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Abstract. The MHD free convection fluid flow with the Soret effect on the combined heat 
and mass transfer unsteady flow past a continuously moving semi-infinite vertical porous 
plate in a rotating system has been investigated numerically under the action of induce 
magnetic field. This study is performed for cooling problem with lighter and heavier 
particles. Numerical solutions for the primary velocity field, secondary velocity field, 
temperature distribution as well as concentration distribution are obtained by using the 
explicit finite difference method. The obtained results to observe the effects of various 
parameters are shown graphically. Finally, the important findings of the investigation are 
concluded.  
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1. Introduction 
The effect of mass and heat transfer, and magnetic field on MHD boundary layer flow 
has become important in several industrial, scientific and engineering fields. In 
astrophysical and geophysical studies, the MHD boundary layer flows of an electrically 
conducting fluid have also vast applications. Many researchers studied the laminar flow 
past a vertical porous plate for the application in the branch of science and technology 
such as in the field of mechanical engineering and chemical engineering. Research works 
on radiation of heat and effects of magnetic field in free convection flow are very limited, 
though these have many modern applications viz. missile technology used in army, 
nuclear power plant, parts of aircraft and ceramic tiles. The heat radiation and chemical 
reaction with or without magnetic field, suction or injection, has been analyzed by several 
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characters. General boundary layer equations for continuous surfaces have been 
developed by Sakiadis [1]. 

Agarwal et al. [2] studied the effects of Hall Current on the hydro-magnetic free 
convection with mass transfer in a rotating fluid. Takhar and Ram [3] studied the effects 
of Hall current on hydro-magnetic free convective flow through a porous medium. 
Chaudhary and Sharma [4] have analytically analyzed the steady combined heat and 
mass transfer flow with induced magnetic field. Bhaskar Kalita [5] investigate the 
magnetic field effect on unsteady free convection MHD flow between two heated vertical 
plate. Dileep and Priyanka [6] studied the effects on heat transfer of rotating cautte flow 
in a channel partially filled by a porous medium with hall current. B. P. Garg [7] studied 
combined effects of thermal radiations and hall current on moving vertical porous plate in 
a rotating system with variable temperature. Sahin et al. [8] established a mathematical 
model on magneto- hydro-dynamic transient free and forced convective flow with 
induced magnetic field effects. Magneto-hydrodynamic flow and heat transfer of two 
immiscible fluids with induced magnetic field effects is investigated by Zivonin et al. [9]  

Dufour and Soret Effects On Steady MHD Free Convection And Mass Transfer 
Fluid Flow Through A Porous Medium in A Rotating System have been investigated by 
Nazmul and  Alam [10]. Sandeep et al [11] investigated the effect of inclined magnetic 
field on unsteady free convection flow of dissipative fluid past a vertical plate. Seth et al. 
[12] studied Effect of Rotation on Unsteady Hydromagnetic Natural Convection Flow 
Past an Impulsively Moving Vertical Plate with Ramped Temperature in a Porous 
Medium with Thermal Diffusion and Heat Absorption. Rajput and Kumar [13] 
investigated the Rotation and Radiation Eects on MHD Flow Past an Impulsively Started 
Vertical Plate with Variable Temperature. The main objective of the present study is to 
investigate numerically MHD Free Convection fluid flow over a Vertical Porous Plate in 
a Rotating System in the presence of Soret effect, hall effect, Mass and Heat transfer 
effect with Induced Magnetic Field. 
 
