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1. Introduction  
We first recall some basic concepts which are used to present the paper. 
An interval number on [0,1], say a� is a closed  subinterval of [0,1], (ie) a� = [a�, a�] 
where  0 � a� � a� � 1. 
For any interval numbers  a�  =  [a�, a�] and b�= [b�, b�] on  [ 0,1] , we define 
       (i)  a� �  b�  if and only if   a� �  b�   and a� � b� 
      (ii) a� =  b� if and only if  a�  = b� and  a� 	 b�      
      (iii) a� + b� = [a� 
 b�, a� 
 b� ], whenever  a�+ b� � 1 and a� 
 b� � 1 
Let X be a set.  A mapping A : X � [ 0,1] is called a fuzzy set in X. Let A be a fuzzy set 
in  X and  α∈ [0,1] . Define L(A : α ) as follows: 
L(A: α ) = { x∈X/ A(x) � α}. Then L (A:α) is called the lower level cut of  A. 
Let X be a set.  A mapping A� : X � D[0,1] is called on interval-valued fuzzy set ( briefly     
i-v fuzzy set) of X, where D[0,1] denotes the family of all closed sub intervals of [0,1], 
and  A� �x� = [A��x�, A��x�],  � x� X, where A� and A� are fuzzy sets in X. 
For an i-v fuzzy set A� of a set X and (α, β) � D[ 0,1] define L(A�: [α, β]) as follows     
L�(a:[α, β] ) which is called the level sub set of  A�. 

 

2. Some Definitions 
In this section, we recall some basic definitions for the sake of completeness. 
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Definition 2.1. [1] An interval valued fuzzy set �� (over a basic set X) is specified by a 
function 
��� : X � D([0,1]) , where D([0,1]) is the set of all intervals within [0,1], i.e. for all  x � 
X, ���(x) is an interval [��, ��] ,0� �� � ��  �1.  
 
Definition 2.2. [6] A vague set  � , in a basic set X, is characterized by a truth membership 
function !"# , !"# : X � [0,1] and a false membership function $"# , $"# : X � [0,1]. If the 
generic element of X is denoted by %& then the lower bound on the membership grade of  
%& derived from evidence for %& is denoted by !"#�%&� and the lower bound on the negation 
of  %&  is denoted by  $"#�%&, � and $"#�%&�, both associate a real number in the interval [0,1] 
with each point in X, where !"#�%&� +$"#�%&� ≤ 1 .        

When X  is continuous, a vague set  �  can be written as  

  � 	 ' () !"#�%&�, 1 + $"#�%&�] / %&,  %& �X. 
When X is discrete  a  vague set  �  can be written as 
  � 	 ∑ (!"#�%&�, 1 + $"#�%&�-.

&/� / %&,  %& �X. 
 

Definition 2.3. [2] Let  A  =[0�, 0� ] and B=[1�, 1� ] be two arbitrary intervals then the 
minimum of A and B is represents by “MIN [A,B]” and is defined by  
MIN ([ 0�, 0� ]; [1�, 1� ])=[min(0�, 1�� (0�, 1� )]. 
 
Definition 2.4. [2] The complement of an interval  A  =[0�, 0� ] is denoted by 23 and is 
defined by 23= [1-0�,1- 0� ]. 
 

The definition of interval valued vague set and definitions related to interval 
valued vague set are introduced here.  

 
Definition 2.5. [17] An interval valued  vague set  �  over a basic set X is defined as an 
object of the form  � 	4 (%&; �"#�%&�; 1 + $"#�%&�] >  %& �X , Where    �"#  : X � D[0,1] 
and $" # : X  � D[0,1] are called “Truth membership function” and “False membership 
function” respectively and where  D([0,1])  is the set of all intervals within [0,1]. 
 
Definition 2.6. [8] Let G be a non empty set. A Q-fuzzy subset � on G is defined by  
 � 7 G8Q � [0,1] for all x � G. 
 
Definition 2.7. [8] Let � be a fuzzy subset in a group G. Then � is called a Q-fuzzy 
subgroup of G if 
 (i)  �(%9, :)    ;  min { �(%, :) , �(9, :) } for all %, 9 � G 
 (ii) �(%��, :) ;  ��%, :� for all % � G. 
 
