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1. Introduction 
Riemannian geometry is the branch of differential geometry [9] that studies Riemannian 
manifolds, smooth manifolds with a Riemannian metric. Riemannian geometry was first 
put forward in generality by Bernhard Riemann in the nineteenth century. One of the 
main notions of the Riemannian geometry is the notion of connection [3], [10]. The 
connection (or parallel transport) allows to compare what is happening at two distant 
points of a curved space, in spite of the fact that there is no direct and immediate way to 
communicate between these points. Earlier, in the 1910's, Albert Einstein discovered that 
the Riemannian geometry can be successfully used to describe general relativity theory 
which is in fact a classical theory of gravitation. By its intrinsic beauty, as well as by 
wealth of applications the Riemannian geometry lies at the core of modern mathematics. 
 
2. Einstein’s Field Equations (EFE) 
According to Einstein, matter is the cause of the gravitational field and the causative 
matter is described in his theory by a mathematical object called the energy-momentum 
tensor, which is coupled to geometry (i.e. space time) by his field equations, so that 
matter causes space-time curvature (his gravitational field) and space-time constrains 
motion of matter when gravity alone acts. According to the astrophysics community [8], 
Einstein’s field equations, 
“... couple the gravitational field (contained in the curvature of space time) with its 
sources.” (Foster & Nightingale 1995).  
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“Again, just as the electric field, for its part, depends upon the charges and is 
instrumental in producing mechanical interaction between the charges, so we must 
assume here that the metrical field (or, in mathematical language, the tensor with 
components ��� ) is related to the material filling the world.” (Weyl 1952). 

 
 “...we have, in following the ideas set out just above, to discover the invariant law of 
gravitation, according to which matter determines the components ���� of the 
gravitational field, and which replaces the Newtonian law of attraction in Einstein’s 
Theory.” (Weyl 1952). 

 
“Thus the equations of the gravitational field also contain the equations for the matter 
(material particles and electromagnetic fields) which produces this field.” (Landau & 
Lifshitz 1951). 

 
“Clearly, the mass density, or equivalently, energy density �	
�, 
�must play the role as a 
source. However, it is the 00 component of a tensor ���	
�, the mass-energy-momentum 
distribution of matter. So, this tensor must act as the source of the gravitational field.” 
(Hooft 2009). 

 
“ In general relativity, the stress-energy or energy-momentum tensor ��� acts as the 
source of the gravitational field. It is related to the Einstein tensor and hence to the 
curvature of space time via the Einstein equation.” (McMahon 2006). 

 
The space-time geometry is described by a mathematical object called Einstein’s 

tensor, ���, (�, � � 0, 1, 2, 3). Einstein’s field equations are therefore  

��� � ��� � 1
2 ���� � ����� 

��� is called the Ricci tensor and � the Ricci curvature. If  ��� � 0  then one finds that 
� � 0 and this expression according to Einstein allegedly reduces to  

��� � 0 
and is said to describe a universe that contains no matter (the so-called static empty 
universe). In Riemannian geometry, the Ricci curvature tensor  ��� must be symmetric 
in � and �, i.e.   ��� �  ���.  

Therefore the Einstein curvature tensor ��� is a symmetric second-rank tensor 
that is a function of the metric. The Einstein tensor is of crucial physical significance in 
general theory of relativity [6], since it can be shown from the Bianchi identities that, 

���;� � 0 
In general theory of relativity, the Einstein curvature tensor models local 

gravitational forces and it is equal (up to a gravitational constant) to the stress-energy 
tensor 

���;� � ���;� 
Einstein took the solution of these equations to be of the form 

��� ! ��� " � ���� 
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where we can determine the constant k by requiring that we should recover the laws of 
Newtonian gravity and dynamics in the limit of a weak gravitational field and non-

relativistic motion. In fact k turns out to equal
#$%
&' . 

Using geometrized units where� �  ( �  1, this can be rewritten as 
��� ! ��� "� 8*��� 

The expression on the left represents the curvature of space time as determined 
by the metric; the expression on the right represents the matter/energy content of space-
time. The EFE can then be interpreted as a set of equations dictating how matter/energy 
determines the curvature of space time. 
 These equations, together with the geodesic equation, which dictates how freely-
falling matter moves through space-time, form the core of the mathematical formulation 
of general theory of relativity [7]. 
 