2. Mathematical formulation 
Let us consider a unsteady MHD combined heat and mass transfer by free convection 
flow of an electrically conducting incompressible viscous fluid past an electrically 
nonconducting continuously moving semi-infinite vertical porous plate. The flow is 
assumed to be in the x-direction which is taken along the porous plate in upward 
direction and y-axis is normal to it. Since flow is in only x-direction and the plate is 

semi-infinite so 
�

�� = 0. A strong uniform magnetic field is applied normal to the plate 

that induced another magnetic field on the electrically conducting fluid.  
Initially we consider that the plates as well as the fluid are at the same 

temperature T = (T∞) and the concentration level C = (C∞)  everywhere in the fluid is 
same. Also it is assumed that the fluid and the plate is at rest after that the plate is to be 
moving with a constant velocity U	 in its own plane and   instantaneously at time t > 0, 
the temperature of the plate and the species concentration are raised to T(> T∞)  and 
C = (C∞) respectively, which are thereafter maintained constant, where T, C are the 
temperature and species concentration at the wall and T∞, C∞  are the temperature and 
concentration of the species far away from the plate respectively.  
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The x-component momentum of equation reduces to the boundary layer 
equation if the only contribution to the body force is made by gravity, the body force 
per unit volume,F� = −g where g is the local acceleration due to gravity. There is no 

body force in the y-direction and z-direction i.e. F� = 0 F� = 0. Thus 
��
�� and 

��
�� which 

implies that P = P(x). Hence the x-component pressure gradient at any point in the 
boundary layer must equal to the pressure gradient in the quiescent region outside the 
boundary layer. However, in this region u = v = 0. Initially the fluid as well as the plate 
is at rest, after that the whole system is allowed to rotate with a constant angular velocity 
Ω  about the y -axis. Since the system rotates aboutaxisy − , so we can take

( )0,,0 Ω−=Ω . A uniform transverse magnetic field of magnitude 0B is applied in the 
direction of axis−y . The physical configuration of the problem is furnished in Figure 1. 

                                          
Within the framework of the above-stated assumptions the generalized equations relevant 
to the unsteady problem are governed by  
the equation of continuity yields 

               ∇. q = 0          i.e. 
��
�� + ��

�� + �
�� = 0                                                               (1) 

The Momentum equation for a viscous compressible fluid in vector form is 

 
� 
�!+(q. ∇)q + 2Ω × q = F − $

ρ
∇P +  %∇&q                                                                    (2) 

where F = (F�, F�, F�) is the body force per unit mass; P is the fluid pressure and ' is 
the kinematic viscosity. 

Now we apply a strong magnetic field B that induced another magnetic field on 
the electrically conducting fluid. As a result the equation (2) becomes as a magneto- 
hydrodynamic(MHD) equation in the following form 
� 
�! +(q. ∇)q + 2Ω × q = F − $

ρ
 ∇P + υ∇& + $

ρ
(J × B)                                                    (3) 

where J = (J�, J�, J�,) is the current density. 
The MHD energy equation for a viscous 
incompressible electrically conducting fluid 
with viscous dissipation and Joule heating 
term is 
�*
�! + (q. ∇)T = 

κ

ρ+,
 ∇&T + -.

ρ+,σµ/.
+ $
σ+,

 φ                   

                                              (4)  
where T is the fluid temperature, C0 is the 
specific heat at the constant pressure and 1 is 
the thermal conductivity and 

 φ = µ[2 34��
��5& + 4��

��5& + 4�
�� 5&6 +

4��
�� + ��

��5& + 4�
�� + ��

��5& + 4��
�� + �

�� 5&
]  

Also φ denotes the dissipation function 
involving the viscous stress and the MHD 
species equation for a viscous 
incompressible electrically conducting fluid 

Figure1. Physical configuration and 
coordinate system. 
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is 
 �7
�! +(q. ∇)C = D9∇&C+

:;κ<
*;

∇&T                                                                                    (5) 

The MHD generalized Ohm’s law is of the form 
J = σ(E + q × B) − σ

>?/
(J × B) + σ

>?/
∇P>                                                                      (6) 

where E is the electric field intensity, P> is the pressure of the electron, e is the charge 
of electron and n> is the number density of electrons. 
Gauss’s law of magnetism  
                                                      A.B=0                                                                            (7) 
Now 
Ω × q = Ωwı̂ −ΩukF                                                                                                     (8) 
The equation (7) is satiesfied by 
B = B	ȷ ̂                                                                                                                             (9) 
So the equation of Ohm’s law becomes  
J+9