Definition 2.8. [8] Let G be a set. An interval valued Q-fuzzy set A defined on G is given 
by A = ( %, �<

�(%, :�, �<
�(%, :�� for all % � G. Briefly denote A by A=[�<

�, �<
�- where �<

� 
and  �<

� are lower and upper fuzzy sets in G such that �<
�(%, :� �  �<

�(%, :� for all % � G. 
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Definition 2.9. [17] Let G be a non empty set. An Interval Valued Bi-cubic Set (IVBS) 
‘A’ in a set G is a structure A = {(  %, �=<(x),  �<(x),),x�G}which is briefly denoted by 
A,=< �=<, �<> where �=<=[�<

�, �<
�- is an IVFS is G  ,  �<=(!<,1- $<] is an Interval Valued 

Vague Set (IVVS) in G. 
 
Definition 2.10. An IVBS A   is said to be Interval Valued Bi-cubic Vague Group 
(IVBVG) if  
 (i)  �=<�%9, :�   ; rmin { �=<�%, :�, �=<�9, :�> 
            (ii)  �=<�%��, :� ;  �=<�%, :� 
           (iii)   �<�%9, :�  � rmax {  �<�%, :�,  �<�9, :�> 
           (iv)  �< �%��, :� �   �<�%, :�, for all values of  %, 9 � ?, : � Q. 
 
3. Properties of interval valued bi-cubic vague groups 
Proposition 3.1. Let Ã = { �=< ,  �< } be a IVBVG ‘A’ in a group G. Then                     
�=<�%��, :� 	  �=<�%, :� and  �< �%��, :� 	   �<�%, :� for all of  % � @, : � Q. 
Proof: For all of  % � @, we have 
 �A <�%, :� = �=<��%�����, :�  ;  �=<�%, :�    ; �=<�%, :�  & 
 �< �%, :� =  �< ��%�����, :� �  �< �%��, :� �  �< �%, :�. 
Hence �=<�%��, :�= �=<�%, :� &   �< �%��, :�= �< �%, :� 
 
Proposition 3.2. An IVBS Ã = {�=<, �<} is IVBVG of G if and only if  
 (i)  �=<�%9��, :�   ; rmin { �=<�%, :�, �=<�9, :�> & 
(ii)   �<�%9��, :�  � rmax {  �<�%, :�,  �<�9, :�> %, 9 � ?, : � Q. 
Proof: Assume that Ã = {�=<, �<} is a IVBVG of G and of  %, 9 � @. 
Then �=<�%9��, :�   ; rmin { �=<�%, :�, �=<�9��, :�>  (By definition) 
         =  rmin { �=<�%, :�, �=<�9, :�>   (By Proposition 3.1) 
Also    �<�%9��, :�  � rmax {  �<�%, :�,  �<�9��, :�>  (By definition) 
        = rmax {  �<�%, :�,  �<�9, :�>  (By Proposition 3.1) 
 Conversely, suppose (i) & (ii) are valid. 
If we take 9 	 %�� in (i) & (ii), then 
�=<�B, :�=�=<�%%��, :� ; rmin { �=<�%, :�, �=<�%��, :�>   
             = rmin { �=<�%, :�, �=<�%, :�>  (By Proposition 3.1) 
          �=<�B, :� ; �=<�%, :� and 
 �<�B, :�= �<�%%��, :� � rmax {  �<� %, :�,  �<�%��, :�>   
            = rmax {  �< �%, :�,  �<�%, :�>  (By Proposition 3.1) 
          �<�B, :� ;  �<�%, :�  
It  follows  from  (i) & (ii), that 
�=<�9��, :� 	 �=<�B9��, :�  ; rmin { �=<�B, :�, �=<�9��, :�>   
                     ; rmin { �=<�B, :�, �=<�9, :�>   (By Proposition 3.1) 
                             �=<�9��, :�  ;  �=<�9, :� 
Also  �<�9��, :� 	   �<�B9��, :� �  rmax {  �<�B, :�,  �<�9��, :�>   
                 �   rmax{  �< �B, :�,  �<�9, :�>   (By Proposition 3.1) 

    C V#E�y��, q�  � V#E�y, q� 
 µA E�xy, q� = µ=E�x�y�����, q� ; rmin  M µ=E�x, q�, µ=E�y��, q�  } 
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                                                 ; rmin  M µ=E�x, q�, µ=E�y, q�  } 
 V#E�xy, q� = V#E�x�y�����, q� � rmax  MV#E �x, q�, V#E�y��, q�  } 
                                                � rmax  M V#E�x, q�, V#E�y, q�  }. 
C { �=<, �<} is IVBVG of G 
 
Definition 3.1.  Let Ã = {�=<, �<} be a IVBS ‘A’ in a group G.Let [α,β] & [ γ,δ] �[0,1]. 
The set N M Ã :  [α,β] , [γ,δ]}={x � G / �=<�%, :� ;[α,β] &  �<�%, :� � [γ,δ] }is called cubic 
level set of  Ã. 

