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Abstract. Numerical study of a mixed convective heat trangfansitory flow of a
viscous incompressible fluid along a continuouslgving semi-infinite vertical cooled
plate is completed here. It is also assumed tlegpldte is embedded in a porous medium.
This investigation is performed for cooling problemith the both air and water. A
mathematical model related to the problem is dgagldrom the basis of studying Fluid
Dynamics(FD). To solve the problem, an explicitqgedure of finite difference method
with stability and convergence criterion has beseduin this work. Both the local and
average shear stress with Nusselt number is alppuied here. The obtained numerical
values of velocity, temperature, shear stress argb®lt number are plotted in graphs for
different values of associated parameters as wetha physical aspects of the problem
are discussed in details. Finally, some importemalifigs are concluded here.
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1. Introduction

The heat transfer flow of an electrically condugtiriscous fluid is considered to be of
significant importance due to its application in mpaengineering problems such as
nuclear reactors and those dealing with liquid tsetdihe convective heat transfer
problems play a decisive role in geothermal enaepovery, oil extraction, thermal
energy storage and flow through filtering devic&$nston [1] studied a natural
convective heat transfer flow of fluid. A similaolation for laminar free convection
from a non-isothermal vertical plate was computg®parrow and Gregg [2]. A general
series solution of free convective heat transfewffrom a non-isothermal vertical flat
plate has been obtained by Kuiken [3]. Quit regerlnumerical study is performed for
a free convective heat transfer flow of a viscduilfby Fadzilah et al. [4].

The flow through a porous medium is of specialriggéin many industrial applications.
Porous media are very widely used to insulate geldaody to maintain its temperature.
To make the heat insulation of the surface morectffe, it is necessary to study the free
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convection flow through a porous medium. Raptialef5] have observed the steady free
convective flow through a porous medium boundedbyinfinite surface by use of the

model of Yamamoto and Iwamura [6] for the flow néae surface. Three dimensional
free convective heat transfer flow through a ponmeslium has been studied by Ahmed
and Sarma [7]. Chaudhury and Chand [8] further stigated the same problem.

Recently, the analytic solutions for unsteady fteavection in porous media have been
obtained by Magyari et al. [9].

All the above works are related to the stationagstical plate. However, the
flow past a continuously moving plate has many mgpions in manufacturing
processes such as hot rolling, metal and plasticusion, continuous casting, glass
fiber and paper production. Sakiadis [10] was thst fauthor to recognize this
backward boundary layer situation and used a siitylaransformation to obtain a
numerical solution for the flow field of a continusly moving plate. The steady heat
transfer flow past a continuous moving plate witttigble temperature was analyzed
by Soundalgekar and Ramana Murty [11]. A solutibmixed convective heat transfer
flow along a continuously moving heated verticatelwith suction or injection has been
computed by Sami anéll-Sanea [12].

The mixed convective fluid flows play an importardle in a number of
industrial applications such as fiber and granufeulation, geothermal systems etc.
Hence, our main aim is to investigate a mixed cotive heat transfer unsteady flow
along a continuously moving plate surrounded bprps medium.

2. Mathematical model of flow

A time dependent mixed convective heat transfew flaf an electrically conducting
viscous incompressible fluid past an electricalbnitonducting semi-infinite vertical
cooled plate embedded in a porous medium is comgldeere. The flow is also assumed
to be in thex-direction which is taken along the plate in thevapd direction andy -

axis is normal to it. Initially, we consider thaktplate as well as the fluid particles are at
rest at the same temperatire=T_, at all points, wherd be the fluid temperature of
uniform flow. It is assumed that the plate be &t adter that the plate is to be moving
with a constant velocityl , in its own plane.

Within the framework of the above stated assumgtithe equations relevant to
the present problem are governed by the followiygjesn of coupled non-linear partial
differential equations,

Continuity Equation ou +ﬂ =0

ox oy

2

Momentum Equation 6—u+u@+v@:g,[}(T—Ta)+U_u—l'u

ot  ox oy dy> K

. oT = 0T  oT _ « 8°T v (du

Energy Equation —+uU—+V—=— +—| =

ot ox dy pc, dy*> c,\dy
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The corresponding initial and boundary conditioresgiven below,

t=0, u=0 v=0 T=T, everywhere

t>0, u=0 v=0 T=T, atx=0
u=U, v=0 T=T, aty=0
u=0 v=0 T=T, asy - o

wherex andy be the Cartesian coordinates& v are velocity components$,denotes
time, g is the local acceleration due to gravify,is thermal expansion coefficient) is

kinematic viscosity,0 is density,K' is the permeability of the porous medium,is
thermal conductivity,c, is specific heat at constant pressure dpdbe the fluid
temperature near at plate.

