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Abstract. Numerical study of a mixed convective heat transfer transitory flow of a 
viscous incompressible fluid along a continuously moving semi-infinite vertical cooled 
plate is completed here. It is also assumed that the plate is embedded in a porous medium. 
This investigation is performed for cooling problem with the both air and water. A 
mathematical model related to the problem is developed from the basis of studying Fluid 
Dynamics(FD). To solve the problem, an explicit procedure of finite difference method 
with stability and convergence criterion has been used in this work. Both the local and 
average shear stress with Nusselt number is also computed here. The obtained numerical 
values of velocity, temperature, shear stress and Nusselt number are plotted in graphs for 
different values of associated parameters as well as the physical aspects of the problem 
are discussed in details. Finally, some important findings are concluded here. 
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1. Introduction 
 

The heat transfer flow of an electrically conducting viscous fluid is considered to be of 
significant importance due to its application in many engineering problems such as 
nuclear reactors and those dealing with liquid metals. The convective heat transfer 
problems play a decisive role in geothermal energy recovery, oil extraction, thermal 
energy storage and flow through filtering devices. Finston [1] studied a natural 
convective heat transfer flow of fluid. A similar solution for laminar free convection 
from a non-isothermal vertical plate was computed by Sparrow and Gregg [2]. A general 
series solution of free convective heat transfer flow from a non-isothermal vertical flat 
plate has been obtained by Kuiken [3]. Quit recently, a numerical study is performed for 
a free convective heat transfer flow of a viscous fluid by Fadzilah et al. [4].   
The flow through a porous medium is of special interest in many industrial applications. 
Porous media are very widely used to insulate a heated body to maintain its temperature. 
To make the heat insulation of the surface more effective, it is necessary to study the free 
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convection flow through a porous medium. Raptis et al. [5] have observed the steady free 
convective flow through a porous medium bounded by an infinite surface by use of the 
model of Yamamoto and Iwamura [6] for the flow near the surface. Three dimensional 
free convective heat transfer flow through a porous medium has been studied by Ahmed 
and Sarma [7]. Chaudhury and Chand [8] further investigated the same problem. 
Recently, the analytic solutions for unsteady free convection in porous media have been 
obtained by Magyari et al. [9].  
 All the above works are related to the stationary vertical plate. However, the 
flow past a continuously moving plate has many applications in manufacturing 
processes such as hot rolling, metal and plastic extrusion, continuous casting, glass 
fiber and paper production. Sakiadis [10] was the first author to recognize this 
backward boundary layer situation and used a similarity transformation to obtain a 
numerical solution for the flow field of a continuously moving plate. The steady heat 
transfer flow past a continuous moving plate with variable temperature was analyzed 
by Soundalgekar and Ramana Murty [11]. A solution of mixed convective heat transfer 
flow along a continuously moving heated vertical plate with suction or injection has been 
computed by Sami and Al-Sanea [12].  

The mixed convective fluid flows play an important role in a number of 
industrial applications such as fiber and granular insulation, geothermal systems etc. 
Hence, our main aim is to investigate a mixed convective heat transfer unsteady flow 
along a continuously moving plate surrounded by a porous medium. 
 
2. Mathematical model of flow 
 

A time dependent mixed convective heat transfer flow of an electrically conducting 
viscous incompressible fluid past an electrically non-conducting semi-infinite vertical 
cooled plate embedded in a porous medium is considered here. The flow is also assumed 
to be in the x -direction which is taken along the plate in the upward direction and y -
axis is normal to it. Initially, we consider that the plate as well as the fluid particles are at 
rest at the same temperature ∞= TT  at all points, where ∞T  be the fluid temperature of 
uniform flow. It is assumed that the plate be at rest after that the plate is to be moving 
with a constant velocity 0U  in its own plane.  

 
 Within the framework of the above stated assumptions, the equations relevant to 
the present problem are governed by the following system of coupled non-linear partial 
differential equations,  
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The corresponding initial and boundary conditions are given below, 

∞==== TTvut 00,0 everywhere 

∞===> TTvut 00,0                at 0x =  

            0 0 wu U v T T= = =               at 0y =  

            0 0u v T T∞= = =               as y → ∞  
where x and y be the Cartesian coordinates, u & v are velocity components, t denotes 
time, g is the local acceleration due to gravity, β  is thermal expansion coefficient,  υ  is 

kinematic viscosity, ρ  is density, K ′  is the permeability of the porous medium, κ  is 

thermal conductivity, pc  is specific heat at constant pressure and wT  be the fluid 

temperature near at plate.  
 
