Annals of Pure and Applied Mathematics Vol. 7, No. 1, 2014, 83-88 ISSN: 2279-087X (P), 2279-0888(online) Published on 9 September 2014 www.researchmathsci.org

Atanassov's Intuitionistic Fuzzy Generalized Bi-ideals of r-Semigroups

M.Mandal¹, S.K.Sardar² and S.K.Majumder³

^{1,2}Department of Mathematics, Jadavpur University Jadavpur, Kolkata – 700032, India E-mail: <u>manasi_ju@yahoo.in</u>; <u>sksardarjumath@gmail.com</u>

³Mahipal High School, Mahipal, Dakshin Dinajpur, West Bengal-733121, India E-mail: <u>samitfuzzy@gmail.com</u>

Received 29 July 2014; accepted 22 August 2014

Abstract. In this paper we introduce the concept of Atanassov's intuitionistic fuzzy generalized bi-ideals of Γ -semigroups in order to extend the concept of Atanassov's intuitionistic fuzzy bi-ideal of a Γ -semigroup. Here we characterize regular Γ -semigroups in terms of Atanassov's intuitionistic fuzzy generalized bi-ideals.

Keywords: Γ -semigroup, Regular Γ -semigroup, Atanassov's intuitionistic fuzzy ideal, fuzzy ideal, fuzzy generalized bi-ideal.

AMS Mathematics Subject Classification (2000): 03F55, 20M12, 20M171

1. Introduction

Atanassov's intuitionistic fuzzy sets[1,2] are intuitively straightforward extension of Zadeh's[12] fuzzy sets; while a fuzzy set gives the degree of membership of an element in a given set, an Atanassov's intuitionistic fuzzy set gives both a degree of membership and a degree of non-membership. Kuroki[3, 4, 5, 6] is the pioneer of fuzzy ideal theory of semigroups. The idea of fuzzy subsemigroup was also introduced by Kuroki[3, 4]. In [4], Kuroki characterized several classes of semigroups in terms of fuzzy left, fuzzy right and fuzzy bi-ideals. The notion of a Γ -semigroup was introduced by Sen and Saha[10] as a generalization of semigroups and ternary semigroups. S.K. Majumder and M. Mandal[7] studied fuzzy generalized bi-ideals in Γ -semigroups. We have initiated the study of Γ -semigroups in terms of Atanassov's intuitionistic fuzzy subsets[8, 9]. The purpose of this paper is as mentioned in the abstract.

2. Preliminaries

Definition 2.1. [1] Let X be a nonempty set. A mapping $A = (\mu_A, \nu_A) : X \to I \times I$ is called an intuitionistic fuzzy set in X if $\mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$, where the mappings $\mu_A : X \to I$ and $\nu_A : X \to I$ denote respectively the degree of membership and the degree of non-membership of each $x \in X$ to A, I is the unit interval [0,1].

In this paper we shall use the symbol $A = (\mu_A, \nu_A)$ for the intuitionistic fuzzy subset $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle : x \in X\}$ of X.

Definition 2.2. [10] Let $S = \{x, y, z, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be two non-empty sets. Then *S* is called a Γ -semigroup if there exists a mapping $S \times \Gamma \times S \rightarrow S$ (images to be denoted by $a\alpha b$) satisfying (1) $x\gamma \in S \quad \forall x, y \in S, \gamma \in \Gamma$, (2) $(x\beta y)\gamma = x\beta(y\gamma z), \forall x, y, z \in S, \forall \beta, \gamma \in \Gamma$.

Definition 2.3. [8] A non-empty intuitionistic fuzzy subsemigroup $A = (\mu_A, \nu_A)$ of a Γ -semigroup S is called an intuitionistic fuzzy bi-ideal of S if it satisfies:

(1)
$$\mu_A(x\alpha y\beta z) \ge \min\{\mu_A(x), \mu_A(z)\} \forall x, y, z \in S \text{ and } \forall \alpha, \beta \in \Gamma,$$

(2) $\nu_A(x\alpha y\beta z) \le \max\{\nu_A(x), \nu_A(z)\} \forall x, y, z \in S \text{ and } \forall \alpha, \beta \in \Gamma.$

For further preliminaries we refer the readers to [8, 11].

