Annals of Pure and Applied Mathematics
Vol. 6, No. 2, 2014, 170-177

ISSN: 2279-087X (P), 2279-0888(online) Pure and Applied
Published on 21 July 2014 .
vavvliegeaorzhmatﬁgci.org Mathematlcs

Annals of

Applications of Riemannian Geometry Comparing with
Symplectic Geometry
A. K. M. Nazimuddin® and Md. Rifat Hasan?

'Department of Electronics and Communications Ereging, East West University
Dhaka-1212, Bangladesh
Email: nazimsh027 @yahoo.com

“Department of Applied Mathematics, Noakhali Scieand Technology University
Sonapur, Noakhali-3814, Bangladesh
Email: rifat_math2004@yahoo.com

Received 24 June 2014; accepted 30 June 2014

Abstract. The main object of this paper is to provide variapglications of Riemannian
geometry in the theory of relativity and to providgecial comparisons between
symplectic geometry and Riemannian geometry wispeet to different point of view.

Keywords: Riemannian geometry, relativity, symplectic geometr
AMS Mathematics Subject Classification (2010): 70G45

1. Introduction

Riemannian geometry is the branch of differentebmetry [9] that studies Riemannian
manifolds, smooth manifolds with a Riemannian ngefRiemannian geometry was first
put forward in generality bBernhard Riemanrin the nineteenth century. One of the
main notions of the Riemannian geometry is theamotif connection [3], [10]. The
connection (or parallel transport) allows to congparhat is happening at two distant
points of a curved space, in spite of the fact thate is no direct and immediate way to
communicate between these points. Earlier, in 810, Albert Einsteindiscovered that
the Riemannian geometry can be successfully usegoribe general relativitheory
which is in fact a classical theory of gravitatidy its intrinsic beauty, as well as by
wealth of applications the Riemannian geometrydiethe core of modern mathematics.

2. Einstein’s Field Equations (EFE)

According to Einstein, matter is the cause of thavigational field and the causative
matter is described in his theory by a mathemabb@ct called the energy-momentum
tensor, which is coupled to geometry (i.e. span®}iby his field equations, so that
matter causes space-time curvature (his gravittifield) and space-time constrains
motion of matter when gravity alone acts. Accordinghe astrophysics community [8],
Einstein’s field equations,

“... couple the gravitational field (contained itnd curvature of space time) with its
sources.”(Foster & Nightingale 1995).
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“Again, just as the electric field, for its part, pands upon the charges and is
instrumental in producing mechanical interactiontieen the charges, so we must
assume here that the metrical field (or, in mathérah language, the tensor with

componentg;, ) is related to the material filling the world(Weyl 1952).

“...we have, in following the ideas set out jusbab, to discover the invariant law of
gravitation, according to which matter determinelaetcomponentsl"[f{ of the
gravitational field, and which replaces the Newtonilaw of attraction in Einstein’s
Theory! (Weyl 1952).

“Thus the equations of the gravitational field atsmtain the equations for the matter
(material particles and electromagnetic fields) @hiproduces this field.(Landau &
Lifshitz 1951).

“Clearly, the mass density, or equivalently, enatgysityp (X, t)must play the role as a
source. However, it is the 00 component of a tefjgdix), the mass-energy-momentum
distribution of matter. So, this tensor must acttlaes source of the gravitational field.
(Hooft 2009).

“In general relativity, the stress-energy or enenggmentum tensof?? acts as the
source of the gravitational field. It is related tbe Einstein tensor and hence to the
curvature of space time via the Einstein equatigiMtMahon 2006).

The space-time geometry is described by a matheahaibject called Einstein’s
tensor,G,,, (w,v =0, 1, 2, 3). Einstein’s field equations are theref

1
Gy = Ryy — Egle = —kT,,

R, is called the Ricci tensor ariithe Ricci curvature. If7,,, = 0 then one finds that
R = 0 and this expression according to Einstein allegestiuces to

Ry =0
and is said to describe a universe that containgnatier (the so-called static empty
universe). In Riemannian geometry, the Ricci cumatensorR,, must be symmetric
inuandv, i.e. Ry, = Ry,.

