Annals of Pure and Applied Mathematics Vol. 7, No. 2, 2014, 27-34 ISSN: 2279-087X (P), 2279-0888(online) Published on 29 August 2014 www.researchmathsci.org

$\tau_1\tau_2$ - ${}^{\#}g$ Closed Sets in Bitopological Spaces

T.Indira

PG & Research Department of Mathematics, Seethalakshmi Ramaswamy College Tiruchirappalli – 620002, Tamilnadu Email: drtindira.chandru@gmail.com

Received 34 August 2014; accepted 22 August 2014

Abstract. This paper is to introduce a new class of sets called $\tau_1 \tau_2$ - [#]g-closed sets in topological spaces and to analyse the properties of this set.

Keywords: $\tau_1\tau_2$ - [#]g-closed sets, $\tau_1\tau_2$ - [#]g-open sets

AMS Mathematics Subject Classification (2010): 54E55

1. Introduction

Levine [11] introduced semi open sets in 1963 and also Levine [12] introduced generalized closed sets in 1970. AbdEl–Monsef et al. [1] introduced β -open sets. Veerakumar[15] introduced [#]g-closed sets in topological spaces. Kelley [7] initiated the study of bitopological spaces in 1963. A nonempty set X equipped with two topological spaces τ_1 and τ_2 is called a bitopological space and is denoted by (X, τ_1, τ_2) . Since then several topologists generalized many of the results in topological spaces. Fukutake [5] introduced generalized closed sets in bitopological spaces. Fukutake [6] introduced semi open sets in bitopologicalspaces.Rao and Mariasingam [3] defined and studied regular generalized closed sets in bitopological spaces. This paper is to introduce a new class of sets called $\tau_1 \tau_2 - {}^{\#}g$ -closed sets in bitopological spaces and to study about its properties.

2. Preliminaries

Definition 2.1. A subset A of a bitopological space (X, τ_1, τ_2) is called a

- 1. $\tau_1\tau_2$ -semi open if $A \subset \tau_2 cl(\tau_1 int(A))$ and it is called $\tau_1\tau_2$ -semi closed if $\tau_2 int(\tau_1 cl(A)) \subset A$
- 2. $\tau_1\tau_2$ -pre open if $A \subset \tau_2$ int $(\tau_1$ cl(A)) and $\tau_1\tau_2$ -pre closed if τ_2 cl $(\tau_1$ int $(A)) \subset A$.
- 3. $\tau_1 \tau_2$ - α -open if $A \subset \tau_1$ int(τ_2 cl(τ_1 int(A))).
- 4. $\tau_1 \tau_2$ -semi preopen if $A \subset \tau_1 cl(\tau_2 int(\tau_1 cl(A)))$.
- 5. $\tau_1\tau_2$ -regular open if $A = \tau_2$ int $(\tau_1$ cl(A)).
- 6. $\tau_1 \tau_2$ -regular closed if $A = \tau_2 cl(\tau_1 int(A))$.

Definition 2.2. A subset A of a bitopological space (X, τ_1, τ_2) is called a

- 1. $\tau_1\tau_2$ -g-closed set ($\tau_1\tau_2$ -generallized closed set) if τ_2 -cl(A) \subset U, whenever A \subset U, U is τ_1 -open.
- 2. $\tau_1\tau_2$ -sg-closed ($\tau_1\tau_2$ -semi generallized closed set) if τ_2 -scl(A) \subset U, whenever A \subset U, U is τ_1 -semi open.