3. Intuitionistic fuzzy generalized bi-ideal

Definition 3.1. [7] Let S be a Γ -semigroup. A non-empty subset I of S is called a generalized bi-ideal of S if $I\Gamma S\Gamma I \subseteq I$.

Definition 3.2. A non-empty intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of a Γ -semigroup *S* is called an intuitionistic fuzzy generalized bi-ideal of *S* if it satisfies:

(1)
$$\mu_A(x \alpha y \beta z) \ge \min\{\mu_A(x), \mu_A(z)\} \forall x, y, z \in S, \forall \alpha, \beta \in \Gamma,$$

(2) $\nu_A(x \alpha y \beta z) \le \max\{\nu_A(x), \nu_A(z)\} \forall x, y, z \in S, \forall \alpha, \beta \in \Gamma.$

Remark 1. It is clear that every intuitionistic fuzzy bi-ideal of S is an intuitionistic fuzzy generalized bi-ideal of S. But in general the converse does not hold which will be clear from the following example. For a restricted converse we refer to Proposition 3.1.

Example 1. Let $S = \{x, y, z, r\}$ and $\Gamma = \{\gamma\}$, where γ is defined on S with the following cayley table:

γ	Х	У	Z	r
Х	Х	Х	Х	Х
У	х	х	Х	х
Z	х	х	У	х
r	Х	х	У	У

Then S is a Γ -semigroup. We define an intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ of S as $\mu_A(x) = 0.5$, $\mu_A(y) = 0$, $\mu_A(z) = 0.2$, $\mu_A(r) = 0$. and $\nu_A(x) = 0.4$, $\nu_A(y) = 1$,

Atanassov's Intuitionistic Fuzzy Generalized Bi-ideals of Γ -Semigroups

 $v_A(z) = 0.7$, $v_A(r) = 1$. Then $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy generalized bi-ideal of S but $A = (\mu_A, \nu_A)$ is not an intuitionistic fuzzy bi-ideal of S.

Definition 3.3. [8] For any $t \in [0,1]$ and a fuzzy subset μ of S, the set $U(\mu;t) = \{x \in S : \mu(x) \ge t\} (\text{resp.}L(\mu;t) = \{x \in S : \mu(x) \le t\})$

is called an upper (resp. lower) *t*-level cut of μ .

We omit the proofs of the following theorems because it is a matter of routine verification.

Theorem 3.1. Suppose $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy generalized bi-ideal of a Γ -semigroup *S*. Then the upper and lower level cuts $U(\mu_A; t)$ and $L(\mu_A; t)$ are generalized bi-ideals of *S*, for every $t \in Im(\mu_A) \cap Im(\nu_A)$.

Theorem 3.2. Suppose $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy subset of a Γ -semigroup S such that the sets $U(\mu_A;t)$ and $L(\nu_A;t)$ are generalized bi-ideals of S whenever $t \in [0,1]$ and the sets are nonempty. Then the intuitionistic fuzzy subset $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy generalized bi-ideal of S.

Theorem 3.3. If a non-empty subset I of a Γ -semigroup S is a generalized bi-ideal of S then (χ_I, χ_I^c) is an intuitionistic fuzzy generalized bi-ideal of S, where χ_I is the characteristic function of I.

Definition 3.4.[10] A Γ -semigroup *S* is called regular if for each element $x \in S$, there exist $y \in S$ and $\alpha, \beta \in \Gamma$ such that $x = x \alpha y \beta x$.

Proposition 3.1. Let S be a regular Γ -semigroup. Then every intuitionistic fuzzy generalized bi-ideal of S is intuitionistic fuzzy bi-ideal of S.

Proof. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy generalized bi-ideal of *S*. Let $a, b \in S$. Since *S* is regular, there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $b = b \alpha x \beta b$. Then for any $\gamma \in \Gamma$,

 $\mu_A(a\gamma b) \ge \min\{\mu_A(a), \mu_A(b)\}$ and $\nu_A(a\gamma b) \le \max\{\nu_A(a), \nu_A(b)\}.$

Hence $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy subsemigroup of S and consequently $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy bi-ideal of S.