Theorem 2.1. Vacuum solutions of Einstein's equation are Einstein manifolds.  
Proof: In local coordinates the condition that 	+,  �� be an Einstein manifold is 
                                                ��� �  � ���                                                                (2.1) 

Taking the trace of both sides of (2.1) we get, 
� �  , � 

          In general theory of relativity, Einstein's equation with a cosmological constant " is   

��� � 1
2 ���� ! ��� "� 8*��� 

          In a vacuum, ��� � 0 and one can rewrite Einstein's equation in the form 
(assuming n>2): 

                                               ��� � -"
./-  ���                                                                (2.2)                                       

Comparing (2.1) and (2.2), we can say that, vacuum solutions of Einstein's equation are 
Einstein manifolds with �  proportional to the cosmological constant.                              □ 
 
Theorem 2.2. Einstein universe is not an Einstein space. 
Proof: An Einstein space is characterized by the property  
                                                 ��0 � 1

2 ��0                                                                     (2.3) 
To examine Einstein universe, Einstein line element is given by 

34- �  � 	1 � 5-
�-�/635- � 5-	37- ! 48,-739-� ! 3
- 

Here we get,                     

                             ��� �  -
1:  ���   where,  � = 1, 2, 3                                                  (2.4) 

Also, �;; � 0, ��� � 0    for  � < �          

� � ������ � =  ���
;

�>6
��� � = ���

���

;

�>6
 

                                                                � -
1: (1+ 1+ 1 + 0)                      [by (2.4)]  

That is,                                
1
? � -

1: 

Using this in (2.4), we get   
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��� �  �
3  ��� 

Also, �;; � 0, �;; < 0  and ��� � 0, for � < �. 
These facts prove that,          

 ��� <  �
4  ��� 

This implies that, Einstein universe is not an Einstein space.                                             □                             
 
3. Geodesics 
According to Newton’s laws the ‘natural’ trajectory of a particle which is not being acted 
upon by any external force is a straight line. In general theory of relativity, since gravity 
manifests itself as spacetime curvature, these ‘natural’ straight line trajectories generalize 
to curved paths known as geodesics. These are defined physically as the trajectories 
followed by freely falling particles, i.e., particles which are not being acted upon by any 
non-gravitational external force. Geodesics [1] are defined mathematically as spacetime 
curves that parallel transport their own tangent vectors. For metric spaces i.e. spaces on 
which a metric function can be defined, we can also define geodesics as external paths in 
the sense that along the geodesic between two events B6 and B-, the elapsed proper time 
is an extremum, i.e. 

C D 3E � 0 
F:

FG
 

 Mathematically, the curvature of spacetime can be revealed by considering the 
deviation of neighbouring geodesics [2]. 
 The worldline of a material particle may be written with the proper time, E, as 
parameter along the worldline. The four velocity of the particle is the tangent vector to 
the worldline. The geodesic equation for the particle is 

3-
�
3E- ! ��H

� 3
�
3E  3
H

3E � 0 

 
4. Symplectic Geometry versus Riemannian Geometry 
Symplectic geometry is the geometry of a closed skew-symmetric form. It turns out to be 
very different from the Riemannian geometry with which we are familiar. One important 
difference is that, in some intrinsic way they do not involve derivatives. Thus, symplectic 
geometry is essentially topological in nature. Another important feature is that, it is a 2-
dimensional geometry that measures the area of complex curves instead of the length of 
real curves. On the other hand, a Riemannian manifold, or Riemann space, is a smooth 
manifold whose tangent spaces are endowed with inner product with satisfying some 
conditions. Euclidean spaces are also Riemann spaces. Smooth surfaces in Euclidean 
spaces are Riemann spaces. A hyperbolic non-Euclidean space is also a Riemann space. 
A curve in a Riemann space has the length. A Riemann space is both a smooth manifold 
and a metric space; the length of the shortest curve is the distance. The angle between 
two curves intersecting at a point is the angle between their tangent lines. Also, the study 
of Riemannian manifolds is called Riemannian geometry. 
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Definition 4.1. A symplectic form I on a smooth manifold + is a smooth 2-form I on 
+ that is closed and non-degenerate, so I J K-	+� with 3I � 0 and IL is non-
degenerate on �L+ for all 
 J +.  