 
Proposition 3.3.  Let Ã = {�=<, �<} be an IVBVG of G, then the following conditions one 
equivalent: 
(i)  Ã = {�=<, �<} be a IVBVG of G, 
(ii)  The non empty cubic level set of   Ã = {�=<, �<} is  a subgroup of G. 
Proof: Assume that   Ã = {�=<, �<} is a IVBVG of G, 
Let  %, 9  � N M Ã :  [α,β] , [γ,δ]} for all  [α,β] & [ γ,δ] � D[0,1]  
Then  �=<�%, :� ; [α,β] ,  �<�%, :� �[γ,δ] 
�=<�y, q�  ;[α,β]  , V#E�y, q� � [γ,δ] 
It follows that  

 �=<�%9��, :�   ; r min { �=<�%, :�, �=<�9, :�> ;   [α,β]          
  �<�%9��, :�  � r max {  �<�%, :�,  �<�9, :�>  �   [γ,δ] 
So that  %9�� �N M Ã:  [α,β] , [γ,δ]} 
The non empty cubic level set   Ã = {�=<, �<} is   IVBVG of G. 
Conversely,   [α,β] & [ γ,δ] � D[0,1] such that  
N � Ã :  [α,β] , [γ,δ]) O P & N � Ã :  [α,β] , [γ,δ]) is  a subgroup of G. 
Suppose that Proposion 3. 2 (I) is not true & Proposion 3. 2 (II) is valid. Then there exist  
(QR,SR] � D [0,1] & a,b � G.  such that  
�=<�01��, :� � (QR, SR-    � r min { �=<�0, :�, �=<�1, :�>          
  �<�01��, :�  ; (TR, UR-   ;  r max {  �<�0, :�,  �<�1, :�>   
 
Proposition 3.4. Let f: G� @ V  is a homomorphism of groups.If Ã = {�=< , �<} is an 

IVBVG of @ V, then Ã f = { �=<
W ,  �<

W
> is IVBVG of G. 

Proof: 
(i) �=<

W�%9, :� 	  �=<X$�%9, :�Y  	 �=<�$�%, :�, $�9, :�� ($ Z[ \]^]-    
                                    ;  rmin { �=<�$�%, :�, �=<�$�9, :��> 

                                       =  rmin {    �A <
W �%, :�,    �A<

W�9, :�> 
       �ZZ�         �A<

W(%��,:) = �=<X$�%��, :�Y 
                                             ;  �=<�$�%, :�) 
                                        =    �A <

W(%,:)           

    (iii)             �<
W

�%9, :� 	   �<X$�%9, :�Y  	  �<�$�%, :�, $�9, :�� ($ Z[ \]^]-    
                                    � r max {  �<�$�%, :�, _=<�$�9, :��> 

                                       =  r max {   �<
W
 �%, :�,    �<

W
�9, :�> 
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       �Z_�         �<
W
(%��,:) =  �<X$�%��, :�Y 

                                           �  �<�$�%, :�) 

                                       =   �<
W
(%,:) 

 
Proposition 3.5.  Let  Ã   be an IVBVG of G. And A(e)=1 is normal defined by  
2̀�(x)= 2̀�%� +1- 2̀(e),� x, e � @ then 2̀� is IVBVG of G. 
Proof: Let   Ã = {�=<, �<} is IVBVG for x, y � @ &  B � @ such that 2̀�(e) = 2̀ (e)+1-
 2̀(e)=1 
Now (i)   �=<

��%9, :� 	 �=<�%9, :� +1-�=<�B, :� 
                                  ; rmin { �=<�%, :�, �=<�9, :�>+1+�=<�B, :� 
                                  ; rmin { �=<�%, :� 
 1 + �=<�B, :�, �=<�9, :�+1+�=<�B, :�> 
                                  =  rmin {�=<

� �%, :�,   �=<
��9, :�> 

      (ii)    �A <
�(%��,:) =  �=<�%��, :� +1+�=<�B, :� 

                                  ;  �=<�%, :� +1+�=<�B, :� 
                                  ;    �A <

� �%, :� 

       (iii)   �<
��%9, :� 	  �<�%9, :� +1+ �<�B, :� 

                                 �  rmax {  �<�%, :�, �=<�9, :�>+1+ �<�B, :� 
                                 � rmax {  �<�%, :� 
 1 +  �<�B, :�,  �<�9, :�+1+ �<�B, :�> 
                                 =  rmax {   �<

�
 �%, :�,    �<

�
�9, :�> 

       (iv)  �<
�

(9��,:) =   �<�9��, :� +1+ �<�B, :� 
                                �  rmax {  �<�9, :� +1+ �<�B, :� 

                                �   �<
�
 �9, :�. 