Remark 2. In view of above proposition and Remark 1 we can say that in a regular Γ -semigroup the concepts of intuitionistic fuzzy generalized bi-ideal and intuitionistic fuzzy bi-ideal coincide.

Definition 3.5. Let *S* be a Γ -semigroup. Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be two intuitionistic fuzzy subsets of a Γ -semigroup *S*. Then the product $A \circ B = (\mu_{A \circ B}, \nu_{A \circ B})$ of *A* and *B* is defined as

$$(\mu_{A \circ B})(x) = \begin{cases} \sup_{x=u\gamma v} [\min\{\mu_A(u), \mu_B(v)\} : u, v \in S; \gamma \in \Gamma] \\ 0, \text{if for any } u, v \in S \text{ and for any } \gamma \in \Gamma, x \neq u\gamma v \\ \inf_{x=u\gamma v} [\max\{\nu_A(u), \nu_B(v)\} : u, v \in S; \gamma \in \Gamma] \\ 1, \text{if for any } u, v \in S \text{ and for any } \gamma \in \Gamma, x \neq u\gamma v . \end{cases}$$

Lemma 3.1. Let *S* be a Γ -semigroup and $A = (\mu_A, \nu_A)$ be a non-empty intuitionistic fuzzy subset of *S*. Then $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy generalized bi-ideal of *S* if and only if $A \circ S \circ A \subseteq A$, where $S = (\chi_S, \chi_S^c)$ and χ_S is the characteristic function of *S*.

Proof: Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy generalized bi-ideal of *S*. Then for all $x, y, p, q \in S$ and for all $\beta, \gamma \in \Gamma$,

 $\mu_A(p\beta q\gamma y) \ge \min\{\mu_A(p), \mu_A(y)\} \text{ and } \nu_A(p\beta q\gamma y) \le \max\{\nu_A(p), \nu_A(y)\}.$ Hence for $a \in S$ if there exist $x, y \in S, \gamma \in \Gamma$ with $a = x\gamma y$ and $x = p\beta q$ for some $p, q \in S$ and for some $\beta \in \Gamma$, then $(\mu_A \circ \chi_S \circ \mu_A)(a) \le \mu_A(a)$ (by Lemma 1[7]) and

$$(\nu_{A} \circ \chi_{S}^{c} \circ \nu_{A})(a) = \inf_{a=xyy} [\max\{(\nu_{A} \circ \chi_{S}^{c})(x), \nu_{A}(y)\}]$$

$$= \inf_{a=xyy} [\max\{\inf_{x=p\beta q} \{\max\{\nu_{A}(p), \chi_{S}^{c}(q)\}, \nu_{A}(y)\}]$$

$$= \inf_{a=xyy} [\max\{\max_{x=p\beta q} \{\max\{\nu_{A}(p), 0\}\}, \nu_{A}(y)\}]$$

$$= \inf_{a=xyy} [\max\{\nu_{A}(p), \nu_{A}(y)\}]$$

$$\geq \nu_{A}(p\beta q \gamma y) = \nu_{A}(x\gamma y) = \nu_{A}(a).$$

If for $a \in S$ no such $x, y, p, q \in S$ and $\gamma, \beta \in \Gamma$ exist then $(\mu_A \circ \chi_S \circ \mu_A)(a) = 0 \le \mu_A(a)$ and $(\nu_A \circ \chi_S^c \circ \nu_A)(a) = 1 \ge \nu_A(a)$. Hence $A \circ S \circ A \subseteq A$. Conversely, let $A \circ S \circ A \subseteq A$. Then $\mu_A \circ \chi_S \circ \mu_A \subseteq \mu_A$ and $\nu_A \circ \chi_S^c \circ \nu_A \supseteq \nu_A$. Hence for $x, y, z \in S$, and $\beta, \gamma \in \Gamma$, we deduce by repeated use of Definition 3.5 $\mu_A(x\beta y \chi) \ge \min\{\mu_A(x), \mu_A(z)\}$ (by Lemma 1[7]) and

$$V_A(x\beta y \gamma z) \le (V_A \circ \chi_S^c \circ V_A)(x\beta y \gamma z) \le [\max\{(V_A \circ \chi_S^c)(x\beta y), V_A(z)\}]$$

$$\leq \max[\max\{\nu_{A}(x),0\},\nu_{A}(z)] = \max\{\nu_{A}(x),\nu_{A}(z)\}.$$

Hence $A = (\mu_A, \nu_A)$ is an intuitionistic fuzzy generalized bi-ideal of *S*.

