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Abstract. In this paper we have discussed a flexible job-shop scheduling problem by 
considering the cases as the assignment of each operation to a machine, and the other is 
the scheduling of this set of operations in order to minimize our criterion (e.g. the make 
span and completion time of each job). After applying the operators like crossover and 
mutation criterion where minimized. Here, we propose effective genetic encodings, such 
as job and machine representations as matrices of the chromosome, and Genetic operators 
where associated with these representations.  
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1. Introduction 
Job shop scheduling problems (JSS) are computationally complex problems. Because JSS 
are NP-hard i.e., they can’t be solved within polynomial time force or undirected search 
methods are not typically feasible, at least for problems of any size. Thus JSS tend to be 
solved using a combination of search and heuristics to get optimal or near optimal 
solutions. The term ‘Scheduling’ in manufacturing systems is used to the determination 
of the sequence in which parts are to be processed over the production stages, followed 
by the determination of the start-time and finish-time of processing of parts, so as to meet 
an objective or a set of objectives. 

Scheduling plays a crucial role to increase the efficiency and productivity of the 
manufacturing system. The scheduling can be classified into (i) Single machine 
scheduling (ii) Flow shop scheduling (iii) Job shop scheduling. Optimisation methods 
attempt to find the optimal solution through mathematical programming techniques or 
methods [5-7]. However, mathematical programming methods are time-consuming, and 
thus, many researchers focus on developing heuristic algorithms [11-15], algorithms in 
common use include shifting bottleneck (SB) [15], Tabu search (TS) [10], simulated 
annealing (SA) [9], the genetic algorithm (GA) [8] , artificial immune system (AIS) [16], 
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and modified Particle swarm optimization (PSO)[17]. In [19] proposed a local search 
genetic algorithm that uses an efficient solution representation strategy in which both 
checking of the constraints and repair mechanism can be avoided. 
 
2. Structure of the scheduling problem  
Consider a set of ‘n’ jobs {Ji}, 1≤i≤n; these jobs are independent of one another. Each job 
‘Ji’ has an operating sequence, called Pi. Each operating sequence Pi is an ordered series 
of Xi operations, Oij indicating the position of the operation in the technological sequence 
of the job.  The realization of each operation Oij requires a resource or a machine selected 
from a set of machines,{Mk},1≤k≤m; ‘m’ is the total number of machines existing in the 
shop, this implying the existence of an assignment problem. There is a pre-defined set of 
processing times; for a given machine, and a given operation, the processing time is 
denoted by Ti,j,M . An operation which has started runs to completion (non-preemption 
condition). Each machine can perform operations one after another (resource constraints). 
The time required to complete the whole job constitutes the make span Cmax. The time 
required to complete each jobs is as  CTi  our objective is to determine the set of 
completion times of all jobs to minimize Cmax  and also to minimize CTi . 

 
3. Representation of the solution 
The chromosome is represented by a set of jobs and each job is a matrix which contains 
its assignment operations. These operations are represented by three terms. The first 
column is the order number of the machine in its operating sequence. The second is the 
starting time of the operation if its assignment on this machine. The third is the 
completion time of the operation if its assignment on this machine. That is  
 

�� � � � ��� 	���
 ���
 	��
… … … �, where 
, � � 1, 2, … , � and � � 1, 2, … ,�. 
 
4. Numerical calculation 
Three jobs and five machines are considered. The operating sequences of these jobs are 
as follows in table 1. 
 

 

Table 1: The operating sequences  
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According to the machine used, the processing time of operations is described. One of the 
solution to the problem is as the matrix representation in fig. 1. Where Cmax = 11 
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Figure 1: Example 

5. Evolutionary representation  
5.1. Initial population 
The initial population is usually chosen at random. But in a combinatorial problem such 
as job shop scheduling, some constraints such as precedence and resources constraints 
must be satisfied. In this case, the binary representation is not convenient and 
chromosome syntax must be found to fit the problem. For these reasons, we have 
designed a matrix representation of the chromosome, and in order to create and to permit 
our set of solutions to evolve in a very large domain, we shall use a combination of some 
methods.  We use a combination of the following priority rules. SPT: a high priority for 
the operation that has the Shortest Processing Time. LPT: a high priority for the operation 
that has the Longest Processing Time. LM: a high priority for the operation that permits 
to balance the load of the machine. Accordingly two solutions of the example (table 1) 
are taken as parent fig. 2 with Cmax = 11 and fig.3 with  Cmax = 13. 
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Figur 2: Parent 1                                               Figure 3: Parent 2 

 
5.2. Crossover operator 
Crossover involves combining elements from two parent chromosomes into one or more 
child chromosomes The role of the crossover is to generate a better solution by 
exchanging information contained in the current good ones. Here we use the folling steps 
to get the offsprings 
 
STEP 1:For child 1 job 1 of parent 1 is placed and jobs 2and 3 of parent 2 is placed. 
STEP 2:For child 2 job 1 of parent 2 is placed and jobs 2and 3 of parent 1 is placed. 
             The offspring’s after crossover where represented as shown in the fig.3 and fig.4 
where child 1 having Cmax=11 and child 2 having Cmax=13. 
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   Figure 3: Child 1                                                   Figure 4: Child 2 

5.3. Mutation 
After crossover, each child produced by the crossover undergoes mutation with a low 
probability. Hear the mutation is down as follows 

1. Choose a job with largest completion time CTi. 
2. In that job Ji Replace the machine with largest operating time by least operating 

time.  
           The offspring’s after mutation where represented as shown in the fig.10 and fig.11 
where mutation child 1 having Cmax=8 and mutation child 2 having Cmax=5. 
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Figure 5: Mutation Child 1                                       Figure 6: Mutation Child 2 

After the variation operators like crossover and mutation we have got the solution with 
the makespan as 8 and 5 where the  completion time for each jobs CTi is also minimized. 
 
6. Conclusion 
Scheduling can be defined as a problem of finding an optimal sequence to execute a finite 
set of operations satisfying most of the constraints. The problem so formulated is 
extremely difficult to solve, as it comprises several concurrent goals and several 
resources which must be allocated to lead our goals, which are to maximize the 
utilization of individuals and/or machines and to minimize the time required to complete 
the entire process being scheduled. Here, we propose effective genetic encodings, such as 
job and machine representations as matrices of the chromosome, and Genetic operators 
where associated with these representations. 
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