HI
(J × B) = σ(q × B)                                                                                              (10) 

where m = ω>τ> is the Hall parameter. 
J × B = −B	J�ı̂ + B	J�kF                                                                                              (11) 
q × B = −B	wı̂ + B	ukF                                                                                              (12) 
Now from equation (10), (11), (12), we get 
J�ı̂ + J�ȷ̂ + J�kF + 9

HI
K−B	J�ı̂ + B	J�kFL =  σ(−B	wı̂ + B	ukF )                                     (13) 

Now equating the coefficient of i, j, k and solving, we get 

J� = 
σHI(9�M)

$N9. , J� = 0, J� = 
σHI(�N9)

$N9. . 

J × B=− σHI.(�N9)
$N9.  ı̂ + σHI.(9�M)

$N9. kF                                                                            (14) 

In two-dimensional Cartesian coordinate system the continuity equation (1), the 
momentum equations (3), the MHD energy equation (4) and the MHD species equation 
(5) are as follows 
Continuity equation 
��
�� + ��

�� = 0                                                                                                                 (15) 

Momentum equation 
��
�! + u ��

�� + v ��
�� + 2Ωw = Oβ(T − T∞) + Oβ∗(C − C∞) + υ �.�

��. − σHI.
ρ($N9.) (u + mw)   (16) 

�
�! + u �

�� + v �
�� − 2Ωu=υ

�.
��. + σHI.

ρ($N9.) (mu − w)                                            (17) 

Magnetic induction equation 
�T

�t
+ u

�T

�x
+ v

�T

�y
= κ

ρcp

�2T

�y2 + υ

cp
{4�u

�y
52 + 4�w

�y
52}                                                             (18) 

Species equation 
�C

�t
+ u

�C

�x
+ v

�C

�y
 = Dm 

�2C

�y2 + Dmκt

Tm

�2T

�y2                                                                            (19) 

With the corresponding initial and boundary conditions are 
u = 0, w = 0, T = Tw, C = Cw    at y=0 
u = 0, w = 0,T → T∞,C → C∞ asy→ ∞                                                                     (20) 
Now we introduce the following dimensionless quantities; 
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X= 
xU0

υ
, Y=

yU0

υ
,U= u

U0
,V= 

v

U0
 ,  W=

w

U0
, τ=

tU0
2

υ
, TT= 

TMT∞
TwMT∞

 , CT = 
CMC∞

CwMC∞
. 

From the above dimensionless variable we have 

x= 
υX

U0
, y=

υY

U0
, u= U0U,  v= U0V, w= U0W, T= T∞ + (Tw − T∞)TT and  

C=C∞ + (Cw − C∞)CT. 
Then the continuity equation, the momentum equations, the energy equation and the 
concentration species equation reduces to the form  
�U

�X
+ �V

�Y
= 0                                                                                                (21) 

 �U

�τ+ U
�U

�X
 +V

�U

�Y
= GrTT + GmCT+

�2U

�Y2 − M

(1Nm2) (U + mW) −R′W                                 (22) 

�W

�τ + U
�W

�X
 +V

�W

�Y
= 

�2W

�Y2 + M

(1Nm2) (mU − W) +R′U                                 (23) 

�TT
�τ+ U

�TT
�X

 +V
�TT
�Y

= 
1

Pr

�2TT
�Y2+Ec{ (�U

�Y
)2 + (�W

�Y
)2}                                  (24) 

�CT
�τ+ U

�CT
�X

 +V
�CT
�Y

= 
1

Sc

�2CT
�Y2+S0 

�2TT
�Y2                                                                                  (25)  

where Gr= 
υgβ(TwMT∞)

U0
3   ( Grashof Number ), Gm=

υgβ∗(TwMT∞)
U0

3  (Modified Grashof Number ), 

M= 
συB0

2

ρU0
2  ( Magnetic Parameter ), R′= 

2υΩ

U0
2  (Rotational parameter), Pr= 

υρCp

κ
, (Prandtl 

Number), Ec= 
U0

2

Cp(TwMT∞) (Eckert Number ), Sc = υ

Dm
 (Schmidt Number) And S0= 

DmκT(TwMT∞)
υTm(CwUC∞)  ( Soret Number ). 

