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Abstract. In this article, we introduce some connectivityeepts in bipolar fuzzy graphs.
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1. Introduction

The introduction of fuzzy sets by Zadeh [25] in 29hanged the face of science and
technology to a great extent. Fuzzy sets pavedavthefor a new philosophical thinking
of ‘Fuzzy Logic’ which now, is an essential concepartificial intelligence. This logic is
also used in the production of a large number eftebnic and other household items
with ‘partial’ thinking ability. Fuzzy logic and ththeory of fuzzy sets have been applied
widely in areas like information theory, pattercagnition, clustering, expert systems,
database theory, control theory, robotics, netwankd nanotechnology [13, 22]. As a
consequence, Rosenfeld [15], Yeh and Bang [24ddhiced fuzzy graphs independently
in 1975 and Akram [1] introduced bipolar fuzzy gnapn 2010.

Rosenfeld [15] considered fuzzy relations on fuzsts and developed the
structure of fuzzy graphs, obtaining the analogefeseveral graph-theoretical concepts
while, Yeh and Bang [24] introduced various conedoess concepts of graphs and
digraphs into fuzzy graphs. Several authors fousebdr results and fuzzy analogues of
many other graph-theoretical concepts. Bhattachamyd Suraweera [5, 6] studied
connectivity algorithms in fuzzy graphs. Zadeh §8,analyzed more fuzzy relations.
Bhutani and Rosenfeld [7, 8] introduced strong diuzzy end nodes and automorphisms
in fuzzy graphs. Mordeson and Nair [12, 13] disedssiany connectivity concepts while
Sunitha and Vijayakumar [19, 20] studied fuzzy sremmplement of a fuzzy graph and
blocks in fuzzy graphs. Mathew and Sunitha [10, dtiidied different types of arcs in
fuzzy graphs and connectivity in fuzzy graphs. Thportant definitions and results in
fuzzy graph theory are listed in [21]. Akram ef{hl 2] introduced many concepts like
bipolar fuzzy graph, interval-valued fuzzy graphstuitionistic fuzzy graphs, etc.
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Analogous to fuzzy hypergraph, the concept of Epfiizzy hypergraph was introduced
in [16]. Further studies in bipolar fuzzy graphs ¢e& seen in [14, 18].

Fuzzy graphs found an increasing number of apjicatin modeling real time
systems where the information inherent in the systaries with different levels of
precision. Fuzzy models are becoming useful becalifeeir capability of reducing the
difference between the traditional numerical modssisd in engineering and science and
symbolic models used in expert systems.

In this article, we discuss connectivity in bipofazzy graphs. Bipolar fuzzy
graphs can be used to model many problems in edoapmperations research, etc.
involving two similar, but opposite type of quatitee variables like success and failure,
gain and loss, etc. Hence, the study of connegtiwit this structure is of utmost
importance. We discuss concepts like gain anddbsspair of vertices, maximum gain
and minimum loss paths, bipolar cutvertices, bipbtédges, etc.

2. Preliminaries

This section contains a quick review of the basfinitions and results in graph theory
and fuzzy graph theory which is required for thiscée. First, we recollect some basic
ideas from undirected graphs [9].

Recall that, a graph is an ordered pgai= (V,E), whereV is the set of vertices
of G andE is the set of edges &f. A subgraph of a grapi = (V,E)is a graphH =
(W,F), whereW < V andF < E. A simple graph is an undirected graph that has no
loops (edges starting and ending at the same Yexteknot more than one edge between
any two different vertices. A simple graph withiagie vertex is called trivial graph and
one with no edges is called an empty graph.

Two verticesx andy in an undirected grap@i are said to be adjacent ¢hif
(x,y) is an edge of;. An edge may be also representedcgsor yx. The set of all
vertices adjacent to a vertexin G is called the neighbour set of denoted by (x). A
vg—1Vv, Ppath P in G is an alternating sequence of vertices and edges
Vg, €1, V1, €2, , €, Uy, SUCh that;v;,; is an edge fof = 0,1,2,---,n — 1. The number
of edges irP is called the length @f andP is called a closed path or a cyclevjf = v,.