Therefore the Einstein curvature tenghy, is a symmetric second-rank tensor
that is a function of the metric. The Einstein tamis of crucial physical significance in
general theory of relativity [6], since it can ewn from the Bianchi identities that,

Gy =0

In general theory of relativity, the Einstein curxw@ tensor models local
gravitational forces and it is equal (up to a gi@ional constant) to the stress-energy
tensor

Guv;v = Tuv;v
Einstein took the solution of these equations tofitbe form
G + Gy N = kT
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where we can determine the constatty requiring that we should recover the laws of
Newtonian gravity and dynamics in the limit of aakegravitational field and non-

relativistic motion. In fack turns out to equ%éfg.

Using geometrized units wheéte= ¢ = 1, this can be rewritten as
Guv + gy N= 81Ty,

The expression on the left represents the curvatiispace time as determined
by the metric; the expression on the right repressdre matter/energy content of space-
time. The EFE can then be interpreted as a sequdtmns dictating how matter/energy
determines the curvature of space time.

These equations, together with the geodesic emqyatihich dictates how freely-
falling matter moves through space-time, form tbheecof the mathematical formulation
of general theory of relativity [7].

Theorem 2.1.Vacuum solutions of Einstein's equation are Einsteanifolds.
Proof: In local coordinates the condition th@, g) be an Einstein manifold is

R;w = U9w (2.1)
Taking the trace of both sides of (2.1) we get,
R =nu

In general theory of relativity, Einstsiequation with a cosmological constaris

Ry — E‘g’“’R + g A= 81Ty,

In a vacuumf,, =0and one can rewrite Einstein's equation in the form

(assuming n>2):
2A

Ruv Ea— Iuv (2.2)
Comparing (2.1) and (2.2), we can say that, vaceahtions of Einstein's equation are
Einstein manifolds witlu proportional to the cosmological constant. o

Theorem 2.2.Einstein universe is not an Einstein space.
Proof: An Einstein space is characterized by the property
R
Rij = ;gi]- (23)

To examine Einstein universe, Einstein line elenegiven by
2

r
ds?> = —(1- ﬁ)_ldr2 —12(d6? + sin?6dp?) + dt?

Here we get,
Rup = = Guu Where p=1,2,3 (2.4)

Also,R4y =0,R,, =0 for u#v

4

R
- guu
2
=z (1+1+1+ 0) [by (2.4)]

That is, g ==
Using this in (2.4), we get
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R
Ry = 3 Juu
Also, R4y = 0, gse # 0 andR,,, = 0, foru #v.

These facts prove that,

R
Ruv * Z uv
This implies that, Einstein universe is not an Eimsspace. o

3. Geodesics
According to Newton’s laws the ‘natural’ trajectar/a particle which is not being acted
upon by any external force is a straight line. émegral theory of relativity, since gravity
manifests itself as spacetime curvature, theserrakstraight line trajectories generalize
to curved paths known ageodesics These are defined physically as the trajectories
followed by freely falling particles, i.e., partid which are not being acted upon by any
non-gravitational external force. Geodesics [1] defined mathematically as spacetime
curves that parallel transport their own tangemtmes. For metric spaces i.e. spaces on
which a metric function can be defined, we can dksfine geodesics as external paths in
the sense that along the geodesic between twosskgmaindE,, the elapsed proper time
is an extremum, i.e.
E;
6f dt =0

Eq

Mathematically, the curvature of spacetime canréaealed by considering the
deviation of neighbouring geodesics [2].