Also the associated initial and boundary conditions become 
U = 0, W = 0, TT = 1, CT = 1   at Y= 0              
U = 0,  W = 0, TT = 0, CT = 0 as Y→ ∞                                                                        (26) 
 
3. Numerical solutions  
The system of non-dimensional, nonlinear, coupled 
partial differential equations (21)-(25) with boundary 
condition (26) are solved numerically using explicit 
finite difference method. To obtain the difference 
equations, the region of the flow is divided into a grid 
or mesh of lines parallel to X  and Y  axes, where X -
axis is taken along the plate and Y -axis is normal to 
the plate. 
 

Here the plate of height ( )100max =X  is 

considered i.e. X  varies from 0  to 100 and assumed 

( )30max =Y  as corresponding to ∞→Y  i.e. Y  varies 

from 0  to 30. There are ( )150=m  and ( )150=n  
grid spacing in the X  and Y  directions respectively 
as shown in Figure 2. It is assumed that X∆ , Y∆  are 
content mesh size along X  and Y  directions respectively and taken as follows, 

 

Figure2. Explicit finite 
difference system grid. 
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( )100050.0 ≤≤=∆ XX and ( )30015.0 ≤≤=∆ YY  with the smaller time-step, 

005.0=∆τ . 

Let CTWU ′′′′ and,,  denote the values of CTWU and,,  are the end of a time-step 
respectively. Using the explicit finite difference approximation, the following appropriate 
set of finite difference equations are obtained as; 

0
1,,,1,

=
∆

−−
+

∆
−′−′

Y
jiVjiV

X
jiUjiU

                                                                         (27) 

( ) ji,ji,ji,2mji,r2
1ji,ji,1ji,ji,1ji,

ji,
j1,iji,

ji,
ji,ji, WR)mW(U

)m(1

M
CGTG

∆Y

U2UU

∆Y

UU
V

∆X

UU
U

∆τ

UU
′−+

+
−′+′+

+−
=

−
+

−
+

−′ −++−

                                                                                                                                    (28)

                                                             

( ) ij
jiji

ji
jiji

ji
jiji UR

Y

WW
V

X

WW
U

WW
′−−−

+
+

+−
=

∆
−

+
∆
−

+
∆
−′ −++− )W(mU

)m(1

M

∆Y

W2WW
ji,ji,22

1ji,ji,1ji,,1,
,

,1,
,

,,

τ   

                                                                                                                                     (29)

( )
}{(cE2

∆Y

1ji,Tji,T21ji,T

rP

1

∆Y

ji,T1ji,T
ji,V

∆X

j1,iTji,T
ji,U

∆τ

ji,Tji,T 2ji,1ji,2ji,1ji, )
∆Y

WW
()

∆Y

UU −
+

− +++−+−+=
−++−−

+
−′

                                                                                                                                (30)

 

( ) ( )2

1ji,ji,1ji,
02

1ji,ji,1ji,

c

ji,1ji,
ji,

j1,iji,
ji,

j1,iji,

∆Y

TT2T
S

∆Y

CC2C

S

1

∆Y

CC
V

∆X

CC
U

∆τ

CC −+−++−− +−
+

+−
=

−
+

−
+

−′

                                                                                                                                 (31)

 
with the boundary condition;  

1,1,0,0 0,0,0,0, ====
n
i

n
i

n
i

n
i CTWU

 