A necessary condition for the existence of a symplectic form I on + is that 
+ should have even dimension2,. Moreover I2/,! is a volume form (the so called 
Liouville form) giving + an orientation. If in addition + is connected and compact then 
the even dimensional De Rham cohomology spaces  OP1

-Q 	+� should be all non-zero for 
0 R S R ,. Indeed TIU2 �  TI2U < 0 which in turn implies that TIQU �  TIUQ < 0 for 
0 R S R ,. 

 
Definition 4.2. A symplectic vector space is a pair 	B, I� consisting of a finite-
dimensional real vector space B and a non-degenerate, skew-symmetric bilinear form I: 
B V B W  X. 

 
Definition 4.3. Let 	B, I� be a symplectic vector space and Z [  B be a subspace. The 
symplectic complement of Z is the subspace Z\ � ]^ J  B | I	^, `�  �  0, a ` J  Zb. 
The properties of the symplectic complement are given by follows: 
Let Z and � be the subspaces of a symplectic vector space 	B, I� then, 

(i) If Z [ � then  Z\ c  �\         (ii) 	Z\�\ � Z                (iii)  	Z ! ��\ �  Z\ d  �\               
(iv)	Z d G�\ �  Z\ !  �\            (v) 38f Z\  �  38f B –  38f Z          

 
Definition 4.4. A subspace Z [ B of a symplectic vector space is called 
     (a) Isotropic if Z [ Z\   (b) Co-isotropic if  Z\ [ Z   (c) Lagrangian if Z �  Z\                             

(d) Symplectic if Z d Z\ �  ]0b. 
 

Theorem 4.1. Every finite-dimensional symplectic vector space has even dimension and 
contains a lagrangian subspace. 
Proof: Let Z be a �-dimensional isotropic subspace of	B, I�. Then 

Z [  Z\ 
h   38f Z R  38fZ\ 

h   38f Z R  38f i �  38f Z 

h   2 38f Z R  38f i h   38f Z R  1
2 38f i  

If dim Z < 6
- 38f i then Z < Z\ and so we can construct an isotropic subspace Z′ of 

dimension k+1. By continuing in this way, we construct a sequence of isotropic subspace 
of increasing dimension. The sequence can certainly be started and it must terminate at 

the point for which the subspace has dimension � �  6
-  38f i and is Lagrangian. This 

completes the proof.                                 
                                                                            □  
Definition 4.5. The pair 	+, I� of a smooth manifold + with a symplectic form I is 
called a symplectic manifold.  
 
Theorem 4.2. (Darboux-Weinstein theorem) [4] 
Let (+, I) be a symplectic manifold. Then for any S J  + , there exists a local chart 
	j, 
6, 
-, … , 
2, , l6, l-, … , l2�  around S so that on j,  
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I|j � = 3
�  ^ 3l�  
2

�>6
 

Theorem 4.3. (De Rham's Theorem) [5] 
De Rham's theorem, proved by Georges de Rham in 1931, states that, “The De Rham 
cohomological group OP1� 	+� is isomorphic to the singular cohomo-logical group 
O�	+ , X� with real coefficients”.  
 
 5. Comparison between symplectic and Riemannian geometry 
 

Symplectic Geometry Riemannian Geometry 

1.  Symplectic Manifolds 
	n� Symplectic manifold is a pair  	+, I� , 
where:  
(a)  I J K-	+� i.e.,  

I 	`, ^�  �  � I 	^, `� 
I	o^ !  �`, p�

�  oI 	^, p� ! �I 	`, p� 
(b) I is nondegenerate, i.e.: 
      I 	^, `� �  �  0, a ^ J  q	 +�  r
 ` �  0 
(c) I is closed, i.e. 3I � 0. We call I a 
symplectic form. 
	nn� If any manifold holds the following 
necessary conditions, that manifolds 
qualify for being symplectic. 
Necessary conditions: 
(N1) 38f + �  2, 
(N2) + is oriented 
(N3) if + is compact then  

OP1- 	+, X� < 0 

1.   Riemannian Manifolds 
	n� Riemannian manifold is a pair 
	+, s, t�, where: 
(a)  s, tu  q	+�  V  q	+�  W  v∞	+� 
satisfies: 

s `, ^ t  �  s ^, ` t 
s o^ ! �`, p t �  o s ^, p t !�

s `, p t 
(b)  s, t is positive definite.  
Consequence: s, t is non-degenerate. 
 