In view of the above lemma we obtain the following theorem by routine verification.

Atanassov's Intuitionistic Fuzzy Generalized Bi-ideals of Γ -Semigroups

Theorem 3.4. The product of any two intuitionistic fuzzy generalized bi-ideals of a Γ -semigroup S is an intuitionistic fuzzy generalized bi-ideal of S.

Theorem 3.5. A Γ -semigroup *S* is regular if and only if for every intuitionistic fuzzy generalized bi-ideal $A = (\mu_A, \nu_A)$ of *S*, $A \circ S \circ A = A$ where $S = (\chi_S, \chi_S^c)$.

Proof: Suppose *S* is regular. Then for an intuitionistic fuzzy generalized bi-ideal $A = (\mu_A, \nu_A)$ of *S* and $a \in S$, there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = a \alpha x \beta a$. Hence $\mu_A \circ \chi_S \circ \mu_A = \mu_A$. (by Theorem 3[7])

Again
$$(v_A \circ \chi_S^c \circ v_A)(a) \le \max\{(v_A \circ \chi_S^c)(a\alpha x), v_A(a)\}(cf. Definition 3.5)$$

 $\le \max[\max\{v_A(a), \chi_S^c(x)\}, v_A(a)]$
 $= \max\{v_A(a), \chi_S^c(x), v_A(a)\}$
 $= \max\{v_A(a), 0, v_A(a)\} = v_A(a).$

So $V_A \supseteq V_A \circ \chi_S^c \circ V_A$. By Lemma 3.1 $V_A \circ \chi_S^c \circ V_A \supseteq V_A$. Consequently, $V_A \circ \chi_S^c \circ V_A = V_A$. Hence $A \circ S \circ A = A$.

Conversely suppose the given condition holds. Let *R* be a generalized bi-ideal of *S*. Then by Theorem 3.3, (χ_R, χ_R^c) is an intuitionistic fuzzy generalized bi-ideal of *S*. Hence by given condition $\chi_R \circ \chi_S \circ \chi_R = \chi_R$ and $\chi_R^c \circ \chi_S^c \circ \chi_R^c = \chi_R^c$. Let $a \in R$. Then $\chi_R(a) = 1$. and $\chi_R^c(a) = 0$. Hence $\sup_{a=b_{\mathcal{K}}} [\min_{b=p\delta_q} \chi_R(p), \chi_R(c)] = 1$. (By Theorem 3[7])

Also

$$(\chi_R^c \circ \chi_S^c \circ \chi_R^c)(a) = 0$$

i.e.,
$$\inf_{a=b_{\mathcal{K}}} [\max\{(\chi_R^c \circ \chi_S^c)(b), \chi_R^c(c)\}] = 0$$

i.e.,
$$\inf_{a=b_{\mathcal{K}}} [\max\{\inf_{b=p\delta_q} \max\{\chi_R^c(p), \chi_S^c(q)\}, \chi_R^c(c)\}] = 0$$

i.e.,
$$\inf_{a=b_{\mathcal{K}}} [\max\{\inf_{b=p\delta_q} \max\{\chi_R^c(p), \chi_R^c(c)\}] = 0$$

i.e.,
$$\inf_{a=b_{\mathcal{K}}} [\max\{\inf_{b=p\delta_q} \chi_R^c(p), \chi_R^c(c)\}] = 0.$$

Thus we get $p, c \in S$ such that $a = b\gamma c$ and $b = p\delta q$ with $\chi_R(p) = \chi_R(c) = 1$ and $\chi_R^c(p) = \chi_R^c(c) = 0$ whence $p, c \in R$. So $a = b\gamma c = p\delta q\gamma c \in R\Gamma S\Gamma R$. Consequently, $R \subseteq R\Gamma S\Gamma R$. Since R is a generalized bi-ideal of S so $R\Gamma S\Gamma R \subseteq R$. Hence $R = R\Gamma S\Gamma R$ and so S is regular.

