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Abstract. A set S of vertices in a graph G  is a neighborhood set of G  if 

= [ ]
v S

G N v
∈
〈 〉∪ , where [ ]N v〈 〉  is the subgraph of G  induced by v  and all vertices 

adjcent to v . The neighborhood number 0( )n G  of G  is the minimum number of 

vertices in a neighborhood of G  Let i
nC  be the family of neighborhood sets of a cycle 

nC  with cardinality i . In this paper we construct family of neighborhood sets of cycles 
i
nC  and obtain a recursive formula for 0( , ) =| |i

n nn C i C . In this paper, we obtain some 

properties of neighborhood sets and polynomials of Cycles. 
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1. Introduction  
Let G  be the simple graph with vertex set { }1 2= , ,..., nV v v v  and edge set 

{ }1 2= , ,..., mE e e e . A neighborhood set S V⊆  is a neighborhood set of G  if 

= [ ]
v S

G N v
∈
〈 〉∪ , where [ ]N v〈 〉  is induced subgraph of G . The neighborhood number 

0( )n G .Let i
nC  be the family of neighborhood sets of a cycles i

nC with cardinality i and let 

0( , ) =| |i
n nn C i C  and The polynomials are 0 0=

2

( , ) = ( , )
n i

nn ni
N C i n C i x

 ∑  the 

polynomials of cycle.  
In the next section we construct the families of neighborhood sets of nC  with 

cardinality i  by the families of neighborhood sets of 1nC −  and 2nC −  with cardinality 

1i − and also we investigate the neighborhood polynomial of cycle. 
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Definition 1.1. [3] Let ( , )N G i  be the family of neighborhood sets of a graph G  with 

cardinality i  and let ( , ) =| ( , ) |n G i N G i . Then the neighborhood sets polynomial 

( , )N G x  of G is defined as 
| ( )|

= 0
( , ) = ( , )

V G i

i n
N G i n G i x∑  where 0( )n G  is the 

neighborhood number of G .  
  

Theorem 1.2. [3] If a graph G  consist of m  components 1, 2,...,G G Gm  then 

=1
( , ) = ( , )

m

ii
N G x N G x∏ .  

  
Theorem 1.3. [3] Let 1G  and 2G  be connected graphs of order 1p  and 2p  

respectively. Then 1 2
1 2 1 2( ) = ((1 ) 1)((1 ) 1) ( , ) ( , )

p p
N G G x x N G x N G x∨ + − + − + + .  

 
2. Main results 
2.1. Neighborhood sets of cycles 
Let , 3nC n ≥  be the cycle with n  vertices ( ) =nV C n  and 

E(Cn)={(1,2),(2,3),…,(n-1,n), (n,1)}.  Let i
nC  be the neighborhood sets of nC  with 

cardinality i . We investigate neighborhood sets of cycles. Every cycle nC  consist a 

simple path. We need the following lemma to prove our main results in this section: 
 

Lemma 2.1. The following properties hold for cycles 

(i) 0( ) =
2n

n
n C    

(ii) =i
jC φ  if and only if >i j  or <

2

n
i   . 

(iii) If a graph G  contains a simple pathe of length 2 1k − , then every neighborhood 
set of G  must contain at least k  vertices of the path.  

 
To find a dominating set of nC  with cardinality i , we do not need to consider the 

neighborhood sets of 3nC −  and 4nC −  with cardinality 1i − . Therefore, we need to 

consider 1
1

i
nC −

−  and 1
2

i
nC −

− . The families of these neighborhood sets can be empty or 

otherwise. Thus, we have four combinations of whether the two families are empty or not. 

The following two combinations are not possible 1
1 =i

nC φ−
−  then 1

2 =i
nC φ−

−  and 

1 1
1 2= =i i

n nC C φ− −
− −  then =i

nC φ , since =
2

n
i   . Thus we consider two combinations or 

cases. 
 