- 3. $\tau_1\tau_2$ -gs-closed ($\tau_1\tau_2$ generallized semi closed set) if τ_2 -scl(A) \subset U, whenever A \subset U, U is τ_1 -open.
- 4. $\tau_1\tau_2$ - α g-closed ($\tau_1\tau_2$ - α generallized closed set) if τ_2 - α cl(A) \subset U, whenever A \subset U, U is τ_1 -open.
- 5. $\tau_1\tau_2$ -ga-closed ($\tau_1\tau_2$ generallized α -closed set) if τ_2 - α cl(A) \subset U, whenever A \subset U, U is τ_1 - α -open.
- 6. $\tau_1\tau_2$ -gp-closed ($\tau_1\tau_2$ generallized pre-closed set) if τ_2 -pcl(A) \subset U, whenever A \subset U, U is τ_1 -open.
- 7. $\tau_1\tau_2$ -gsp-closed ($\tau_1\tau_2$ generalized semi preclosed set) if τ_2 -spcl(A) \subset U, whenever A \subset U,U is τ_1 -open.
- 8. $\tau_1\tau_2$ -gpr-closed ($\tau_1\tau_2$ generallized pre regular closed set) if τ_2 -pcl(A) \subset U, whenever A \subset U, U is τ_1 -regular open.
- 9. $\tau_1\tau_2$ - μ -closed set if τ_2 -cl(A) \subset U, whenever A \subset U, U is τ_1 -ga*-open.
- 10. $\tau_1\tau_2$ - ψ -closed set if τ_2 -scl(A) \subset U, whenever A \subset U, U is τ_1 -sg-open.
- 11. $\tau_1\tau_2$ -pre semi closed set if τ_2 -spcl(A) \subset U, whenever A \subset U, U is τ_1 -g-open.
- 12. $\tau_1\tau_2$ -g*-closed set if τ_2 -cl(A) \subset U, whenever A \subset U, U is τ_1 -g-open.
- 13. $\tau_1\tau_2$ -g*-pre closed set if τ_2 -pcl(A) \subset U, whenever A \subset U, U is τ_1 -g-open.
- 14. $\tau_1\tau_2\text{-}g^{\text{-}}\text{closed}$ set if $\tau_2\text{-}\text{cl}(A)\subset U$, whenever $A\subset U,$ U is $\tau_1\text{-}\text{semi}$ open.
- 15. $\tau_1\tau_2$ -*g-closed if τ_2 -cl(A) \subset U, whenever A \subset U, U is τ_1 -g^-open.
- 16. $\tau_1\tau_2$ -*g-semi closed if τ_2 -scl(A) \subset U, whenever A \subset U, U is τ_1 -g^-open.
- 17. $\tau_1\tau_2$ - α^* g-closed if τ_2 - α cl(A) \subset U, whenever A \subset U, U is τ_1 -g^-open.
- 18. $\tau_1\tau_2$ - μ -semi closed ($\tau_1\tau_2$ - μ -closed) if τ_2 -scl(A) \subset U, whenever A \subset U, U is τ_1 -g α *-open.
- 19. $\tau_1\tau_2$ - μ -pre closed ($\tau_1\tau_2$ - μ p-closed) if τ_2 -pcl(A) \subset U, whenever A \subset U, U is τ_1 -g α^* -open.
- 20. $\tau_1\tau_2$ -semi μ closed if τ_2 -scl(A) \subset U, whenever A \subset U, U is τ_1 -ga^{**}-open.
- 21. $\tau_1\tau_2$ -[#]g-closed if τ_2 -cl(A) \subset U, whenever A \subset U, U is τ_1 -*g-open.

3. Basic properties of $\tau_1 \tau_2$ - [#]g-closed sets

Definition 3.1. A subset A of (X,τ_1,τ_2) is called a $\tau_1\tau_2$ - [#]g-closed if τ_2 - cl A \subset U, whenever A \subset U, U is τ_1 - ^{*}g-open in (X,τ_1) .

Definition 3.2. The complement of $\tau_1\tau_2$ - [#]g-closed set is called $\tau_1\tau_2$ - [#]g-open set.

Example 3.3. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\} \& \tau_2 = \{X, \phi, \{a\}, \{a, b\}\} \\ \tau_1 \tau_2 - {}^{\#}g\text{-closed sets} = \{X, \phi, \{c\}, \{b, c\}\}.$

Theorem 3.4. Every τ_2 -closed set is $\tau_1\tau_2 - {}^{\#}g$ -closed. **Proof:** Let A be τ_2 - closed.Then τ_2 - cl A = A $\Rightarrow \tau_2 - cl A \subset U$, whenever A $\subset U$, where U is τ_1 - ${}^{\#}g$ -open. \Rightarrow A is $\tau_1\tau_2 - {}^{\#}g$ -closed.

Theorem 3.5. Every $\tau_1\tau_2 - {}^{\#}g$ - closed set is $\tau_1\tau_2$ - g-closed. **Proof:** Let $A \subset U$, U is τ_1 - open. Then U is τ_1 -*g-open. $\Rightarrow \tau_2$ - cl $A \subset U$ (:: A is $\tau_1\tau_2 - {}^{\#}g$ -closed) $\Rightarrow A$ is $\tau_1\tau_2$ - g-closed. $\tau_1 \tau_2$ - [#]g Closed Sets in Bitopological Spaces

Theorem 3.6. Every $\tau_1\tau_2 - g^*$ -closed set is $\tau_1\tau_2 - {}^{\#}g$ -closed. **Proof:** Let $A \subset U$, U is $\tau_1 - {}^{*}g$ -open. Then U is $\tau_1 - g$ -open. $\Rightarrow \tau_2$ -cl $A \subset U$ (By the assumption) \therefore A is $\tau_1\tau_2 - {}^{\#}g$ -closed.