 
 
	nn�  All smooth manifolds qualify for  
being Riemannian. 

2.   Examples 
	n� 	X-2, Iw) gives an example of non-
compact symplectic manifold. Here, 
                   Iw  �  ∑ 3
�  ^ 3l�  2�>6  
is the standard symplectic structure 
and	
6, 
-, … , 
2, , l6, l-, … , l2� are the        
coordinates of X-2. 
 
 
 

2.   Examples 
	n� Euclidean spaces are also Riemann 
spaces or Riemannian manifold. 
So, (X2 , s ^, ` t) gives an example of 
Riemannian manifold. Here, 

X2  with canonical co-ordinates ]
�b and 
with metric   

� �  	3
6� - !  	3
-� -  !  y  
! 	3
2� - 

� �  || ��� || �  38z� T1, 1, . . . , 1U 
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	nn� The 2, dimensional torus �-2 �
 X-2 / {-2 with its standard form 

Iw �  = 3
0  ^ 3l0  
2

0>6
 

is a symplectic manifold. 
 

This is a basis example of n-dimensional 
Euclidean space, where scalar product is 
defined by the formula: 

�	^, `�  �  |^, `}  �  ��� ^�  `� �
 ^6`6 ! ^-`-  ! y ! ^2`2.  
 
	nn� 	X-, s ^, ` t� gives another 
example of Riemannian manifold. Here 
X2 with polar coordinates in the domain 
l t  0 	
 �  5 (~4 9, l �  5 48, 9�: 

3
 �  (~4 935 �  5 48, 939, 
3l �  48, 935 !  5 (~4 939. 

In new coordinates the Riemannian 
metric � �  3
- ! 3l- will have the 
following appearance: 

� �  	3
�- ! 	3l�-   
�  35- !  5- 	39�- 

We see that for matrix � �  || ��� ||   
Scalar product is defined by the formula: 

�	^, `�  �  |^, `}  �  ��� ^� `�  
� ^6`6 ! 5-^-`- 

3.    Special Vector Fields 
	n� Non-degeneracy of I implies that the  
following is an isomorphism: 

�: q	+�  W  K6	+� 
^ W  8�I �  I	^,�� 

Given o J  v∞	+�, its Hamiltonian 
vector field is: 

�̂  � �/6	3o� 
	nn� Hamiltonian vector field ̂� is tangent 

to the level surface:       
�� � ]S J  +: o 	S� � vb 

Other important vector field: 
A vector field ̂  is said to be symplectic if 
�	^� is closed. In other words: 

38�I � 0 
Hence, Hamiltonian vector fields are 
symplectic, since 3	3o� � 0. 

3.    Special  Vector Fields 
	n� Non-degeneracy of <,> implies that  
the following is an isomorphism: 

�: q	+�  W  K6	+� 
^ W s ^,�t 

Given o J  v∞	+�, its gradient vector 
field is: 

�o � �/6	3o� 
	nn� gradient vector field �o is normal to 
the level surface:               

�� � ]S J  +: o 	S� � vb 
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4.  Equivalence 
Two symplectic manifolds 	+, I� and 
	+′, I′� are symplectomorphic if there 
exists a v6 map:  

9 u  + W +′ 
satisfying: 

9�I′ �  I 
i.e.,  
I′9	Q� 	 39Q	^�, 39Q	`� �  �  IQ	^, `� 

Where, 9 is called a symplectic map and 
necessarily  39Q  is  injective, for all S so: 

38f+ R 38f+′ 

4.  Equivalence 
Two Riemannian manifolds 	+, s, t� 
and 	+′, s, t ′ � are isometric if there 
exists a v6map:  

9 u  + W +′ 
satisfying: 
s 39Q	^�, 39Q	`� t ′�	Q� � s ^, ` tQ 
is called an isometry and necessarily 39Q 

is injective, for all S so:  
38f+ R 38f+′ 

5.   Invariants 
Darboux’s theorem implies that, there are 
no local invariants (apart from dimension) 
in Symplectic Geometry. 

5.   Invariants 
Curvature is a local invariant in 
Riemannian Geometry. 
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