Lemma 2.2. If 1

3
i
nY C −

−∈  and there exist [ ]x n∈  such that { } i
nY x C∪ ∈  then 

1
2

i
nY C −

−∈  . 
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Proof: Suppose that 1
2

i
nY C −

−∉  since 1
3

i
nY C −

−∈  Y  contains at least one vertex labled 

3n −  or 4n − . If 3n Y− ∈ , then 1
2

i
nY C −

−∈  a contradiction. Hence 4n Y− ∈  but then 

in this case i
nY x C∪ ∉  for every [ ]x n∈  also a contradiction.  

 

Example 2.3. consider 4
7=i

nC C , Let 3
4= {1,2,4}Y C∈  then  

4
7{ } = {1,2,4,6}Y x C∪ ∈  [7]x ∈  then 3

5Y C∈ . Suppose 3
5Y C∉ ,since 3

4Y C∈  If 

= {1,2,3}Y  at least one vertex labled 4n −  (or) 3n −  it imply that 3
5{1,2,4} C∈  it 

is a contradiction. In this case 4
7{ }Y x C∪ ∉ .  

 

Lemma 2.4. (i) If 1
1 =i

nC φ−
−  then 1

2 =i
nC φ−

−  

         (ii) If 1 1
1 2= =i i

n nC C φ− −
− −  then =i

nC φ  

 

Lemma 2.5. Suppose that i
nC φ≠ , then we have 

    (i) 1
1 =i

nC φ−
−  then 1

2
i
nC φ−

− ≠  if and only if =
2

n
i    or = 2n k  and =i k  for some 

k N∈  

(ii) 1
2 =i

nC φ−
−  and 1 1ic n φ− − ≠  if and only if =i n  

(iii) 1
1

i
nC φ−

− ≠  then 1
2

i
nC φ−

− ≠  if and only if = 2 1n k +  and = 1i k +  

Proof. (i) Since 1
1 =i

nC φ−
−  by lemma 2.1(ii) we have 1> 1i n− −  or 

1
1 <

2

n
i

−−   . If 

1> 1i n− −  then >i n  by lemma 2.1(ii), =i
nC φ  a contradiction. So we have 

1
< 1

2

n
i

−
  +  and since i

nC φ≠ , together we have 
1

< 1
2 2

n n
i

−
  ≤   +  which gives 

is = 2n k  and =i k  for some k N∈  so we have 1
1 =i

nC φ−
−  and 1

2
i
nC φ−

− ≠ . 

( )⇐  If = 2n k  and =i k  for some k N∈  then by Lemma 2.1 (ii), we have 
1
1 =i

nC φ−
−  then 1

2
i
nC φ−

− ≠ . 

(ii) Since 1
2 =i

nC φ−
−  by lemma2.1(ii) 1 > 2i n− −  or 

2
1 <

2

n
i

−−   . If 

2
1 <

2

n
i

−−    then 
1

1 <
2

n
i

−−    and hence 1
1 =i

nC φ−
−  a contradiction, so we must 

have > 1i n − . Since 1
1

i
nC φ−

− ≠  we have 1 1i n− ≤ − . Therefore we have =i n . 

( )⇐  If =i n  then by lemma 2.1 (ii), 1
2 =i

nC φ−
−  and 1

1
i
nC φ−

− ≠ . 

(iii) Suppose 1
1 =i

nC φ−
−  by lemma we have 1> 1i n− −  or 

1
1 <

2

n
i

−−   . If 

1> 1i n− −  then 1> 2i n− −  by lemma 2.1(ii) 1 1
1 2= =i i

n nC C φ− −
− −  a contradiction. So we 
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have 
1

< 1
2

n
i

−
  +  also we have 

2
< 1

2

n
i

−
  +  because 1

2
i
nC φ−

− ≠ . Hence we have 

2 1
1 < 1

2 2

n n
i

− −
  + ≤   +  therefore = 2 1n k +  and 

2 1
= 1 =

2

k
i k

++    for some 

k N∈ . If = 2 1n k +  and = 1i k +  for some k N∈  then by lemma 2.1(ii) 
1
1 2 1=i k

n kC C φ−
− + ≠ .  

