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1. Introduction

A mathematical frame work to describe the phenomehancertainty in real life
situation has been suggested by Zadeh in 1965 [29]. The tayarof replacing the
classical sets byadeh’'s fuzzy sets is that it gives more accurany precision in
theory and more efficiencand system compatibility in applications. The tlyeof
fuzzy graphs was independently developed by Rokefif®], Yeh and Bang [28] in
1975. Abdul Jabbaet al.[1] introduced theconcept of fuzzy planar graph. Interval
valued fuzzy planar graphs and interval valued Yurwal graph are defined by
Tarasankaet al. in [26]. Some properties of Interval valued fuzglanar graphs and
interval valued fuzzy dual graph are also studigthle authors. RecentlyAkram et al
introduced the concepts of bipolar fuzzy graphs mterval-valued fuzzy line graphs
[2,5,6,7,8] . Further he has defined length, distareccentricity, radius and diameter of
a bipolar fuzzy graph and has introduced the canoéself centered bipolar fuzzy
graphs[3]. The author has also introduced the qurafean antipodal intuitionistic fuzzy
graphand self median intuitionistic fuzzy graph of theem intuitionistic fuzzy graph
[4]. To model ecological problems, in 1968 Cohen [14] introdudbé notion of
competition graphs. Fuzzagompetition graph was introduced by Samanta and2Pal
Two generalizations ofuzzy competition graph as fuz&ycompetition graphs ang-
competition fuzzy graphs am@so defined by the same authors. In [21], Samenth
define another generalization @fizzy competition graph, calleth-step competition
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graph. Rosenfeld has obtained the fuzmyalogues of several basic graph-theoretic
concepts like bridges, paths, cycles, trees andhemiadness and established some of
their properties. He introduced the concepfafistancein fuzzy graphs and based on
this u- distance Bhattacharya [9] has introduced the ggtiscofeccentricity and center in
fuzzy graphs and the properties of this metric famther studied by Sunitha and
Vijyakumar [25]. Bhutani and Rosenfeld have introed the concepts of stroraycs
[11], fuzzy end nodes [13] and geodesics in fuaaphs [12]. Further studies based on
the g-distance are carried out by Sameena and Sunitfz2jrand [23]. The concepts of
g-peripheral nodesg-boundary nodes ang-interior nodes based agrdistance ware
introduced by Linda and Sunitha [16]. In this paperintroduce the idea of sum distance
in fuzzy graphs.

Section 2 contains preliminaries and in sectiosu8n distance in fuzzy graphs is
definedand proved that it is a metric. Based on this rogétcentricity, radius, diameter,
center in fuzzygraphs are defined. Necessary conditions for ayfggaph to be self
centered are obtained this section. By an example it is shown that a uaigccentric
node fuzzy graph with each nodeccentric need not be self centered. Sufficient
conditions for a fuzzy cycle to be self centetisdgiven in section 4. A necessary and
sufficient condition for a complete fuzzy graphb self centered is obtained in section 5.
In section 6 we have the embedding theorem i.estoaction of fuzzy graphG from a
given fuzzy grapMH such thakC(G)> = H. In section 7, it ishown by examples that
the center of a fuzzy tree need not be a fuzzydrekthat there arself centered fuzzy
trees. We have given three algorithms in sectiofri&t algorithm is togenerate an
adjacency matrix, second algorithm is to find sustathce from adjacency matrand the
third algorithm is to find out the eccentric noddsmeter and radius of a fuzzy gra@h
from the distance matrix.

2. Preliminaries
A fuzzy graph(f-graph) [18] is a triplé? : (V,0,1) whereV the vertex sety is a fuzzy

subsetof V andp is a fuzzy relation oa such that u(u, v) <o(u) A a(v) Vuyv € V. We
assume thay is finite and non empty is reflexive and symmetric. In all the exampids
chosen suitablyAlso we denote the underlying crisp graph [15[3y: (¢*, u*) wheres*
={ueV:og)> 0} andp* ={(u,v) €V xV : y(u,v) >0}. Here we assume* =V. A
fuzzy graptH : (V ,z,0) is called a partial fuzzy subgraph®f (V ,o,1) if 7(u) <o(u) Vu &
*ando( U,V < p(u,v) V(u,\) € »*. In particular we calH : (V,z,0) a fuzzy subgraph
of G : (V,o,W) if 7(U) = o(u) Vu € z* ando(u,V) =p(u,V) V (u,v) €o* and if in additiorr*
=¢*, thenH is called aspanning fuzzy subgraph & A weakest arc o6 : (V,o,J) is an
arc with least membership value. A p&fof lengthnis a sequence of distinct nodgs