Theorem 3.7. Every $\tau_1\tau_2 - g^{\#}$ -closed is $\tau_1\tau_2 - {}^{\#}g$ -closed. **Proof:** Let $A \subset U$, U is $\tau_1 - {}^{*}g$ -open. U is $\tau_1 - {}^{*}g$ -open $\Rightarrow U$ is $\tau_1 - \alpha g$ -open. $\Rightarrow \tau_2$ -cl $A \subset U$ [by our assumption] $\therefore A$ is $\tau_1\tau_2 - {}^{\#}g$ -closed.

Theorem 3.8. Every $\tau_1\tau_2$ - [#]g-closed set is $\tau_1\tau_2$ - gs-closed. **Proof:** Let $A \subset U$, U is τ_1 - open. U is τ_1 - open $\Rightarrow U$ is τ_1 - ^{*}g-open. $\Rightarrow \tau_2$ -cl $A \subset U$ (By our assumption) But τ_2 - scl $A \subset \tau_2$ -cl $A \subset U \Rightarrow A$ is $\tau_1\tau_2$ - gs-closed.

Theorem 3.9. Every $\tau_1\tau_2 - {}^{\#}g$ -closed set is $\tau_1\tau_2 - \alpha g$ -closed. **Proof:** Let $A \subset U$, U is τ_1 - open. U is τ_1 -open $\Rightarrow U$ is $\tau_1 - {}^{*}g$ -open. $\Rightarrow \tau_2 - \text{cl } A \subset U$ (By our assumption) But $\tau_2 - \alpha \text{cl } A \subset \tau_2 - \text{cl } A \subset U \Rightarrow A$ is $\tau_1\tau_2 - \alpha g$ -closed.

Theorem 3.10. Every $\tau_1 \tau_2 - {}^{\#}g$ -closed set is $\tau_1 \tau_2$ - gp-closed. **Proof:** Assume that A is $\tau_1 \tau_2 - {}^{\#}g$ -closed. To prove A is $\tau_1 \tau_2 - gp$ -closed. Let $A \subset U$, U is τ_1 -open. U is τ_1 -open \Rightarrow U is τ_1 - ${}^{\#}g$ -open $\Rightarrow \tau_2$ -cl $A \subset U$ (by assumption) But τ_2 -pcl $A \subset \tau_2$ -cl $A \subset U \Rightarrow A$ is $\tau_1 \tau_2$ - gp-closed.

Theorem 3.11. Every $\tau_1 \tau_2$ - [#]g-closed set is $\tau_1 \tau_2$ - gpr-closed. **Proof:** Assume that A is $\tau_1 \tau_2$ - [#]g-closed. To prove A is $\tau_1 \tau_2$ - gpr-closed. Let A \subset U, U is τ_1 - regular open. U is τ_1 - regular open \Rightarrow U is τ_1 - open \Rightarrow U is τ_1 ^{*}g-open. $\Rightarrow \tau_2$ -cl A \subset U (by assumption). But τ_2 - pcl A $\subset \tau_2$ - cl A \subset U $\Rightarrow \tau_2$ - pcl A \subset U, whenever A \subset U, U is τ_1 -regular open. \Rightarrow A is $\tau_1 \tau_2$ - gpr-closed.

Theorem 3.12. Every $\tau_1\tau_2 - {}^{\#}g$ -closed set is $\tau_1\tau_2 - gsp$ -closed. **Proof:** Assume that A is $\tau_1\tau_2 - {}^{\#}g$ -closed. To prove A is $\tau_1\tau_2 - gsp$ -closed.Let $A \subset U$, U is τ_1 -open. τ_1 - open $\Rightarrow \tau_1 - {}^{*}g$ -open $\Rightarrow \tau_2$ - cl $A \subset U$ (by assumption)

 $\Rightarrow \tau_2$ - spcl A $\subset \tau_2$ - cl A $\subset U \Rightarrow \tau_1 \tau_2$ - gsp-closed.