A graph¢ is called connected if there is a path joining tmg vertices inG. A graphG
is called a tree if it is connected and acyclice tumber of connected componentsin
is denoted by (G). A vertexv of G is said to be a cutvertex 6fif w(G —v) > w(G).
Similarly, an edges of G is called a cutedge tb(G —e) > w(G). G is said to be a
complete graph if all the vertices hare pairwise adjacent.

Definition 2.1. [25, 26] A fuzzy subsetton a setXis a mapu: X — [0,1]. A map
v:X X X — [0,1]is called a fuzzy relation op if v(x,y) < min {u(x),u(y)} for all
x,y € X. A fuzzy relationvis reflexive if v(x,x) = u(x) for all x € X. v is called
symmetric ifv(x,y) = v(y,x) for all x,y € X. Rosenfeld [15] defined a fuzzy graph as
follows.

Definition 2.2. [13] A fuzzy graph (f-graph) is a pait: (o, 1) whereo is a fuzzy subset

on a seV andyu is a fuzzy relation om. It is assumed th# is finite and nonempty is
reflexive and symmetric. Thus, @&: (o,u) is a fuzzy graph, thea:V — [0,1] and
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wV xV —=1[01] is such thatu(u,v) < o(u) A a(v) for all u,v € V whereA
denotes the minimum.

We denote the underlying graph of a fuzzy gré&pto, 1) by ¢*: (¢, u*) where
o* ={u€eV:om > 0}andy" = {(w,v) € V X V: u(y,v) > 0}. In examples,
if o is not specified, it is chosen suitably. Algo(a,u) is called a trivial fuzzy graph if
G*: (0", u") is trivial. That isg*is a singleton set.

Definition 2.3. [1] Let X be a nonempty set. A bipolar fuzzy $&in X is an object
having the formB = {(x, uf (x), u" (x)): x € X} or {(x, u* (x),u"(x)): x € X} where
ut:X - [01] andu™: X - [—1,0] are mappingsu*(x) is said to be satisfaction
degree ofc andu™(x), nonsatisfaction degree.

Definition 2.4. A bipolar fuzzy seB = (ugt,ug”)onX x X is called a bipolar fuzzy
relation onX. B is symmetric ifug* (x,y) = ugt(y,x) andug=(x,y) = ug~ (y,x) for
allx,y € X.

Definition 2.5. A bipolar fuzzy graph is defined to be a péir= (4,B) whered =
(ua™,147) is a bipolar fuzzy set in a nonempty and finitels@ndB = (ug*,ug™) is
a bipolar fuzzy set onV, satisfying ug™({x,y}) < min {u,"(x),ua*(y)} and
ug~({x,¥y}) = max {us~(x),us"(y)}for all {x,y} €V,. V, refers to the set of all
2 —element subsets &f.

This definition is a slightly modified form of thBefinition 3.1 in [23]. In
Definition 3.1, “bipolar fuzzy graph of a gragh= (V,E)" is defined. Since bipolar
fuzzy graph is a generalization of graph, a definitindependent of graphs is more
appropriate. Also, in Definition 3.1, the membepshof elements iff, — E are defined
in two different ways.

V may be called the underlying set®f (4, B). A is said to be a bipolar fuzzy
vertex set ofG and B, bipolar fuzzy edge set af. Let us denotgx,y} byxy. V is
assumed to be the underlying set of all bipolazyugraphs in this paper.

Definition 2.6. [17] The underlying crisp graph of a bipolar fuzpaphG = (4, B), is
the graphG = (V',E") whereV' ={v € V:u,* (v) >00r pu,~(v) <0} and E’' =

{0, ¥} ™ (¥ > 0 0r pg~({x,¥}) < 0.

V' is called the vertex set aiid is called the edge set. A bipolar fuzzy graph teelso
denoted as§ = (V',E").

Definition 2.7. [17] A bipolar fuzzy graphG = (4, B) is connected if the underlying
crisp graphz = (V',E") is connected.

Definition 2.8. A partial bipolar fuzzy subgraph of a bipolar fummaphG = (4,B) is a
bipolar fuzzy graphH = (4',B") such thatu,* (v;) < pu,* (v;) and py™ (v) =
pa~ (vy) for all v; €V and g * (v;v;) < pup™(viv;) andug ~(v;v;) = ug~(v;v;) for
everyvi,vj ev.

