sets in topological spaces, *Mem. Fac. Sci. Kochi Univ. Ser.A., Math.*, 24 (2003) 1-13.
- 13. M.K.R.S.Veerakumar, g[#]-semiclosed sets in topological spaces, *Indian. J. Math*, 44(1) (2002) 73-87.
- 14. M.K.R.S.Veerakumar, Between Ψ -closed sets and gsp-closed sets, *Antartica J. Math.*, 2(1) (2005)123-141.