Theorem 3.13. The converses of the above theorems are not true as can be seen by the following examples.

Example 3.14. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{b, c\}\} \& \tau_2 = \{X, \phi, \{a\}\} \\ \tau_1\tau_2 - {}^{\#}g\text{-closed sets} = \{X, \phi, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}\} \\ \text{Here } \{b\}, \{c\}, \{a, b\}, \{a, c\} \text{ are } \tau_1 \tau_2 - {}^{\#}g\text{-closed but they are not } \tau_2\text{-closed}. \\ \tau_1 \tau_2 - g^*\text{-closed} = \{X, \phi, \{b, c\}\} \\ \text{Here } \{b\}, \{c\}, \{a, b\} \text{ are } \tau_1 \tau_2 - {}^{\#}g\text{-closed sets but they are not } \tau_1\tau_2 - {}^{\#}g\text{-closed sets } the {}^{\#}g\text$

Example 3.15. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \{X, \phi, \{a\}, \{a, b\}\} \tau_1 \tau_2 - {}^{\#}g-closed sets = \{X, \phi, \{c\}, \{b, c\}\} \tau_1 \tau_2 - g-closed sets = \{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ Here $\{b\}, \{a, b\}, \{a, c\}$ are $\tau_1 \tau_2$ -g-closed sets but they are not $\tau_1 \tau_2 - {}^{\#}g$ -closed. $\tau_1 \tau_2$ -gs-closed= $\{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ Here $\{b\}, \{a, b\}, \{a, c\}$ are $\tau_1 \tau_2$ -gs-closed sets but they are not $\tau_1 \tau_2 - {}^{\#}g$ -closed. $\tau_1 \tau_2 - \alpha g$ -closed= $\{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\}$ Here $\{b\}, \{a, b\}, \{a, c\}$ are $\tau_1 \tau_2$ -gs-closed sets but they are not $\tau_1 \tau_2 - {}^{\#}g$ -closed. $\tau_1 \tau_2 - \alpha g$ -closed= $\{X, \phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, c\}\} = \tau_1 \tau_2$ -gs-closed sets but they are not $\tau_1 \tau_2$ -gs-closed. Here $\{b\}, \{a, b\}, \{a, c\}$ are $\tau_1 \tau_2$ -gs-closed, $\tau_1 \tau_2$ -gp-closed, $\tau_1 \tau_2$ -gsp-closed sets but they are not $\tau_1 \tau_2$ -fg-closed. Here $\{b\}, \{a, b\}, \{a, c\}$ are $\tau_1 \tau_2$ -gs-closed they are not $\tau_1 \tau_2$ -gsp-closed. Here $\{a\}, \{b\}, \{a, c\}, \{a, c\}$ are $\tau_1 \tau_2$ -gpr-closed but they are not $\tau_1 \tau_2$ -fg-closed.

Theorem 3.16. $\tau_1\tau_2$ -[#]g-closedness is independent of $\tau_1\tau_2$ - α closedness, $\tau_1\tau_2$ -semi closedness, $\tau_1\tau_2$ -semi preclosedness and $\tau_1\tau_2$ -preclosedness **Proof:** It can be seen from the following examples.

Example 3.17. Let $X = \{a, b, c\}, \tau_1 = \{X, \varphi, \{a\}\{a c\}\}, \tau_2 = \{X, \varphi, \{a\}, \{a,b\}\}$ $\tau_1\tau_2 - {}^{\#}g$ -closed sets = $\{X, \varphi, \{b\}, \{c\}, \{a,b\}, \{b,c\}\}$ $\tau_1\tau_2 - \alpha$ -closed sets= $\{X, \varphi, \{b\}, \{c\}, \{b,c\}\} = \tau_1\tau_2$ -semiclosed sets = $\tau_1\tau_2$ -preclosed sets= $\tau_1\tau_2$ -semipreclosed sets. Here $\{a,b\}$ is $\tau_1\tau_2 - {}^{\#}g$ -closed set but it is not a $\tau_1\tau_2 - \alpha$ -closed set, $\tau_1\tau_2$ -semiclosed set, $\tau_1\tau_2$ -greclosed set, $\tau_1\tau_2$ -semipreclosed set.