Using Lemma 3.1, Theorem 3.16[8] and Theorem 3.5 we can have the following theorem.

Theorem 3.6. A Γ -semigroup *S* is regular if and only if for each intuitionistic fuzzy generalized bi-ideal $A = (\mu_A, \nu_A)$ of *S* and each intuitionistic fuzzy ideal $B = (\mu_B, \nu_B)$ of *S*, $A \cap B = A \circ B \circ A$.

To conclude the paper we obtain the following result that characterizes regular Γ -semigroups in terms of intutionistic fuzzy generalized bi-ideals.

Theorem 3.7. Let S be a Γ -semigroup. then the following are equivalent:

(1) S is regular,

(2) $A \cap B \subseteq A \circ B$ for each intuitionistic fuzzy bi-ideal $A = (\mu_A, \nu_A)$ of *S* and for each intuitionistic fuzzy left ideal $B = (\mu_B, \nu_B)$ of *S*,

(3) $A \cap B \subseteq A \circ B$ for each intuitionistic fuzzy generalized bi-ideal $A = (\mu_A, \nu_A)$ of *S* and for each intuitionistic fuzzy left ideal $B = (\mu_B, \nu_B)$ of *S*,

(4) $C \cap A \cap B \subseteq C \circ A \circ B$ for each intuitionistic fuzzy bi-ideal $A = (\mu_A, \nu_A)$ of *S*, for each intuitionistic fuzzy left ideal $B = (\mu_B, \nu_B)$ of *S*, and for each intuitionistic fuzzy right ideal $C = (\mu_C, \nu_C)$ of *S*,

(5) $C \cap A \cap B \subseteq C \circ A \circ B$ for each intuitionistic fuzzy generalized bi-ideal $A = (\mu_A, \nu_A)$ of *S*, for each intuitionistic fuzzy left ideal $B = (\mu_B, \nu_B)$ of *S*, and for each intuitionistic fuzzy right ideal $C = (\mu_C, \nu_C)$ of *S*.

Proof: (1) \Rightarrow (2): Let *S* be regular, $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy bi-ideal of *S* and $B = (\mu_B, \nu_B)$ be an intuitionistic fuzzy left ideal of *S*. Let $a \in S$. Then there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = a \alpha x \beta a = a \alpha x \beta a \alpha x \beta a$. Then $\mu_A \circ \mu_B \supseteq \mu_A \cap \mu_B$ (cf. Theorem 6[7]). Again since A is a intuitionistic fuzzy bi-ideal and B is a intuitionistic fuzzy left ideal,

 $(\nu_A \circ \nu_B)(a) = \inf_{a=yaz} [\max\{\nu_A(y), \nu_B(z)\}]$

 $\leq \max\{v_A(a \alpha x \beta a), v_B(x \beta a)\}(as a = a \alpha x \beta a \alpha x \beta a)$

 $\leq \max\{\nu_A(a), \nu_B(a)\} = (\nu_A \cup \nu_B)(a).$

So $V_A \circ V_B \subseteq V_A \cup V_B$. Hence $A \cap B \subseteq A \circ B$.

Similarly we can prove that (1) implies (3).

 $(2) \Rightarrow (1)$: Let (2) hold. Let A be an intuitionistic fuzzy right ideal and B be an intuitionistic fuzzy left ideal of S. Then since every intuitionistic fuzzy right ideal of S is intuitionistic fuzzy quasi ideal of S and every intuitionistic fuzzy quasi ideal of S is intuitionistic fuzzy bi-ideal of S, so A is an intuitionistic fuzzy bi-ideal of S. Hence by (2), $A \cap B \subseteq A \circ B$. Also $A \circ B \subseteq A \cap B$ always holds. Hence $A \circ B = A \cap B$ and consequently, by Theorem 3.20 [8], S is regular.