The worldline of a material particle may be writteith the proper timeg, as
parameter along the worldline. The four velocitytioé particle is the tangent vector to
the worldline. The geodesic equation for the plrtie

d?x#  dx? dx?
R + _—
dr2 vAdr dr

4. Symplectic Geometry versus Riemannian Geometry

Symplectic geometry is the geometry of a closedvskgmmetric form. It turns out to be
very different from the Riemannian geometry withiethwe are familiar. One important
difference is that, in some intrinsic way they du imvolve derivatives. Thus, symplectic
geometry is essentially topological in nature. Amotimportant feature is that, it is a 2-
dimensional geometry that measures the area of leansprves instead of the length of
real curves. On the other hand, a Riemannian mdnif® Riemann space, is a smooth
manifold whose tangent spaces are endowed withr ipreduct with satisfying some
conditions. Euclidean spaces are also Riemann sp&sooth surfaces in Euclidean
spaces are Riemann spaces. A hyperbolic non-Eadlidpace is also a Riemann space.
A curve in a Riemann space has the length. A Riensgace is both a smooth manifold
and a metric space; the length of the shortestecisnthe distance. The angle between
two curves intersecting at a point is the anglevben their tangent lines. Also, the study
of Riemannian manifolds is called Riemannian geoynet
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Definition 4.1. A symplectic formw on a smooth manifold is a smooth 2-fornw on
Mthat is closed and non-degenerate, «s& 2%(M) with dw =0 and w, is non-
degenerate ofi.M for all x € M.

A necessary condition for the existence of a syotgeform w on M is that
M should have even dimenskm Moreover w™/nlis a volume form (the so called
Liouville form) giving M an orientation. If in additioM is connected and compact then
the even dimensional De Rham cohomology spddé%(M) should be all non-zero for
0 <p < n. Indeed[w]™ = [w"] # 0 which in turn implies thaiw?] = [w]? # 0 for
0<p<sn

Definition 4.2. A symplectic vector space is a pdiE,w) consisting of a finite-
dimensional real vector spa€eand a non-degenerate, skew-symmetric bilinear form
EXE - R

Definition 4.3. Let (E, w) be a symplectic vector space and= E be a subspace. The
symplectic complement df is the subspadé: = {X € E|w(X,Y) = O,VY € F}.
The properties of the symplectic complement arermyivy follows:
Let F andG be the subspaces of a symplectic vector s@&ae) then,
() If Fc GthenFt > Gt (iYy(FHt=F (i) (F+6)t = Ftn Gt
(iVY(FNG)L = Ft+ ¢+ (Vdim Ft = dimE - dim F

Definition 4.4. A subspacé c E of a symplectic vector space is called
(a) Isotropic iff ¢ F+ (b) Co-isotropic ifF+ ¢ F (c) Lagrangian i = F*
(d) Symplectic ifF n FL = {0}.

Theorem 4.1.Every finite-dimensional symplectic vector space bgen dimension and
contains a lagrangian subspace.
Proof: Let F be ak-dimensional isotropic subspac&Bfw). Then
F c Ft
= dimF < dimF*
= dimF < dimV — dimF

1
= 2dimF < dimV = dimF < EdimV

If dimF + %dim V thenF # F1 and so we can construct an isotropic subspdasf
dimensionk+1. By continuing in this way, we construct a semigeof isotropic subspace
of increasing dimension. The sequence can certbalgtarted and it must terminate at
the point for which the subspace has dimengicna % dimV and is Lagrangian. This
completes the proof.

O

Definition 4.5. The pair(M, w) of a smooth manifoldd with a symplectic formw is
called a symplectic manifold.

Theorem 4.2.(Darboux-Weinstein theorem) [4]
Let (M,w) be a symplectic manifold. Then for amye M, there exists a local chart
(U, x4, X3, vy Xn,» Y1, V2, -, Yn) a@roundp so that orv,
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n
w|U = dei N dy;
1

i=
Theorem 4.3.(De Rham's Theorem) [5]

De Rham's theorem, proved Beorges de Rharnm 1931, states that, “The De Rham
cohomological grouplfz(M) is isomorphic to the singular cohomo-logical group

H*(M ,R) with real coefficients”.