Example 3.18. Let $X = \{a, b, c \}, \tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \{X, \phi, \{a\}, \{a,b\}\}, \tau_1 \tau_2 - {}^{\#}g-closed sets = \{X, \phi, \{c\}, \{b,c\}\}$

 $\tau_1\tau_2$ - α -closed sets={ X, φ , {b}, {c}, {b,c} }= $\tau_1\tau_2$ -semiclosed sets = $\tau_1\tau_2$ -preclosed sets= $\tau_1\tau_2$ -semipreclosed set.Here {b} is not a $\tau_1\tau_2$ - #g-closed set but it is a $\tau_1\tau_2$ - α -closed set, $\tau_1\tau_2$ -semiclosed set, $\tau_1\tau_2$ -preclosed set, $\tau_1\tau_2$ -semipreclosed set.

Theorem 3.19. $\tau_1 \tau_2$ - [#]g-closedness is independent of $\tau_1\tau_2$. ψ closedness, $\tau_1\tau_2$. ga closedness, $\tau_1\tau_2$ -sgclosedness, $\tau_1\tau_2$ -*gclosedness, $\tau_1\tau_2$ -*gclosedness, $\tau_1\tau_2$ -area closedness, $\tau_1\tau_2$ -area closedness. **Proof:** It follows from the following example

 $\tau_1 \tau_2$ - [#]g Closed Sets in Bitopological Spaces

Example 3.20. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}\}, \tau_2 = \{X, \phi, \{a\}, \{a,b\}\}, \tau_1 \tau_2 - {}^{\#}g-closed sets = \{X, \phi, \{c\}, \{b,c\}\}$

 $\tau_1\tau_2$. ψ closed sets={ X, φ , {b}{ c}} = $\tau_1\tau_2$. $g\alpha$ closed sets= $\tau_1\tau_2$. sg closed sets. Here {b} is a $\tau_1\tau_2$. ψ closed set, $\tau_1\tau_2$. $g\alpha$ closed set, $\tau_1\tau_2$. sg closed set. But it is not a $\tau_1 \tau_2$ - ${}^{\#}g$ -closed set. $\tau_1\tau_2$.- ${}^{*}g$ closed sets={ X, φ , {b}{ c},{a,b},{a,c}, {b,c}} = $\tau_1\tau_2$.- ${}^{*}gs$ closed sets= $\tau_1\tau_2$. μ closed sets= $\tau_1\tau_2$. μ closed sets= $\tau_1\tau_2$. μ closed sets= $\tau_1\tau_2$. μ closed sets= $\tau_1\tau_2$. μ -closed sets= $\tau_1\tau_2$. μ -closed sets.Here {b}{a,b},{a,c} are not $\tau_1 \tau_2$ - ${}^{\#}g$ -closed sets.

Example 3.21. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{b,c\}\}, \tau_2 = \{X, \phi, \{a\}\} \tau_1 \tau_2 - {}^{\#}g$ -closed sets = $\{X, \phi, \{b\} \{c\} \{a,b\} \{a,c\} \{b,c\}\}$

$$\begin{split} \tau_1\tau_{2-} & \psi \text{ closed sets}{=} \{ X, \phi, \{b\} \{ c\}, \{b, c\} \}{=} \tau_1\tau_{2-}\mu\text{s-closed sets}{=} \tau_1\tau_{2-}\mu\text{p-closed sets}{=} \tau_1\tau_{2-}^*\text{gs closed sets}{=} \tau_1\tau_{2-} \alpha \text{-*g closed sets}. \text{Here } \{a, b\}, \{a, c\} \text{ are } \tau_1 \tau_2 \text{-} \text{*g-closed sets}. \text{ But they are not } \tau_1\tau_{2-} \psi \text{ closed sets}, \quad \tau_1\tau_2 \text{-} \mu\text{p-closed sets}, \tau_1\tau_2 \text{-} \text{*gs closed sets}, \\ \tau_1\tau_2 \text{-} \alpha \text{-*g closed sets}, \quad \tau_1\tau_2 \text{-} \mu\text{p-closed sets}, \tau_1\tau_2 \text{-} \text{*gs closed sets}, \\ \tau_1\tau_2 \text{-} \alpha \text{-*g closed sets}. \end{split}$$

 $\tau_1\tau_2$. μ closed sets={ X, ϕ }{b.,c}}= $\tau_1\tau_2$.-*g closed sets. Here {b},{c},{a,b}{{a,c}} are $\tau_1 \tau_2$.-#g-closed sets. But they are not $\tau_1\tau_2$. μ closed sets, $\tau_1\tau_2$.-#g closed sets.