 $(3) \Rightarrow (1)$: Suppose (3) holds. Let T be a generalized bi-ideal of S, L be a left ideal of S and $a \in T \cap L$. Then $a \in T$ and $a \in L$. Since T is a generalized bi-ideal

Atanassov's Intuitionistic Fuzzy Generalized Bi-ideals of Γ -Semigroups

of *S*, so by Theorem 3.3, (χ_T, χ_T^c) is an intuitionistic fuzzy generalized bi-ideal of *S*. By Corollary 3.13 [8], (χ_L, χ_L^c) is an intuitionistic fuzzy left ideal of *S*. Hence by (3), $\chi_T \cap \chi_L \subseteq \chi_T \circ \chi_L$ and $\chi_T^c \cup \chi_L^c \supseteq \chi_T^c \circ \chi_L^c$. Then $(\chi_T \circ \chi_L)(a) \ge (\chi_T \cap \chi_L)(a) = \min\{\chi_T(a), \chi_L(a)\} = 1.$ and $(\chi_T^c \circ \chi_L^c)(a) \le (\chi_T^c \cup \chi_L^c)(a) = \max\{\chi_T^c(a), \chi_L^c(a)\} = 0.$

Hence $\chi_{T \circ L}(a) = 1$ and $\chi_{T \circ L}^{c}(a) = 0$.

Hence in view of Definition 3.5, there exist $b, c \in S$ and $\delta \in \Gamma$ such that $a = b\delta c$ and $\chi_T(b) = \chi_L(c) = 1$ and $\chi_T^c(b) = \chi_L^c(c) = 0$, whence, $b \in T$ and $c \in L$. Hence $a = b\delta c \in T\Gamma L$. Thus $T \cap L \subseteq T\Gamma L$. Hence by Theorem 5[7]. S is regular.

(1) \Rightarrow (4): Let *S* be regular. Let $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy biideal, $B = (\mu_B, \nu_B)$ be an intuitionistic fuzzy left ideal and $C = (\mu_C, \nu_C)$ be an intuitionistic fuzzy right ideal of *S* respectively. Let $a \in S$. Then there exist $x \in S$ and $\alpha, \beta \in \Gamma$ such that $a = a\alpha x \beta a = a\alpha x \beta a \alpha x \beta a$. Then $\mu_C \cap \mu_A \cap \mu_B \subseteq \mu_C \circ \mu_A \circ \mu_B$ (*cf.* Theorem 6[7]). Again

 $(\nu_{C} \circ \nu_{A} \circ \nu_{B})(a) \leq \max\{\nu_{C}(a\alpha x), (\nu_{A} \circ \nu_{B})(a\alpha x\beta a\alpha x\beta a)\}$ $\leq \max\{\nu_{C}(a), (\nu_{A} \circ \nu_{B})(a\alpha x\beta a\alpha x\beta a)\}$

(since *C* is an intuitionistic fuzzy right ideal of *S*) $\leq \max[\nu_{C}(a), \max\{\nu_{A}(a\alpha x\beta a), \nu_{B}(x\beta a)\}]$ $\leq \max[\nu_{C}(a), \max\{\nu_{A}(a), \nu_{B}(a)\}]$

(since A is an intuitionistic fuzzy bi-ideal of S and B is an intuitionistic fuzzy left ideal) $\leq \max\{v_C(a), v_A(a), v_B(a)\} = (v_C \cup v_A \cup v_B)(a).$

Hence $V_C \cup V_A \cup V_B \supseteq V_C \circ V_A \circ V_B$. Hence $C \cap A \cap B \subseteq C \circ A \circ B$.

Similarly we can prove that (1) implies (5).

 $(4) \Rightarrow (1)$: Let (4) hold. Let $B = (\mu_B, \nu_B)$ and $C = (\mu_C, \nu_C)$ be any intuitionistic fuzzy left ideal and intuitionistic fuzzy right ideal of S. Since $S = (\chi_S, \chi_S^c)$ itself is an intuitionistic fuzzy bi-ideal of S, by (4), we have $C \cap B = C \cap S \cap B \subseteq C \circ S \circ B \subseteq C \circ B$. Also $C \circ B \subseteq C \cap B$. Therefore $C \circ B = C \cap S$. Hence by Theorem 3.20 [8], S is regular.