Definition 2.9. A bipolar fuzzy subgraph of a bipolar fuzzy graplk= (4, B) is a bipolar
fuzzy graphH = (A, B") such thap,/* (v;) = pa* (v;) andp, = (v;) = ua~(v;) for all
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v; in the vertex set aff andug *(v;v;) = u* (viv;) andug ~(viv;) = up™ (viv))for
everyv;v; in the edge set d@f.

Example 2.1. G, in Figure 2.1 is a bipolar fuzzy grapH, in Figure 2.2 is a partial
bipolar fuzzy subgraph ari, in Figure 2.3 is a bipolar fuzzy subgraphzof

a(0.3,-0.5)

(0.2,-0.4) (0.3,-0.3)

b (0.7, -0.5) (0.4, -0.3) c(0.5,-0.5)

Figure 2.1. G4, A bipolar fuzzy graph

a(0.2,-0.3)

(0.1, -0.1) (0.2,-0.2)

b (0.7, -0.5) c(0.3,-0.5)

Figure 2.2. H,, a partial bipolar fuzzy subgraph of G;
a(0.3,-0.5)

(0.2,-0.4)

b (0.7, -0.5)

Figure 2.3. H,, a bipolar fuzzy subgraph of G;

Notation: We use the following notations to denote the ik in the Definition 2.5.
Hzij+ = H2+(Vivj) < min {#1i+:ﬂlj+}
Haij~ = p” (vivj) =max {uy; 1y}
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Definition 2.10. [1] A bipolar fuzzy graph G is said to be strong pf;;* =
min {uy; ¥, 1yt } andp,;; - = max {uy;~, puy; 7} for every edgerv; € E'.

Definition 2.11. [3] A bipolar fuzzy graph G is said to be compléfeu,;;* =
min {y1i+,ulj+}andu2”_ = max {,ull-_,ylj_} for all v;, V) € V.

It is clear from the above definitions that a coatglbipolar fuzzy grapé is strong, but
the converse is not true.

Definition 2.12. [4] A path P in a bipolar fuzzy graph is a sequence of distinct vertices
vy, Vs, -+, Uy SUCh that either one of the following conditiossatisfied.
i. Mgt > 0anduy;~ = 0 for somei and;.
i.  pp;;T =0anduy;~ <0 for some andj.
According to the above definition of path, the bgsduzzy graph in Figure 2.4 is not
a path. So, we define—path.

(0.1,-0.2) (0.3,-0.4)
@ @ @
a(0.2,-0.3) b (0.3, -0.5) c(1,-1)

Figure 2.4. A bipolar fuzzy graph which isnot a path

Definition 2.13. A sequence of distinct vertices, v,, -+, v, is called a bipolar path or
b —path if atleast one @f;;1y* andp,;(;+1)~ is different from zero, for =

1,2,---,n — 1. Clearly, a bipolar fuzzy graph is connected g pair of vertices is
joined by ab —path.

Definition 2.14. A sequence of vertices, v,, -+, v, not necessarily distinct is called a
bipolar walk orb —walk if atleast one ofi,;;+1)" andpy;+1) is different from zero,
for i =1,2,---,n—1. As in graphs where every walk contains a patlkerey —walk
contains & —path. Hereafter, by a path we refer th apath and by a walk, we refer to
ab —walk.

The concept of loss and gain are very importamhamy problems in economics,
operations research and computer organization. Nd#t associate these concepts to a
bipolar fuzzy graph in the definitions to follow.

Definition 2.15. Let G = (V,E") be a bipolar fuzzy graph. Foria— v pathP : u =
Up, Ug, -, Uy = v IN G, we definemin {u, ™ (uuy), upt (upus), -, uot (up—1uy,)} as
the gain ofP, denoted by (P) andmax {|u, ™ (uruz)l, [pu2 ™ (uauz)l, -, [z~ (Up—1un) [}
as the loss aP, denoted by(P).

In Figure 2.4, gain of the pathabc = g(P) = min{0.1,0.3} = 0.1 and loss
of P = I(P) = max{0.2,0.4} = 04.
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Note that ife = uv is an edge, then its gain, denotedgfy) = u, ™ (uv) and loss oé,
denoted by (e) = |u,” (uv)|. In Figure 2.4g(ab) = 0.1, l(ab) = 0.2.