3. Mathematical formulation
To find the solution of the problem, it is requiredtransfer the system of equations into
a non-dimensional system, so we take the follovdimgensionless quantities,

v v U, U, v T,-T.

w o0

where 7 represents the dimensionless timé,& Y be the dimensionless cartesian

coordinates,U and V be the dimensionless velocity components dndbe the
dimensionless temperature.

Using the above relations, we obtain the followimgn-dimensional coupled partial
differential equations,

2 —
x=Mo v Wo yo My ¥ oMo pgpo Tl

U v _
oxX oY

2,
6_U+U6_U+V6_U:Gr.r+6 Li _iu
or oX aY aY K

— — — o= 2
a_T+Ua_T+Va_T:ia_T+E a_U
or  aX aY Payz —clay

where G, :% (Grashof Number), P = U'icp (Prandtl Number)
0
UK . o uUg
K =——— (Permeability Number) and E, =————— (Eckert Number).
v c, (T, -T.)

Also the associated initial and boundary conditibasome

r =0, U =0, V =0, T=0 everywhere

r>0, U=0 V =0, T=0 at X =0
U=1 V =0, T =1 aty =0
U=0 V =0, T=0 asy — .
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4, Shear stressand nusselt number

Since the quantities of chief physical intereststrear stress and Nusselt number, hence
from the velocity field, we study the effects ofriems parameters on the local and
average shear stress. The following equations septehe local and average shear stress
at the plate.

and average shear stress= ,uJ. (O_Uj dX
Y=0

Local shear stresg, = ,u(a—uj
oY oY

Y=0

100

J-(G_Uj dX respectively.
Y Jy=o

0

which are proportional tc{a—uj and
Y Jy=o

And from the temperature field, we investigate éffects of various parameters on the
local and average heat transfer coefficients. Theviing equations represent the local
and average heat transfer rate that is well knowsshBIt number.

Local Nusselt numberN,, = 1/ 9T and
aY Y=0
aT
Average Nusselt numbeN , = ,uj -— | dX

_ 10 _
which are proportional t _O_T and —a—T dX respectively.
oY aY ),

Y=0 0

5. Numerical solution

The explicit finite difference method has been usedolve the governed second order
nonlinear coupled dimensionless partial differdnéiguations with the corresponding
initial and boundary conditions. To obtain a systefrfinite difference equations, the
flow region is divided into a grid or meshes ofelinparallel toX andY axes where-
axis is taken along the plate awehxis is normal to the plate. Here it is considetteat

X...(=100) i.e. X varies from 0 to 100 and regaMi_ (= 25) as corresponding to
Y - oo i.e.Y varies from 0 to 25. It is also considered that 100 and n =100 grid
spacing in theX andY directions respectively. We have the constant nsezh alongX
direction, AX =1.0( O X< 10() and the constant mesh size aloNgdirection,

AY =0.25 0<Y < 2§ with the smaller time-step7 = 001.

Let U', V' andT' denote the values df , V andT at the end of a time-step
respectivelyUsing the finite difference approximations, we abtdne following
appropriate set of finite difference equations,

Ui,j _Ui—l,j +Vi,j _Vi,j—l:O

AX AY
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Ui',j _Ui,j +U Ui,j _Ui—l,j +V Ui,j+1_Ui‘ GT
AT M AX RN
U|]+1 2Ui,j-i-ui,j—l 1U:
2 o
(AY) K
|' |]+Uij |]_Ti—lj +\/ijTi,j+1_Ti,j :iTi,j+1_2T|12+T|J 1
AT ’ AX ’ AY P (Ay)

2
+E Ui,j+1_Ui,j
¢ AY

and the initial and boundary conditions with thété difference scheme are,

U’ =0, Ve =0, TS=0
Ug; =0, Vy; =0, To =0
U' =1, Vi, =0, f%:l
U =0, Vi1 =0, fnL =0

Here the subscripts and j designate the grid points witk and y coordinates
respectively and the superscript represents a value of tima,=nAr where

n=012..... From the initial condition, the values df andT are known at = 0.
Then at the end of any time-sté&yT , the new temperaturé’, the new velocityJ'

andV' at all interior nodal points may be obtained bycassive applications of
energy and momentum equations respectiveiis process is repeated in time and
provided the time-step is sufficiently small, hedde, V and T should eventually
converge to values which approximate the steady}sﬂalution of the problem. The

|V|AT 2 Ar2 <1 and the
AY P (Ay)

stability condition of finite difference method lLS
convergence criteria of the problemRs= 0.32.