3. Mathematical formulation 
To find the solution of the problem, it is required to transfer the system of equations into 
a non-dimensional system, so we take the following dimensionless quantities, 
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where τ  represents the dimensionless time, X & Y be the dimensionless cartesian 

coordinates, U and V be the dimensionless velocity components and T  be the 
dimensionless temperature.  
Using the above relations, we obtain the following non-dimensional coupled partial 
differential equations, 
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Also the associated initial and boundary conditions become      

0,0,0,0 ==== TVUτ              everywhere 

0,0,0,0 ===> TVUτ              at 0=X  

                        ,1,0,1 === TVU              at 0=Y  

                     0,0,0 === TVU              as ∞→Y . 
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4. Shear stress and nusselt number 
 

Since the quantities of chief physical interest are shear stress and Nusselt number, hence 
from the velocity field, we study the effects of various parameters on the local and 
average shear stress. The following equations represent the local and average shear stress 
at the plate. 

Local shear stress, 
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And from the temperature field, we investigate the effects of various parameters on the 
local and average heat transfer coefficients. The following equations represent the local 
and average heat transfer rate that is well known Nusselt number. 

Local Nusselt number, 
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5. Numerical solution 
 

The explicit finite difference method has been used to solve the governed second order 
nonlinear coupled dimensionless partial differential equations with the corresponding 
initial and boundary conditions. To obtain a system of finite difference equations, the 
flow region is divided into a grid or meshes of lines parallel to X  and Y  axes where X-
axis is taken along the plate and Y-axis is normal to the plate. Here it is considered that 

( )100max =X  i.e. X varies from 0 to 100 and regard ( )25max =Y  as corresponding to 

∞→Y  i.e. Y  varies from 0 to 25. It is also considered that 100=m  and 100=n  grid 
spacing in the X and Y directions respectively. We have the constant mesh size along X 

direction, ( )1.0 0 100X X∆ = ≤ ≤  and the constant mesh size along Y direction, 

( )0.25 0 25Y Y∆ = ≤ ≤  with the smaller time-step 01.0=∆τ . 
 

Let U ′ , V ′  and T ′  denote the values of U , V  and T  at the end of a time-step 
respectively. Using the finite difference approximations, we obtain the following 
appropriate set of finite difference equations, 
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and the initial and boundary conditions with the finite difference scheme are, 

             0 0 0
, , ,0, 0, 0i j i j i jU V T= = =  

             0, 0, 0,0, 0, 0n n n
j j jU V T= = =  

             ,0 ,0 ,01, 0, 1n n n
i i iU V T= = =  

             , , ,0, 0, 0n n n
i L i L i LU V T= = = . 

Here the subscripts i and j designate the grid points with x and y coordinates 
respectively and the superscript n represents a value of time, ττ ∆= n  where 

.....,2,1,0=n  From the initial condition, the values of  U  and T  are known at 0=τ . 

Then at the end of any time-step τ∆ , the new temperature T ′ , the new velocity U ′  
and V ′  at all interior nodal points may be obtained by successive applications of 
energy and momentum equations respectively. This process is repeated in time and 

provided the time-step is sufficiently small, hence U , V  and T  should eventually 
converge to values which approximate the steady-state solution of the problem. The 

stability condition of finite difference method is 
( )2

2
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r
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 and the 

convergence criteria of the problem is 0.32rP ≥ . 
 