Definition 2.16. A path P is said to be a gain path #(P) > [(P) and a loss path,
otherwise.

Similarly, gain edges and loss edges can be defindgigure 2.4, patl®: abc is
a loss path becausg?) = 0.4 > 0.1 = g(P).

Definition 2.17. Letu, v be any two vertices in a connected bipolar fuzaph. Among
all u — v paths inG, a path whose gain is more than or equal to thahy otheru — v
path inG, is said to be a maximum — v gain path (maxu — v) g — path, in short).
Similarly au — v path whose loss is less than or equal to thahpfagheru — v path in
G is said to be a minimum — v loss path (minfu — v) [ — path, in short). That is, a
path P is a max ¢ —v) g — path if g(P) = g(P) and is a min(u — v) [ — path if
I(P) <1(P'), whereP'is anyu — v path inG.

Note that, a maxu(— v) g — path need not be a gain path and a fuir- v) [ —
path need not be a loss path.

BPFG is used as an abbreviation for a bipolar fuzzylyia examples.
Example 2.2. Consider the following example ofBPFG with four vertices.

a(0.2,-0.3) (0.1,-0.1) b (0.3, -0.6)
®

(0.3, -0.5)

(0.1, -0.1) (0.3,-0.5)

@
d(0.5,-0.5) (0.4,-0.3) ¢ (0.4,-0.7)

Figure 2.5. Gain pathsand loss paths

Vertices | Max-gair | Max g-patt | Min-loss | Min |-patt
ab 0.1 Any patt 0.1 ak
a-c 0.1 Any patt 0.2 adc
a-d 0.1 Any patt 0.1 ac
b-c 0.2 bc,bd 0.z badc(
b-d 0.2 bd, bc 0.1 bac
c-d 0.4 cd 0.3 cd

Note that,P; = abc is a loss patha(— c loss path) becausgP) = 0.5 > 0.1 =
g(P) and edged is ac — d gain path sincg(cd) = 0.4 > 0.3 = [(cd).
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Definition 2.18. A u—v path P in a bipolar fuzzy graph is said to be balanced if
g (P) = I(P). Also, P is said to be optimal iP is a max ¢ —v) g — path and min
(u —v) I — path.

In the Example 2.2 (Figure 2.5), edge is an optimalc — d path.adc is an
optimal a — ¢ path. Also, there are many balanced path§.ifFor examplepad is a
balanced — d path.

Definition 2.19. Let G = (V,E") be a bipolar fuzzy graph and kgtv € V'. The gain of
u andv, denoted by: (u, v) is defined as the gain ofreax (u — v) g — path and loss of
u andv, denoted a&(u, v) is the loss of a mifu — v) | — path. IfH is a bipolar fuzzy
subgraph ofG, then the gain ofi andv in H is the gain of a maxu(— v) g — path
strictly belonging toH and is denoted by (u, v). Loss ofu andv in H is similarly
defined. If there exists no mau & v) g — path (or min(u — v) | — path) completely in
H, we defineGy (u,v) = 0 (or Ly (u,v) = 0).

Next, we have a trivial proposition.

Proposition 2.1. If H be a subgraph of a bipolar fuzzy graplfV, E), then Gy (u,v) <
G(u,v) andLy (u,v) < L(u,v) for all pairs of vertices andv.

Next, we introduce an important concept called @sn-Loss Matrix ¢LM) in bipolar
fuzzy graphs.

Definition 2.20. Let G = (V,E) be a bipolar fuzzy graph witm vertices,
{ai,az,+, an}. The Gain-Loss MatrixdLM) of G is defined a$1 = [(G;j, L;;)] where
Gij = G(a;ay) andL;; = L(a;,a))) fori#jand(u,*(a;), |luy~(a)l), if i = j.
Consider the following example.

Example 2.3. GLM of theBPFG in Example 2.1 (Figure 2.1) is given below.
(0.3,0.5) (0.3,0.3) (0.3,0.3)
GLM(G,) = ((0.3,0.3) (0.7,0.5) (0.4,0.3)
(0.3,0.3) (0.4,0.3) (0.5,0.5)
Clearly,GLM of aBPFG is a symmetric matrix.