 
Definition 3.2. Let b be a mapping from X to Y. If A & B are IVBVG’s in X & Y 
respectively, then the  inverse image of  B under b denoted by b���c� is defined by 
b���c� = �=d

��(B) where   �=d
��

(B)�%, :� = �=e�b�%, :�� and �=d
��

(B)�%��, :�=�=e�b�%, :�� 
� %fg, :fh. 
 
Proposition 3.6.  The inverse image of an IVBVG is also IVBVG. 
Proof: Let @ and @3  be two groups and b: @ � @3  a homomorphism. Let c is IVBVG of @3
 . 
We have to prove that  b���c� is IVBVG of  @. 
             Let %, 9 f @, : f h. 

(i) �=d
��

(B)�%9, :�  =  �=eXb�%9, :�Y 
           =  �=eXb�%�b�9�, :�Y  
                             ; rmin { �=e�b�%�, :�, �=e�b�9�, :� } 
                             ; rmin { �=d

��
(B)�%, :�, �=d

��
(B)�9, :�} 

               (ii) �=d
��

(B)�%��, :� = �=e�b�%��, :�� 
                                               = �=e�b%��, :� 
                                               = �=e�b%, :� 
                                               = �=d

��
(B)�%, :� 

               (iii)  �d
��

(B)�%9, :�  =   �eXb�%9, :�Y 
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         =   �eXb�%�b�9�, :�Y  
                           � rmax { �e�b�%�, :�,  �e�b�9�, :� } 

                           �  rmax {  �d
��

(B)�%, :�,  �d
��

(B)�9, :�} 

           (iv) )  �d
��

(B)�%��, :� =  �e�b�%��, :�� 
                                                =  �e�b%��, :� 
                                                =  �e�b%, :� 

                                                =  �d
��

(B)�%, :� 
                             C b���c� is IVBVG of  @. 
  
Proposition 3.6.  If { 2&}i � 2 is a family of  IVBVG’s of G , then i 2&j�<  is IVBVG of 
G, where i 2&j�< = { ((x,q),   �=<k

�%, :�) / % f @, : f h } 
Proof: Let %, 9 f @, : f h. 
      (i) ( i �=<kj�< � �%9, :�   =  l �=<kj�< �%9, :� 

                          ;  l m^Znj�<  { �=<k
�%, :�, �=<k

�9, :� } 
                          =  m^Zn { l �=<kj�< �%, :�, l �=<kj�< �9, :� } 

                                            =  m^Zn { (  i �=<kj�< � �%, :�, ( i �=<kj�< � �9, :� }  
    (ii) ( i �=<kj�< � �%��, :� = l �=<kj�< �%��, :� 
                                           ; l �=<kj�< �%, :� 
                                           = ( i �=<kj�< � �%, :� 
   (iii) ( i  �<kj�< � �%9, :�   =  l  �<kj�< �%9, :� 

                         ;  l m^Znj�<  {  �<k
�%, :�,  �<k

�9, :� } 
                         =  m^0% { l  �<kj�< �%, :�, l  �<kj�< �9, :� } 

                                           =  m^0% { (  i  �<kj�< � �%, :�, ( i  �<kj�< � �9, :� }  
   (iv) ( i  �<kj�< � �%��, :� = l  �<kj�< �%��, :� 
                                          ; l  �<kj�< �%, :� 
                                           = ( i  �<kj�< � �%, :� 
 
                            Hence i 2&j�<  is IVBVG of G. 
4. Conclusion 
Group theory has vast and potential applications in many core areas like physics, 
chemistry, communication, coding theory, computer science, etc. In this paper we have 
studied interval valued bi-cubic vague groups and their properties. We have also proved a 
result on classical groups with the help of interval valued vague group theory. As 
mentioned in [2], we too observe that the notion of ‘IVBVG” defined by Dimirci in [4] is 
a completely different concept and not in the context of vague set theory of Gau and 
Buehrer [6]. 
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