 
The following theorem construct the families of dominating sets of nC .  

Theorem 2.6. For every 4n ≥  and 
2

n
i ≥   , 

(i) If 1
1 =i

nC φ−
−  and 1

2
i
nC φ−

− ≠  then = {(1,3,5,... 1)(2,4,6,... )}i
nC n n− . 

(ii) If 1
1

i
nC φ−

− ≠  and 1
2

i
nC φ−

− ≠  and 1 2
2 2=i n

n nC C− −
− − . Then = {[ ] / [ ]}i

nC n x x n− ∈ . 

(or) 1 1 2
1 1 1 2 2 2 2= {{ { }/ },{ { 1}/ = }}i i i n

n n n nC X n X C X n X C C− − −
− − −∪ ∈ ∪ − ∈  

(iii) If 1
1

i
nC φ−

− ≠  and 1
2 =i

nC φ−
− , then = [ ]i

nC n . 

(iv) If 1
1

i
nC φ−

− ≠  and 1
2

i
nC φ−

− ≠  then  
1

1 1 1 2 2 2 2= {{ { }/ },{ { 1}/1 },{ { }/1 }}i i
n nC X n X C X n X X n X−

−∪ ∈ ∪ − ∈ ∪ ∉ . 

Proof. (i) 1
1 =i

nC φ−
−  and 1

2
i
nC φ−

− ≠ . By lemma 2.4 (i), = 2n k  for some K N∈  

therefore, /2= = {{1,3,5,..., 1},{2,4,6,... }}i n
n nC C n n  − . 

(ii) 1
1

i
nC φ−

− ≠  and 1
2 =i

nC φ−
− . By lemma 2.4 (ii), =i n , therefore = = [ ]i n

n nC C n .  

(iii) By lemma 2.4 (iii), = 1i n − . Therefore 1= = {[ ] / [ ]}i n
n nC C n x x n− − ∈ . 

(iv) Since 1
1

i
nC φ−

− ≠ , 1
2

i
nC φ−

− ≠ . Suppose that 1
1 1

i
nX C −

−∈ , then 1 { } i
nX n C∪ ∈ . 

Let 1
1 1 1= { { }/ }i i

n nY X n X C C−
−∪ ∈ ⊆ . Let 1

2 1
i
nX C −

−∈ , we denote 

2 2 2 2{{ { } 1 },{ { 1}  1 }}X n if X X n if X∪ ∈ ∪ − ∈  by 2Y . By Lemma 2.1 (iii), at least one 

of the vertices labled 2n −  or 1  is in 2X , If 21 X∈  then 2 { 1} i
nX n C∪ − ∈ , 

otherwise 2 { } i
nX n C∪ ∈ . Therefore 2Y Y⊆ . Hence we have proved 1 2 .i

nY Y C∪ ⊆  

 

Example 2.7. Consider 6C  with 6( ) = [6]V C . We use the theorem to construct 6
iC  for 

3 6i≤ ≤ . 

Since 1 2
1 5= =i

nC C φ−
−  and 3

6 = {{1,3,5}{2, 4,6}}C  By theorem 2.7 (i) 
5 5
5 4= {[5]}, =C C φ  , we get, 6

6 = {[6]}C 5
6 = {[6] { }/ [6]}C x x− ∈  = 

{1, 2,3,4,6},{1,2,3,5,6},{1,3,4,5,6},{2,3,4,5,6},{1,2,4,5,6},{1, 2,3,4,5} and 

for the construction of 4
6C  by the theorem 2.6 (iv) , 1

1
i
nC φ−

− ≠  and 1
2

i
nC φ−

− ≠  and 

2 1n i− ≠ − , then 1
1 1 1 2 2 2 2= { }/ , { 1}/1 , { }/1i i

n nC X n X C X n X X n X−
−∪ ∈ ∪ − ∈ ∪ ∉   

Therefore 3
5 = {{1,2,4},{1,3,4}{1,3,5}{2,3,5}{2,4,5}}C . 
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       3
4 = {{1,2,3},{1,2,4}{1,3,4}{2,3,4}}C  