Theorem 2.1. In a complete bipolar fuzzy gragiBPFG), G = (V,E"), G(u,v) =
Ut (u,v) forallu,v e V.
Proof: Consider &BPFG,G = (V',E") with verticesv,, vy, -+, v,. By definition, for all
v;,v; €V, we have,

1o (viv;)= min{uy * (), uy T (v))}
Letu,v eV andletP:u = uy,u,, -+, u, = vbeau—vpathing.

Then,g(P) = min{u; " (uyuz), U2 " (Uauz), -+, Mo (Un—11n)}
< min{u, ™ (Uguy), U (Un-1Un)}
= min{ min{ (), i (), ), minfin* (1), @)}
< minf{uy * (uy), iy T (un)}
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= min{u; " (W), iy " (v)}

= upt(uv)
Thus,g(P) < u,™(uv) for anyu — v pathP. In particular, gain of edgev is u,* (uv)
and henceG (v, v) = pp* (uv).

Note:
In a complete bipolar fuzzy graph(u, v) need not be equal tqi,~ (u, v)| for all
u,v € V. For example i, L(b,c) = 0.3 and| u,~ (a,b)| = 0.4.

a(0.3,-0.3)

(0.3,-0.3) (0.3, -0.3)

b (0.7, -0.4) (0.5,-0.4) ¢ (0.5,-0.5)

Figure 2.6. G,, a complete bipolar fuzzy graph

3. Bipolar fuzzy cutvertices and bridges
In this section, we shall introduce and characgebipolar fuzzy cutvertices and bridges.
Three types of cutvertices are possible in a bidolzzy graph, which are given below.

Definition 3.1. Let G = (V,E’) be a bipolar fuzzy graph with bipolar functiops, and

Uy. A vertexu € V' is said to be a bipolar fuzzy cutvertex (bf-cutegr in short) if there
exist two vertices x,y €V ,x #y #u such that G;_,(x,y) < Gg(x,y) and

Le_u(x,¥) > Ls(x,y). A vertex in a bipolar fuzzy graph is called a geirtvertex if the
first condition is satisfied and a loss cutvertiethé second condition is satisfied.

Now, we characterize bipolar fuzzy cutverticesha following theorem.

Theorem 3.1. A vertex u in a bipolar fuzzy grapl¢ = (V,E’) is a bipolar fuzzy
cutvertex if and only it is a vertex in every maf — y) gain path and is in every min
(x — y) loss path for some andy in V.
Proof: Let G = (V/,E/) be a bipolar fuzzy graph with bipolar functions, and u,.
Suppose that is a bipolar fuzzy cutvertex. By definition, thezgist verticesc andy in
G such thatk # y # u and

1. Ge-u(x,y) < Gg(x,y)

2. Ley(x,y) > Lg(x,y)
(1) implies that the removal af from ¢ removes all maXx —y) gain paths and2)
implies that the removal of removes all mir{x — y) loss paths. Thus; is in every max
(x —y) gain path and in every m{x — y) loss path.
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Conversely, suppose thatis in every maxx — y) gain path and in every mifx — y)
loss path. Then, the removal wffrom G results in the removal of all max — y) gain
paths and min(x — y) loss paths. Hence, the gain will decrease andJdésncrease
betweenx andy. So,G;_,(x,y) < Gg(x,y) andLgs_,(x,y) > Ls(x,y). That is,u is a
bipolar fuzzy cutvertex.

Now, we state a characterization theorem for datlvertypes of cutvertices.

Theorem 3.2. Let G = (V/,E') be a bipolar fuzzy graph. A vertexis a gain cutvertex
(g-cutvertex) if and only ifx is in every maxx — y) gain path for some verticasandy
such thatc # y # u and is a loss cutvertex-¢utvertex) if and only i is in every min
(s — t) loss path for some verticesandt such thak # t # u.

Definition 3.2. Let G = (V,E’) be a bipolar fuzzy graph with bipolar functiops, and

U,. Lete = xy be an edge ifi. e is said to be a bipolar fuzzy bridge (bf-bridgeshort)

if Go_o(x,y) <Gg(x,y) andLs_.(x',y") > Lg(x,y") for somex’,y € V' If atleast
one ofx  ory'is different fromx andy, e is said to be a bipolar fuzzy bond and a bipolar
fuzzy cutbond if bothx" andy’ are different fromx andy.