Example 3.22. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{b\}, \{a, b\}\}, \tau_2 = \{X, \phi, \{a\}, \{a, b\}\}$ $\tau_1 \tau_2 - {}^{\#}g$ -closed sets = $\{X, \phi, \{c\}, \{b, c\}\}$

 $\tau_1\tau_2$.sg closed sets={ X, φ ,{b} {c} {b,c}}= $\tau_1\tau_2$.g α closed sets. Here {a,c} is a $\tau_1 \tau_2$ -[#]g-closed set. But it is not a $\tau_1\tau_2$.sg closed set and $\tau_1\tau_2$.g α closed set. Also {b} is $\tau_1\tau_2$.sg closed set and $\tau_1\tau_2$.g α closed set. But it is not a $\tau_1 \tau_2$ -[#]g-closed set.

4. Properties of $\tau_1 \tau_2$ -[#]g -closed sets and $\tau_1 \tau_2$ -[#]g-open sets

Theorem 4.1. Union of $two\tau_1\tau_2$ -[#]g closed set is $\tau_1\tau_2$ -[#]g closed. **Proof:** Assume that A and B are $\tau_1\tau_2$ -[#]g closed sets.

Let $A \cup B \subset U$, where U is τ_1 -*g -open.

Then $A \subset U$ and $B \subset U$. $\Rightarrow \tau_2 \text{-cl}(A) \subset U$ and $\tau_2 \text{-cl}(B) \subset U$ $\Rightarrow \tau_2 \text{-cl}(A) \cup \tau_2 \text{-cl}(B) \subset U$

But τ_2 -cl(AUB) = τ_2 -cl(A)U τ_2 -cl(B) \subset U

 \Rightarrow AUB is $\tau_1 \tau_2$ -[#]g closed set.

Theorem 4.2. Intersection of two $\tau_1 \tau_2$ -[#]g closed sets need not be $\tau_1 \tau_2$ -[#]g -closed. This can be seen from the following example.

Example 4.3. Let $X = \{a,b,c\}, \tau_1 = \{\phi,X,\{a\},\{b,c\}\}, \tau_2 = \{\phi,X,\{a\}\}.$ $\tau_1\tau_2 - {}^{\#}g \text{ closed sets} = \{\phi,X,\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\}\}.$ Here $\{a,b\},\{a,c\}$ are $\tau_1\tau_2 - {}^{\#}g$ closed, but their intersection is not $\tau_1\tau_2 - {}^{\#}g$ closed.

Theorem 4.4. Let A be $\tau_1\tau_2$ -[#]g closed and A \subset B \subset τ_2 -cl(A), then B is $\tau_1\tau_2$ -[#]g -closed. **Proof:** Let B \subset U, Where U is τ_1 -*g -open. Then A \subset B \subset U \Rightarrow τ_2 -cl(A) \subset U. Given B \subset τ_2 -cl(A), but τ_2 -cl(B) is the smallest closed set containing B. \therefore B \subset τ_2 -cl(B) \subset τ_2 -cl(A) \subset \Rightarrow τ_2 -cl(B) \subset U \Rightarrow B is $\tau_1\tau_2$ -[#]g closed.

Theorem 4.5. If A is $\tau_1\tau_2$ - [#]g -closed then τ_2 -cl (A) - A does not contain any non-empty τ_1 -*g - closed set.

Proof: Suppose τ_2 -cl(A) - A contains a non-empty τ_1 *g -closed set F.That is F $\subset \tau_2$ -cl(A) - A

 \Rightarrow F $\subset \tau_2$ -cl(A) but F $\not\subset A \Rightarrow$ F $\subset A^c$

 $\Rightarrow A \subset F^{c}$, where F^{c} is $\tau_{1} * g$ -open $\Rightarrow \tau_{2}$ -cl(A) $\subset F^{c} \Rightarrow F \subset (\tau_{2}$ -cl(A))^{c}

We have $F \subset \tau_2$ -cl(A) $\cap (\tau_2$ -cl(A))^c = \Phi \cdot \tau_2-cl(A) – A does not contain any non-empty τ_1 *g -closed set.

Theorem 4.6. Let A be $\tau_1\tau_2$ #g -closed. Then A is τ_2 -closed if and only if τ_2 -cl(A) – A $is\tau_1$ *g - closed set.