u, .., u,such thatu(u_,u)> 0,i=1,23,...n and the degree of membership of a
weakest arc in the path is defineditssstrength. Ifu, = u, andn >3, thenP is called a
cycle and a cycl® is called a fuzzycycle (f-cycle) if it contains more than one wedkes
arc. Afuzzy graple : (V,o,l)is said to be complete Lifu,v) =a(u) Aa(V) ,Yu,vEo*.
Rosenfeld [19] has defingd-length of anyu-v path P as the sum of reciprocals of
arc weights irP and distance betweanandv called they-distance denoted g (u, V),
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asthe smallespi-length ofP. In a fuzzy graplG : (V,o,u), du(u, V) is a metric ov V

u,v € V. The strength of connectedness between two nodeslv is defined as the
maximumof the strengths of all paths betwaesndv and is denoted b ONNG(u,v) . A
u-v pathP is called a strongest-v path if its strength equals CONi{u, V). A fuzzy
graphG : (V,o,l) is connected if for every,v in ¥, CONNgG(u, V) > 0. Throughout
this, we assume thd is connected. An arc of a fuzzy graph is calledrsyrif its
weight is at least as great as #teength of connectedness of its end nodes whisn it
deleted and a - v path is called a strongath if it contains only strong arcs [11]. A
strong pathP from uto v is au—v geodesic ithere is no shorter strong path frento

v and the length of a—v geodesic is the geodeslistance fronu to v denoted bydg(u,

v) [12]. The geodesic eccentricity and geodesic areat a fuzzy graphG is also
discussed in [12]. Consider the fuzzy gra@hs: (V,,0,,1,) andG, : (V,,o,,l,) with o1*
=V, ando;* =V,. Anisomorphism [10] between two fuzzy gra@sandG, is a bijective
maph: V, —V, that satisfies,(u) = o,(h(u)) V ueV, andy,(u,Vv) =p,(h(u),h(v)) V u,v
€V, and is denoted bg, =G,.

An arc (,v) is a fuzzy bridge(f-bridge) d& if deletion of (1,v) reduces the strength
of connectedness between some pair of nodes [If)iv&lently, (1,V) is a fuzzy bridge
if and only if there exisk,ysuch that\,v) is an arc on every strongesty path. A node is
a fuzzy cutnode (f-cutnode) of if removal of it reduces the strength of connecéssn
between some other pair of nodes [19]. Equivalentlis a fuzzy cutnode if and only if
there existi,vdistinct from w such thatv is on every strongest-v path. A connected
fuzzy graphG : (V,o,1) is a fuzzy tree (f-tree) if it has a spanning fusmpgraph= : (V
,0,0), Which is a tree, wherfor all arcs (1,V) not inF there exists a path froonto v in
F whose strength is more thafu, V). Thus for all arcsy, V) which are not irF, u(u,

v) < CONNE (u, V). Dependingon theCONNgG(u, V) of an arc ¢, V) in a fuzzy graple,
strong arcs are further classified asstrong & f—strong and the remaining arcs are
termed asg—arcs [24] as follows. Note tha - (u, V) denotes the fuzzy subgraph &f
obtained by deleting the ang, {) from G.

Definition 2.1. An arc (i,V) in Gis calleda—strong ifp(u, ) > CONNG-(u,v)(u, V).
Definition 2.2. An arc (4,\) in Gis calleds-strong ifj(u, ) = CONNG—(u,v) (U, V).
Definition 2.3. Anarc (4,V) in Gis called a—arc ifu(u,v) < CONNG-(u,v)(u, V).

Definition 2.4. A o—arc (u,V) is called &* — arc ifu(u, V) > p(x, y) where K, y) is a weakest
arc ofG.

3. Sum distance in fuzzy graph
In [27], the authors define the distandie(v), o(v;)] between two nodes(v;) anda(v,)

in a fuzzy graph as the length of the shortest [ettween them, i.e.d[a(v,),a(v;)]
= Min[X;e~ 1(V, j)]. But this definition does not satisfy the triaeghequality (Fig.1).
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Figure l: Fuzzy grap

Remark 3.1. In Fig.1 consider the nodes andyv, , the two paths joining, andv, are
P, :v,-v,-v, andP, :v, -v, -v, —v,, of which the shortest path®s . Therefore by the
abovedefinition the distance between andv, is the length oP,. i.e. d(v;,Vv,) = 0.6.
Proceedingsimilarly we haved(v,, v,) = 0.41,d(v;, v,) = 0.01 andd(v,, v;) + d(v,, Vv,) =
0.42. Thend(v,, Vv,) >d(v,,V;) +d(v;,V,) , the triangular inequality is not satisfied. tden
the distancel given in the above definition is not a metric. Wedifiy this definition of
distance in [27] so that it is a metric.