6. Results and discussion

To discuss the effects of the associated non-diimeals parameters on the flow
variables, the numerical solutions of the problema abtained by the explicit finite
difference method with the help of a computer paogning languag€ompaq Visual

Fortran. In order to analyze the physical situation of thedel, we have computed the

steady state numerical values of the non-dimenkioslacity U and temperaturd
within the boundary layer for different values ofaGhof numbeﬁGr), Permeability
number(K), Prandtl numbe('R) and Eckert numbe(lEc).It is observed that the

results of the computations, however, show littltearmges afterr =5. Thus the
solution for 7 =20 are essentially steady state solutions. Henceviiecity and
temperature profiles are drawn for=1, 5 & 20.
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The values of the Grashof number are taken to Isitipe (Gr >0) for the cooling
problem andG, =10.0,11.0 and120 are considered here. For the most important
fluids such as atmospheric air, salt water and wate the results are limited to
P = 071(Prandtl number for air 220 C), P. =1.0(Prandtl number for salt water at
20 C) and P =7.0(Prandtl number for water &0°C). Also the values of another
parameterK and E_ are chosen arbitrarily. The profiles of the tramsivelocity and

temperature versu¥ are illustrated in Figs. 6.1-6.8.

The effect of the Grashof number on the velodgydfis presented in Fig. 6.1.
It is observed that the velocity increases with tise of G, . The same effect on the
velocity curve is found in Fig. 6.2 that is the gty increases in case of strong
Permeability number. It is observed from Fig. @t velocity strongly decreases with
the increase of Prandtl number. An increasing eftéEckert number on the velocity

profiles are found from Fig. 6.4 at the steadyestat
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Fig. 6.1: Velocity profiles forK =3.0, Fig. 6.2: Velocity profiles forG, =10.0,
P =0.71and E, =0.001. P =0.71and E, =0.001.
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Fig. 6.3: Velocity profiles forG, =10.0, Fig. 6.4: Velocity profiles forG, =10.0,
K =3.0, and E; =0.001. K =3.0, andR, =0.71.
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Fig. 6.5 shows that the steady state temperatuiftuiof decreases in case of strong
Grashof number. In Fig.6.6, we see that the fliedchpgerature decreases for the
increasing values of permeability number. A strategreasing effect of the Prandtl
number on the temperature curves are observedFign6.7. The effect of the Eckert
number on the temperature profiles are displayedrign 6.8. It is shown that the

temperature increases with the risekgf.
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Fig. 6.5: Temperature profilesfé} =0.71

K =3.0 and E, =0.001.

Fig. 6.6: Temperature profiles f@, =10,

P =0.71and E, =0.001.
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Fig. 6.8: Temperature profiles f@, =10,
K=3.0andPR =0.71.

Fig. 6.7: Temperature profiles f@, =10,
K =3.0 and E, =0.001.

The profiles of steady state local and average rsk#ass for different values of
G,, K or B are shown in Fig. 6.9 & Fig. 6.10 respectivelyisltobserved from these
figures, both the local and average shear stressases with the rise of Grashof number
or Permeability number while decreases for the dase of Prandtl number. The
effects of the parameters on the steady state lmwcdl average Nusselt number are
displayed in Fig. 6.11 & Fig. 6.12. These figurbsw that, both the local and average
Nusselt number decreases with the increaseGobr E, but it increases for the

increasing values of Prandtl number.
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Fig.6.11: Steady-state local Nusselt numberFig. 6.12: Average Nusselt number for
for different values o6, , E, orP,. different values @&, , E; orPR,.

7. Conclusions

Some of the important findings obtained from thepdrical representation of the

results are listed below;
1. The transient velocity increases with the increabds, ,K or E_ while it

decreases with the increase[®f.
2. The transient temperature increases with the isered E. while it decreases

with the increase o6, ,K or P, .

3. Both the local and average shear stress incredbetiva rise ofG. orK while
it decreases with the increase ef.

4. Both the local and average Nusselt number decneibethe rise ofG, or E;
while it increases with the increase [f.
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These findings may be useful in many engineeringliegtions such as nuclear
reactors, geothermal energy recovery, oil extractithermal energy storage also in a
number of industrial applications as fiber and gfan insulation, metal and plastic
extrusion, continuous casting, glass fiber and papeduction.
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