 $(5) \Rightarrow (1)$: Suppose (5) holds. Let *T* be a generalized bi-ideal of *S*, *L* be a left ideal of *S*, *R* be a right ideal of *S* and $a \in R \cap T \cap L$. Then $a \in R$, $a \in A$ and $a \in L$. Since *T* is a generalized bi-ideal of *S*, so by Theorem 3.3, (χ_T, χ_T^c) is an intuitionistic fuzzy generalized bi-ideal of *S*, by Theorem 3.13 [8], (χ_L, χ_L^c) is an intuitionistic fuzzy left ideal of *S* and (χ_R, χ_R^c) is an intuitionistic fuzzy right ideal of *S*.

S. Hence by(5), $\chi_R \cap \chi_A \cap \chi_L \subseteq \chi_R \circ \chi_A \circ \chi_L$ and $\chi_R^c \cup \chi_A^c \cup \chi_L^c \supseteq \chi_R^c \circ \chi_A^c \circ \chi_L^c$ Then $(\chi_R \circ \chi_T \circ \chi_L)(a) \ge (\chi_R \cap \chi_T \cap \chi_L)(a) = \min\{\chi_R(a), \chi_T(a), \chi_L(a)\} = 1.$ and $(\chi_R^c \circ \chi_T^c \circ \chi_L^c)(a) \le (\chi_R^c \cup \chi_T^c \cup \chi_L^c)(a) = \max\{\chi_R^c(a), \chi_T^c(a), \chi_L^c(a)\} = 0.$ Hence $\chi_{(R \circ T) \circ L}(a) = 1$ and $\chi_{(R \circ T) \circ L}^c(a) = 0.$

Hence in view of Definition 3.5, there exist $b, c \in S$ and $\delta \in \Gamma$ such that $a = b\,\delta c$ and $(\chi_R \circ \chi_T)(b) = \chi_L(c) = 1$ and $(\chi_R^c \circ \chi_T^c)(b) = \chi_L^c(c) = 0$. Hence by applying similar argument as above we see that there exist $d, e \in S$ and $\theta \in \Gamma$ such that $b = d\theta e$ and $\chi_R(d) = \chi_T(e) = 1$ and $\chi_R^c(d) = \chi_T^c(e) = 0$. Thus $c \in L$, $d \in R$ and $e \in T$, with $a = b\,\delta c = d\theta e\,\delta c \in R\Gamma T\Gamma L$. Hence $R \cap T \cap L \subseteq R\Gamma T\Gamma L$. Consequently, by Theorem 5 [7], S is regular.

REFERENCES

- 1. K.Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20 (1986) 87-96.
- 2. K.Atanassov, New operations defined over the intuitionistic fuzzy sets, *Fuzzy Sets* and Systems, 61 (1994) 137-142.
- 3. N.Kuroki, On fuzzy ideals and fuzzy bi-ideals in semigroups, *Fuzzy Sets and Systems*, 5(1981) 203-215.
- 4. N.Kuroki, On fuzzy semigroups, Information Sciences, 53(1991) 203-236.
- 5. N.Kuroki, Fuzzy semiprime quasi ideals in semigroups. *Inform. Sci.*, 75(3) (1993) 201-211.
- 6. N.Kuroki, Fuzzy generalized bi-ideals in semigroups. *Inform. Sci.*, 66(1992) 235-243.
- 7. S.K.Majumder and M.Mandal, Fuzzy generalized bi-ideals of Γ -Semigroups, *Fuzzy Information and Engineering*, 4(2012) 389-399.
- S.K.Sardar, S.K.Majumder and M.Mandal, Atanassov's intuitionistic fuzzy ideals of Γ-semigroups, *Int. J. of Algebra.*, 5(7) (2011) 335-353.
- S.K.Sardar, S.K.Majumder and M.Mandal, Study of Γ-semigroups via its operator semigroups in terms of Atanassov's intuitionistic fuzzy ideals, *Int. J. of Algebra*, 5(8) (2011) 355-368.
- 10. M.K.Sen and N.K.Saha, On Γ -semigroups I., Bull. of Cal. Math. Soc., 78(1986) 180-186.
- 11. M.Uckun, M.A.Öztürk and Y.B.Jun, Intuitionistic fuzzy sets in Γ -semigroups, *Bull. Korean Math. Soc.*, 44 (2) (2007) 359-367.
- 12. L.A. Zadeh, Fuzzy Sets, Information and Control, 8(1965) 338-353.