Proof: Suppose that A is $\tau_1 \tau_2 - {}^{\#}g$ - closed and τ_2 -closed. Then τ_2 -cl(A) = A. $\Rightarrow \tau_2$ -cl(A) – A = Φ , which is τ_1 -*g -closed.

Conversely assume that A is $\tau_1\tau_2$ - ${}^{\#}g$ -closed and τ_2 -cl(A) – A is τ_1 - ${}^{*}g$ - closed. Since A is $\tau_1\tau_2$ - #g -closed, τ_2 -cl(A) – A does not contain any non-empty τ_1 - #g -closed set \Rightarrow τ_2 -cl(A) – A = Φ \Rightarrow τ_2 -cl(A) = A \Rightarrow A is τ_2 -closed.

Theorem 4.7. If A is $\tau_1\tau_2$ - #g -closed and A \subset B $\subset \tau_2$ -cl(A), then τ_2 -cl(B) – B contains no non-empty τ_1 -*g -closed set. **Proof:** By theorem 4.4, the proof follows.

Theorem 4.8. For each $x \square X$, the singleton $\{x\}$ is either τ_1 -*g -closed or its complement {x}^cis $\tau_1\tau_2$ -[#]g -closed. **Proof:** Suppose $\{x\}$ is not τ_1 -*g -closed, then $\{x\}^c$ will not be τ_1 -*g -open. \Rightarrow X is the only τ_1 -*g open set containing {x}^c. $\Rightarrow \tau_2$ -cl{x}^c $\subset X \Rightarrow$ {x}^c is $\tau_1 \tau_2$ -[#]g -closed. \Rightarrow {x} is $\tau_1 \tau_2$ - #g - open set.

Theorem 4.9. Arbitrary union of $\tau_1 \tau_2$ -[#]g -closed sets {A_i, i \Box I} in a bitopological space

 (X, τ_1, τ_2) is $\tau_1\tau_2$ [#]g -closed if the family $\{A_i, i \Box I\}$ is locally finite on X. **Proof:** Let $\{A_i/i \Box I\}$ be locally finite in X and each A_i be $\tau_1\tau_2$ -[#]g -closed in X. To prove UA_i is $\tau_1\tau_2$ - #g -closed.Let $UA_i \subset U$, where U is τ_1 - #g -open. \Rightarrow A_i \subset U, for every i \Box I \Rightarrow τ_2 -cl(A_i) \subset U for every i \Box I \Rightarrow τ_2 -cl(Ai) \subset U. \Rightarrow U τ_2 -cl(Ai) \subset U.Since { A_i } is locally finite , τ_2 -cl(U A_i) = U τ_2 -cl(A_i) $\Rightarrow \tau_2 - cl(\mathbf{U} A_i) \subset \mathbf{U} \Rightarrow \mathbf{U} A_i \text{ is } \tau_1 \tau_2 - \#g \text{ -closed.}$

Theorem 4.10. If A and B are $\tau_1 \tau_2$ - #g –open sets in a bitopological space (X, τ_1, τ_2) then their intersection is $a\tau_1\tau_2$ -[#]g –open set. **Proof:** If A and B are $\tau_1\tau_2$ -[#]g –open sets, then A^c and B^c are $\tau_1\tau_2$ -[#]g –closedsets. A^cUB^cis $\tau_1\tau_2$ -[#]g –closed by theorem 4.1. That is (A \Box B)^c is $\tau_1\tau_2$ -[#]g –closed \Rightarrow A \square B is $\tau_1 \tau_2 - {}^{\#}g$ –open set.

 $\tau_1 \tau_2$ - [#]g Closed Sets in Bitopological Spaces

Theorem 4.11. The union of two $\tau_1\tau_2$ -[#]g –open sets is need not be $\tau_1\tau_2$ -[#]g –open in X. This can see from the following example.

Example 4.12. Let $X = \{a,b,c\}, \tau_1 = \{\phi,X,\{a\},\{b,c\}\}, \tau_2 = \{\phi,X,\{a\}\}.$ $\tau_1\tau_2$ -[#]g closed sets= $\{\phi,X,\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\}\}$.Here $\{b\},\{c\}$ are $\tau_1\tau_2$ -[#]g open but their union is not $\tau_1\tau_2$ --[#]g open.

Theorem 4.13. If τ_2 -intA $\subset B \subset A$ and A is $\tau_1 \tau_2 - {}^{\#}g$ –open in X, then B is also $\tau_1 \tau_2 - {}^{\#}g$ – open in X.