∞→==== Lwhere0,0,0,0 ,,,,
n

Li
n

Li
n
Li

n
Li CTWU                                                           (32) 

Here the subscript i  and j  designates the grid points with X  and Y  coordinates 
respectively and the superscript n  represents a value of time, ττ ∆= n  where

.....,....2,1,0=n . The velocity( )WU , , temperature )(T  and concentration ( )C  
distributions at all interior nodal points have been computed by successive applications of 
the above finite difference equations. 
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4. Results and discussion 
For the purpose of discussing the results of the problem, the approximate solutions are 
obtained for various parameters with small values of Eckert number. In order to analyze 
the physical situation of the model, we have computed the numerical values of the non-
dimensional primary velocityV, secondary velocity W, temperature WX and concentration 
Y̅ within the boundary layer for different values of magnetic parameter [, Hall 
parameter m, Soret number \], Prandtal number ̂_, Schmidt number \` and Eckert 
number a` with the fixed value of Grashof numberb_ and modified Grashof number 
bc. Along with the obtained steady state solutions, the flow behaviors in case of 
cooling problem are discussed graphically. The profiles of the primary velocity, 
Secondary velocity, temperature and species concentration versus Y are illustrated in 
Figs. 3-14 respectively. 

From the Figs. 3-6 we see that the primary velocity V distribution increases 
gradually near the plate and then decreases slowly far away from the plate. Also we see 
that it decreases with increasing Magnetic parameter, Hall effect parameter, Rational 
parameter, Prandtl number. The secondary velocity profiles d have been shown in 
Figs. 7-9. These results show that secondary velocity increases with increasing Hall 
parameter, Eckert number and decreases with increasing Magnetic parameter.  

The temperature distributions have been illustrated for various values of 
Radiation parameter, Eckert number and Prandtl number in Figs. 10-12 respectively. We 
see that the temperature distributions increses with increasing Eckert number and 
decreases with increasing Rotational parameter, Prandtl number. 

Figure 3: Primary velocity profile due to 
change of Magnetic parameter. 

 Figure 4: Primary velocity profile due to 
change of Hall parameter. 
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 Figure 5: Primary velocity profile due to 
change of Prandtl number. 

 Figure 6: Primary velocity profile due to 
change of Rotational parameter. 

Figure 7: Secondary velocity profile due 
to change of Magnetic parameter. 

 
Figure 8: Secondary velocity profile due to 
change of Hall parameter. 
 

Figure 9: Secondary velocity profile due 
to change of Eckert number. 

 Figure 10: Temperature profile due to 
change of Prandtl number. 
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 Figure 11: Temperature profile due to 
change of Eckert number. 

Figure 12: Temperature profile due to 
change of Rotational parameter. 
 

 Figure 13: Concentration profile due to 
change of Schmidt number. 
 

 Figure 14: Concentration profile due to 
change of Soret number. 
 

The concentration profiles have been shown for various values of Soret number ( )rS  and 
Schimdt number ( )cS  in Figs. 13-14. These results show that the concentation 
distributions decrease for the increase Schmidt number and increase with the increase 
Soret number respectively.  

5. Conclusions 
A transient heat and mass transfer problem by free convection flow of an electrically 
conducting incompressible viscous fluid moving semi-infinite vertical porous plate under 
the action of strong magnetic field with Soret and Schimdt effect, constant heat and mass 
fluxes is investigated in this work. Some of the important findings obtained from the 
graphical representation of the results are listed herewith; 
  
1. The primary velocity decreases with the increase of [, k, l′ or ̂ _. 
2. The secondary velocity increases with the increase of k or a` while it decreases 

with the increase of  _̂. 
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3. The temperature profile increases with the increase of a` while it decreases with the 
increase of l′ or ̂ _ . 

4. The concentration profile increases with the increase of  \	 while it decreases with 
the increase of \`. 
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