3
1 1 1 5= { }/ =Y X n X C∪ ∈ {1, 2,4,6},{1,3,4,6},{1,3,5,6},{2,3,5,6},{2,4,5,6}  

3
2 2 2 2 4= { 1}/1 ,Y X n X X C∪ − ∈ ∈  = {1, 2,3,5},{1, 2,4,5},{1,3,4,5} 

3
3 2 2 2 4= { }/1 ,Y X n X X C∪ ∉ ∈  = {2,3,4,6} 

Finally, 4
6C  = {1, 2,4,6},{1,3,4,6},{1,3,5,6},{2,3,5,6},{2,4,5,6}  

{1, 2,3,5},{1, 2,4,5},{1,3,4,5},{2,3,4,6} 
 
3. Neighborhood polynomial of cycle 
In this section we introduce and investigate the neighborhood polynomial of cycles.  
 
Definition 3.1. Let i

nC  be the family of neighborhood sets of a cycle nC  with cardinality 

i  and let 0( , ) =| |i
n nn C i C . Then the neighborhood polynomial ( , )nN C x  of nC  is 

defined as 
=

2

( , ) = ( , )
n i

nn ni
N C x n C i x

 ∑ . 

Theorem 3.2. (i) If i
nC  is the family of neighborhood set with cardinality i  of nC  then  

             1 1
1 2| |=| | | |i i i

n n nC C C− −
− −+  

(ii) For every 4n ≥ , 1 2( , ) = [ ( , ) ( , )]n n nN C x x N C x N C x− −+ with the intial values  
2 3 2

1 2 3( , ) = , ( , ) = 2 , ( , ) = 3 3N C x x N C x x x N C x x x x+ + + . 

Proof. (i) It follows from the theorem 2.6. 
       (ii) It follows from the (i) and definition.  

 
We obtain the coefficients of ( , )nN C x  for 1 12n≤ ≤  in the table 1.  

Let ( , ) =| |j
n nn C j C . There are relationships between the numbers ( , )( )

2n

n
n C j j n≤ ≤  

in the table 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n\ j 1 2 3 4 5 6 7 8 9 10 11 12 
1 1            
2 2 1           
3 3 3 1          
4 0 2 4 1         
5 0 0 5 5 1        
6 0 0 2 9 6 1       
7 0 0 0 7 14 7 1      
8 0 0 0 2 16 20 8 1     
9 0 0 0 0 9 30 27 9 1    
10 0 0 0 0 2 25 50 35 10 1   
11 0 0 0 0 0 11 55 77 44 11 1  
12 0 0 0 0 0 2 36 105 112 54 12 1 
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In the following theorem, we obtain some properties of ( , )nn C j : 

Theorem 3.3. The following properties hold for coeficients of ( , )nN C x : 

(i) For every 2, ( , ) = 2nn N n C n∈ . 

(ii) For every 0 0 1 0 24 , ( , ) = ( , 1) ( , 1)
2 n n n

n
n j n C j n C j n C j− −≥ ≥   − + − . 

(iii) For every 0 2 1, ( , 1) = 2 1nn N n C n n+∈ + +  

(iv) For every 0 2 2, ( , 1) = 2nn N n C n+∈ +  

(v) For every 0, ( , ) =1nn N n C n∈  

(vi) For every 0, ( , 1) =nn N n C n n∈ −  

(vii) For every 0

( 3)
, ( , 2) =

2n

n n
n N n C n

−∈ −  

(viii) For every 0

( 4)( 5)
, ( , 3) =

6n

n n n
n N n C n

− −∈ −  

(ix) For every 
= 2( 1)

0 02 = 1
> 2, ( , ) = 2 ( , 1)

i j j

i ij i j
j n C j n C j

−

−
−∑ ∑  

(x) If 0=
2

= ( , )
n

nn nj
S n C j

 ∑  then for every 6n ≥ ,  

1 2=n n nS S S− −+  with the intial values 1 2 3 4=1, = 3, = 7, = 7S S S S  and 5 =11S . 