Proof: Suppose τ_2 -intA $\subset B \subset A$ and A is $\tau_1 \tau_2 - {}^{\#}g$ –open in X. Then $A^{c} \subset B^{c} \subset X - \tau_2$ -intA $= \tau_2 - cl(X - A) = \tau_2 - clA^{c}$. Since A^{c} is $\tau_1 \tau_2 - {}^{\#}g$ –closed by theorem 4.4 B^{c} is $\tau_1 \tau_2 - {}^{\#}g$ –closed \Longrightarrow B is a $\tau_1 \tau_2 - {}^{\#}g$ –open set.

Theorem 4.14. A set A is $\tau_1\tau_2 - {}^{\#}g$ –open if and only if $F \subset \tau_2$ -intA where F is $\tau_1 - {}^{*}g$ – closed and $F \subset A$. **Proof:** If $F \subset \tau_2$ -intA, where F is $\tau_1 - {}^{*}g$ –closed and $F \subset A$. $\Rightarrow A^c \subset F^c = G$ where G is $\tau_1 - {}^{*}g$ –open and $\tau_2 - clA^c \subset G$ $\Rightarrow A^c \text{ is } \tau_1\tau_2 - {}^{\#}g \text{ closed is } \tau_1\tau_2 - {}^{\#}g$ –open. Conversely assume that A is $\tau_1\tau_2 - {}^{\#}g$ –open and $F \subset A$, where F is $\tau_1 - {}^{*}g$ –closed. Then $A^c \subset F^c \Rightarrow \tau_2 - clA^c \subset F^c$ (Since A^c is $\tau_1\tau_2 - {}^{\#}g$ closed). $\Rightarrow F \subset X - \tau_2 - clA^c = \tau_2 - \text{int}A$.

Acknowledgement. The author is grateful to University Grants Commission for the financial support.No.F.MRP-3910/11(MRP/UGC-SERO).

REFERENCES

- 1. M.E.Abd El-Monsef,S.N.Deeb and R.A.Mahmoud, β-open sets and β-continuous mappings, *Bull. Fac. Sci. Assiut.*, 12 (1983) 77-90.
- P.Bhattacharya and B.K.Lahiri, Semi-generalized closed sets in topology, *Indian J. Math.*, 29(3) (1987) 375-382.
- 3. S.Bose, Semi open sets, semi continuity and semi open mappings in bitopological spaces, *Bull. Cal. Math. Soc.*, 73 (1981) 237-246.
- 4. K.Chandra Sekara Rao and M.Mariasingam, On bitopological spaces, *Acta Ciencia Indica*, XXVIM (4) (2000) 283-288.
- 5. T.Fukutake , on generalized closed sets in bitopological spaces ,*Bull. Fukuoka. Univ.* of Educ., 35 (1985) 19-28.
- 6. T.Fukutake, Semi open sets on bitopological spaces, *Bull. Fukuoka. Univ. of Educ.*, 38 (1989) 1-7.
- 7. J.C.Kelley, Bitopological spaces, Proc. London. Math. Soc., 13(1963) 71-89.
- 8. T.Indira, τ₁τ₂ ĝ-closed sets, *Antarctica J. Math.*, 4(10) (2007) 113-119.
- 9. T.Indira and K.Rekha, Applications of *b- open sets and **b-open sets in topological spaces, *Annals of Pure and Applied Mathematics*, 1(1) (2012) 44-56.

- 10. T.Indira and S.Geetha, τ^* -ga closed sets in topological spaces, Annals of Pure and Applied Mathematics, 4(2) (2013) 138-144.
- 11. N.Levine, Semi open sets and semi-continuity in topological spaces, *Amer.Math. Monthly*, 70(1963) 36-41.
- 12. N.Levine, Generalized closed sets in topological spaces, *Rend circ Math. Palermo*, 19 (2) (1970) 89-96.
- 13. N. Meenakumari and T.Indira, r*g*-closed sets in topological spaces, *Annals of Pure and Applied Mathematics*, 6(2) (2014) 125-132.
- 14. M.K.R.S.Veerakumar, g[#]-closed sets in topological spaces, *Mem. Fac. Kochi. Univ. Sec.A. Math.*, 24 (2003) 1-13.
- 15. M.K.R.S.Veerakumar, [#]g-closed sets in topological spaces, *Antarctica J.Math.*, 2(2) (2005) 239-258.