6. Results and discussion 
 

To discuss the effects of the associated non-dimensional parameters on the flow 
variables, the numerical solutions of the problem are obtained by the explicit finite 
difference method with the help of a computer programming language Compaq Visual 
Fortran. In order to analyze the physical situation of the model, we have computed the 

steady state numerical values of the non-dimensional velocity U  and temperature T  
within the boundary layer for different values of Grashof number( )rG , Permeability 

number( )K , Prandtl number( )rP  and Eckert number( )cE .It is observed that the 

results of the computations, however, show little changes after 5=τ . Thus the 
solution for 20=τ  are essentially steady state solutions. Hence the velocity and 
temperature profiles are drawn for 20&5,1=τ .  
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The values of the Grashof number are taken to be positive ( )0>rG  for the cooling 

problem and 012and0.11,0.10 .Gr =  are considered here. For the most important 
fluids such as atmospheric air, salt water and water so the results are limited to 

71.0=rP (Prandtl number for air at 20�C), 1.0rP = (Prandtl number for salt water at 

20�C) and 7.0rP = (Prandtl number for water at C020 ). Also the values of another 

parameters K  and cE  are chosen arbitrarily. The profiles of the transient velocity and 

temperature versus Y  are illustrated in Figs. 6.1-6.8. 
 The effect of the Grashof number on the velocity field is presented in Fig. 6.1. 
It is observed that the velocity increases with the rise of rG . The same effect on the 
velocity curve is found in Fig. 6.2 that is the velocity increases in case of strong 
Permeability number. It is observed from Fig. 6.3, the velocity strongly decreases with 
the increase of Prandtl number. An increasing effect of Eckert number on the velocity 
profiles are found from Fig. 6.4 at the steady-state.  
 
 

   
     Fig. 6.1: Velocity profiles for 3.0,K =        Fig. 6.2: Velocity  profiles for 10.0,rG =  
                0.71rP =  and 0.001cE = .                              0.71rP =  and 0.001cE = . 
 

   
   Fig. 6.3: Velocity  profiles for 10.0,rG =     Fig. 6.4: Velocity  profiles for 10.0,rG =  

                  3.0,K =  and 0.001.cE =                                  3.0,K =  and 0.71rP = . 
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Fig. 6.5 shows that the steady state temperature of fluid decreases in case of strong 
Grashof number. In Fig.6.6, we see that the fluid temperature decreases for the 
increasing values of permeability number. A strong decreasing effect of the Prandtl 
number on the temperature curves are observed from Fig. 6.7. The effect of the Eckert 
number on the temperature profiles are displayed in Fig. 6.8. It is shown that the 
temperature increases with the rise of cE . 
 
 

   
Fig. 6.5: Temperature  profilesfor 0.71rP =     Fig. 6.6: Temperature  profiles for 10,rG =                                  
                3.0K =  and 0.001cE = .                                    0.71rP =  and 0.001cE = . 
 

   
 Fig. 6.7: Temperature  profiles for 10,rG =     Fig. 6.8: Temperature  profiles for 10,rG =                         
                  3.0K =  and 0.001cE = .                                  3.0K =  and 0.71rP = . 
 

The profiles of steady state local and average shear stress for different values of 
, orr rG K P  are shown in Fig. 6.9 & Fig. 6.10 respectively. It is observed from these 

figures, both the local and average shear stress increases with the rise of Grashof number 
or Permeability number while decreases for the increase of Prandtl number. The 
effects of the parameters on the steady state local and average Nusselt number are 
displayed in Fig. 6.11 & Fig. 6.12. These figures show that, both the local and average 
Nusselt number decreases with the increase of  orr cG E  but it increases for the 
increasing values of Prandtl number. 
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   Fig. 6.9: Steady-state local shear stress                Fig. 6.10: Average shear stress for 
         for different values of , orr rG K P .                     different values of , orr rG K P . 
 

   
Fig.6.11: Steady-state local Nusselt number      Fig. 6.12: Average Nusselt number for 
        for different values of , orr c rG E P .                   different values of , orr c rG E P .          
 
7. Conclusions 
 

Some of the important findings obtained from the graphical representation of the 
results are listed below; 

1. The transient velocity increases with the increase of KGr ,  or cE  while it 

decreases with the increase of rP .   

2. The transient temperature increases with the increase of cE  while it decreases 

with the increase of KGr ,  or rP . 

3. Both the local and average shear stress increase with the rise of orrG K  while 

it decreases with the increase of rP .  

4. Both the local and average Nusselt number decrease with the rise of orr cG E  

while it increases with the increase of rP . 



U. Sarder, M. M. Haque and T. Ferdous 

26 
 

These findings may be useful in many engineering applications such as nuclear 
reactors, geothermal energy recovery, oil extraction, thermal energy storage also in a 
number of industrial applications as fiber and granular insulation, metal and plastic 
extrusion, continuous casting, glass fiber and paper production. 
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