5. Comparison between symplectic and Riemannian gmetry

Symplectic Geometn

Riemannian Geometry

1. Symplectic Manifolds
(i) Symplectic manifold is a paifM, w) ,
where:
(@ weN?(M)ie.,
w,X)=-w((lXY)
o(fX + gY,2)
= foX,Z2)+gw (Y,2)
(b) w is nondegenerate, i.e.:
wXY) =0vVX € yM o
Y =20
(c) w is closed, i.edw = 0. We callw a
symplectic form.
(i) If any manifold holds the following
necessary conditions, that manifol
qualify for being symplectic.
Necessary conditions:
(N1)dimM = 2n
(N2) M is oriented
(N3) if M is compact then
H3x(M,R) # 0

1. Riemannian Manifolds
(i) Riemannian manifold
(M, <,>), where:
@ <> x(M) X x(M) - C*(M)
satisfies:
<YV, X>=<XY>
<fX+gV,Z>=f <X,Z>+g
<Y, Z>
(b) <,> is positive definite.
Consequences, > is non-degenerate.

)
d&ii) All smooth manifolds qualify for

being Riemannian.

is a pai

2. Examples
(D) (R?™,w,) gives an example of nof

compact symplectic manifold. Here,
wo = Xitq dx; " dy;
is the standard symplectic structd

andxy, X3, ..., Xny) V1, Vo, -, V) @re  the
coordinates oR?™,

2. Examples
(i) Euclidean spaces are also Riem:

spaces or Riemannian manifold.
So, R"*, < X,Y >) gives an example d
rRiemannian manifold. Here,
R™ with canonical co-ordinategc'} and
with metric
g = (dx)?+ (dx®»)? + -
+ (dx™)?

Ann

=

g = 1lg"*|l = diag[1,1,...,1]
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(ii) The 2n dimensional torusT?" =
R2" / 72" with its standard form

n
wo = Z dx; " dy;
j=1

is a symplectic manifold.

This is a basis example n-dimensiona
Euclidean space, where scalar produg
defined by the formula:

gxY) = (X,Y) = gk Xiyk =

Xyl 4+ X2y2 + - + XY™

(ii) (R?,< X,Y >)  gives  anothef
example of Riemannian manifold. He
R? with polar coordinates in the domdi
y >0 =r1rcosey = rsing):
dx = cos @odr — rsin @d,
dy = sin@dr + rcos @pde.
In new coordinates the Riemanni
metric g = dx?+ dy? will have the
following appearance:
g = (dx)* + (dy)*
= dr? + r? (dg)?
We see that for matrig = || g% ||
Scalar product is defined by the formulg
gx.Y) = (X,v) = gk xiy*
= Xyl +r2x2y?

1.

3. _Special Vector Fields
(i) Non-degeneracy ab implies that the
following is an isomorphism:

I:x(M) > 0'(M)

X - iyw = wX,)
Given f € C*(M), its Hamiltonian
vector field is:

Xy =17'(df)
(ii) Hamiltonian vector field, is tangent
to the level surface:
Ze={p e M:f(p) =C}
Other important vector field:
A vector fieldX is said to be symplectic
I1(X) is closed. In other words:
diyw =0

Hence, Hamiltonian vector fields a
symplectic, since(df) = 0.

3. _Special Vector Fields
(i) Non-degeneracy of <,> implies that
the following is an isomorphism:
I:x(M) > 0'(M)
X -<X >
Givenf € C*(M), its gradient vector
field is:

vf =17(df)
(ii) gradient vector fieldf is normal to
the level surface:

e={p € M:f (p) =C}

—

re
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4. Equivalence 4. Equivalence
Two symplectic manifolds(M,w) and| Two Riemannian manifolds(M, <,>)

(M',w" are symplectomorphic if theteand (M’,<,> ') are isometric if therg

exists aC' map: exists aCmap:
o: M- M o: M->M
satisfying: satisfying:
. 0w = w <dey(X),do,(Y) > ’(p(p) =<XY >,
ie.,

, is called an isometry and necessaiily,
AR (d_(pp X, dep(¥)) = “p XY i injective, for allp so:
Where, ¢ is called a symplectic map and

] R dimM < dimM’'
necessarilydg, is injective, for allp so:
dimM < dimM'
5. Invariants 5. Invariants

Darboux’s theorem implies that, there ar@urvature is a local invariant i
no local invariants (apart from dimensigniRiemannian Geometry.
in Symplectic Geometry.
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