Proof. (i) Since { }{ }{ }2 = 2,4,6,8...2 1,3,5,7...2 1n
nC n n −  we get the result 

0 2( , ) = 2nn C n . 

(ii) 1 2
1 1| |=| | | |i i i

n n nC C C− −
− −+  from this we get the result 4

2

n
n j≥ ≥    , 

           0 0 1 0 2( , ) = ( , 1) ( , 1)n n nn C j n C j n C j− −− + −  

(iii) By induction on n , the result is true of =1n , we get 

{ } { } { }{ }2
3 = 1,2 , 1,3 , 2,3C  This is true for all natural numbers less than n  and we prove 

it for n  by ( )( )i ii  and the induction we have,  

           0 2 1 0 2 0 2 1( , 1) = ( , ) ( , )n n nn C n n C n n C n+ −+ + = 2n+1. 

(iv) By induction on n . Since { }4
2 = (1,3), (2,4)C . So 0 4( ,2) = 2n C . This result is 

true for all natural numbers n  and we prove it for n  by ( ), ( )i ii  and ( )iii . 

          0 2 2 0 2 1 0 2( , 1) = ( , ) ( , )n n nn C n n C n n C n+ ++ + = 2. 

(v) For any graph with n  vertices, 0( , ) =1n G n , then we have the result. 

(vi) For any graph with n  vertices, 0( , 1) =n G n n− , then we have the result. 

(vii) By induction on n . This result is true for = 5n , Since 0 5( ,3) = 5.n C  Suppose 

that the result is true for all natural numbers less than n, and we prove it for n . By parts 
(ii),(vi),(v) and induction hypothesis we have,  
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          0 0 1 0 2( , 2) = ( , 3) ( , 3)n n nn C n n C n n C n− −− − + −  

                            
( 1)( 4)

= ( 2)
2

n n
n

− − + − ( 3)
=

2

n n −
 

(viii) By induction on n . This result is true for = 6n , Since 0 6( ,3) = 2n C . Suppose 

the result true for all natural numbers less than n  and prove it for n . By parts 
(ii),(iv),(vii) and induction hypothesis we have, 

0 0 1 0 2( , 3) = ( , 4) ( , 4)n n nn C n n C n n C n− −− − + −         
( 1)( 5)( 6) ( 2)( 5)

=
6 2

n n n n n− − − − −+     
( 4)( 5)

=
6

n n n− −
 

(ix) By induction on j . Suppose that = 2j . Then  
6 4

0 0=3 =2
( ,3) =12 = 2 ( ,2)i ii i

n C n C∑ ∑ . Now suppose that the result is true for every 

<j k , and we prove for = :j k   
2 2 2

0 0 1 0 2= = =
( , ) = ( , 1) ( , 1)

k k k

i i ii k i k i k
n C k n C k n C k− −− + −∑ ∑ ∑  

 
2( 1) 2( 1)

0 1 0 2= 1 = 1
= 2 ( , 2) 2 ( , 2)

k k

i ii k i k
n C k n C k

− −
− −− −

− + −∑ ∑
2( 1)

0= 1
= 2 ( , 1)

k

ii k
n C k

−

−
−∑  

(x) By the theorem 3.2 1 2
1 1| |=| | | |i i i

n n nC C C− −
− −+ , we have 

            0 0 1 0 2= = =
2 2 2

= ( , ) = ( , 1) ( , 1)
n n n

n n nn n n nj j j
S n C j n C j n C j− −     

− + −∑ ∑ ∑  

                
1 2

0 1 0 2= 1 = 1
2 2

= ( , ) ( , 1)
n n

n nn nj j
n C j n C j

− −
− − −  −

+ −∑ ∑  

            nS  1 2= n nS S− −+ . 
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