Also, we can define gain bridges and loss bridge#as to their counterparts in vertices.
Similar to bipolar fuzzy cutvertices, we have areleterization for bipolar fuzzy bridges,
which is stated below without proof.

Theorem 3.3. An edgee € E of a bipolar fuzzy grapls = (V',E’) is a bf-bridge if and
only if it is in every maxu — v) gain path and in every miu — v) loss path for some
verticesu andv in V'

Next, we have an easy theorem to verify whetheamicular edge is a bf-
bridge or not.

Theorem 3.4. An edgexy is a bf-bridge if and only iGg_y, (x,y) < ux* (xy) and
LG—xy(x:y) > |H2_(xy)|-
Proof: SupposeG = (V',E")is a bipolar fuzzy graph andy, an edge inG such that
Goxy (0, Y) < p2 " (xy) and Lg_r, (x,¥) > [p2~(xy)|. Sincep,™(x,y) < G(x,y)and
|2~ (e, )| = L(x,y) we have

Go—xy(x,y) < Gg(x,y)

Lo—xy(x,y) > Ls(x,y)
It follows, xy is a bipolar fuzzy bridge.
Assume,xy is a bipolar fuzzy bridge. By Theorem 3.3, thexests a pair of vertices
andt in V' such thatcy is present on every mas —t) g — path and every mifs —
t) | — path.

SUpPOSEi;_yy (x,¥) = pp* (xy). Then,Gs_yy, (x,y) = Gg(x,y). It follows, there
is a max(x —y) g —path inG (say, P) which is different fromxy. Let Q be a max
(s —t) g — path inG. Replacexy in Q by P to obtain ars — t walk. This walk contains
an s —t path. The gain of this path is greater than orakdo G (s,t) which is not
possible. Therefores;_, (x,y) < pp* (xy).
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Assume,Lg_xy (x,y) < |2~ (xy)|. Then,Lg_xy,(x,¥) = Lg(x,y). It implies, there is a
min (x —y) [ — path inG (say,P’) which is different fromxy. Let Q' be a min(s —
t) | — path. Replacey in Q' by P’ to obtain as — t walk. This walk contains asn— t
path. The loss of this path is less than or equB} €x, y) which is not possible.
Therefore Lg_, (x,y) > [uz~ (xy)|.

Theorem 3.5. An edgee = xy of a bipolar fuzzy grapti = (V',E’), which is a cycle is
a bf-bridge if and only if there exists edggs s't' € E' such thafu,*(st) < p, ™ (xy)
and|u,~(s't)| > luz~Gey)l. ,
Proof: Let xy be a bipolar fuzzy bridge. By definition, ther@ststwo distinct vertices
andy'such thatcy lies on every mafx —y") g — path and on every migx' —y) [ —
path. Since; is a cycle, exactly one of the two— y' paths (sayP) in G containsxy
and is both the magx' —y") g — path and min(x' — y") [ —path. Let the othex' — y'
path beQ. Then,

9(Q) < g(P) < p " (xy)

1Q) > 1(P) = |uz™ (xy)l
If g(Q) = pp*(st) andl(Q)=|u,~(s't)|, then

2 * (st) < pp*(xy)
luz=(s't)| > |lua™ (xy)
Assume thatyy is not a bipolar fuzzy bridge. Then, atleast ohthe below conditions
holds according to Theorem 3.4.
1. GG—xy(x'Y) 2 /12+(xy)
2. LG—xy(xr)/) =< |/12_(xy)|

If (1) is true, the patt? in G from x toy other than edgey, has gain greater than or
equal tou, * (xy). It follows that for every edge € E',u,* (e) = u, ™ (xy). If (2) is true,
the pathP in G from x toy other than edgey has loss less than or equalgg™ (xy)|. It
implies that for every edge€ E', |u,~(e)| < |uy~(xy)|.

4. Concluding remarks

The concept of a bipolar fuzzy graph introducedAkyam can be used as a good model
in many problems of real life where we deal witlotessential but opposite attributes of
a system. In this paper, the authors extendedahie lbonnectivity concepts like strength
of connectedness into bipolar fuzzy graphs and iatsoduced bipolar fuzzy cutvertices
and bipolar fuzzy bridges in bipolar fuzzy graphkre connectivity problems will be
discussed in the forthcoming papers.
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