Definition 3.2. LetG: (V,o,u) be a connected fuzzy graph. For any gathi, —u, —u, -

Uy = ..o -u,, length ofP is defined as the sum of the weights of the arcB ine.L(P) =
i u(ui—g,u) . Ifn=0, defineL(P) = 0 and fom>1,L(P) > 0. For any two nodes
uvinG,letP={ P, :P; isau—vpath, i = 1,2,3,.}. The sum distance between
u andyv is defined ads(u,v) = Min {L(P,) : P, €P,i=1,2,3...}.

Remark 3.3. If p(u,v) =1V (u,v) € u* thends(u, V) is the length of the shortest path as
in crisp graph.

Theorem 3.4. In a fuzzy graph G (V,o,1), &: V xV — [0,1] is a metric on V. i.e.

Yu,v,weV

(1) ds(u,v)>0Vu,veV

(2) ds(u,v=0ifand only if \=v
(3) ds(u,v=ds(v,u

(4) ds(u,wW<ds(u,\)+ds(v,w)

Proof: (1) and (2) follows from the definition. Next, smreversal of a path frooto vis
a pathfromvtouand vice versais(u, V) = ds(v, U). LetP, be au-v path such thats(u, v) =
L(P,) andP, be av-w path such thads(v, w) = L(P,). The patlP, followed byP, is au-
wwalk and since every walk contains one path, theresaist w path inG whose length
is at mostds(u, V) +ds(v, w). Thereforeds(u, w) <ds(u, ) + ds(v, w).

Definition 3.5. Let G : (V,o,1) be a connected fuzzy graph andudie a node of.
The eccentricitye(u) of u is the sum distance to a node farthest fnanThuse(u) =
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max{ds(u, V) : v € V}. For a nodey, each node at sum distareg) from uis an eccentric
node forudenotedbyu*. Gis a unique eccentric node (u.e.n) fuzzy graphéhenode i

has a unique eccentric node. The radi®) is the minimum eccentricity of the nodes,
whereas the diamete(G) is the maximum eccentricity. A nodeis a central node if
e(u) = r(G), andC(G) is the set ofall central nodes. The fuzzy subgraph induced by
C(G) denoted byC(G)> =H : (V,7,v) is called the center db. A connected fuzzy
graph G is self centered if each node is a cemwodle i.e.G=~ H. A nodeu is a
peripheral node iu) = d(G).

u 04

06 02 01

0.2 0.2 w

0.7

y 04 X
Figure 2: Eccentric nodes, Central nodes, Peripheral r

Example 3.6. In Figure 2ds(u, V) = 0.4, ds(u, w) = 0.5, ds(u, ¥ = 0.6, ds(u, y) = 0.3,ds(v,
w)= 0.1, ds(v, ¥ = 0.2,ds(v, y) = 0.2,ds(w, ¥ = 0.3,ds(w, y) = 0.3,dg(x, y) = 0.4 .
Thereforeg(u) = 0.6,u* =x, e(v) = 0.4,v* =u, e(w) = 0.5,w* =u, &X) = 0.6,x* =u, gy) =
0.4,y* = x. The central nodes aveandy. The peripheral nodes aneandx. Herer(G) =
0.4 andd(G) = 0.6 . Note that the f-graph in figure 2 is a.o. f-graph.

\%

0.2

y
Figure 3. Center of fuzzy graph in figure

Theorem 3.7. For any connected fuzzy graph G(V, o,1), the radius and diameter
satisfy (G) <d(G) < 2r(G).

Proof: r(G)<d(G) follows from the definition of radius and diametketw be a central
nodeof G. Thereforee(w) =r(G). Letuandv be two peripheral nodes @f Therefores(u)
=e(v)=d(G).

By triangle inequalityls(u, V) <ds(u, w) + ds(w, V)

i.e. d(G)<r(G) +r(G). d(G)<2r(G) . Thereforea (G) <d(G) < 2r(G).
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Theorem 3.8. For every two adjacent nodes u and v in a connefitedy graph G (V,

o,1), le(u)- &(v)|<1.

Proof: Assume without loss of generaligfu) > e(v). Letx be a node farthest fromn
i.e.e(u)=ds(u,X) <dsg(u,v)+ds(v,X), by triangle inequality. Therefosgu) <ds(u,v) + &(v),
sinceg(V) > dg(v, ¥. Sinceu andv are adjacent nodes we hadefu, V) < 1 . Therefore
eu)<1l+ev)=>0<egu)-eV)<1. Thereforeg(u)-e(Vv)[<1.

The above theorem can be generalized as follows.

Theorem 3.9. For every two nodes u and v in a connected fuzaghgG: (V,o,1), [e(u)

- e(V)|< dg(u,V).

Proof: Assume without loss of generaligfu) > e(v). Let x be a node farthest from
i.e.e(u) =ds(u, ¥ <ds(u, V) +ds(v, ¥ , by triangle inequality. Therefoesu) <ds(u,
V) + e(V), sinceg(v) >ds(v,X). i.e. 0<e(u) - e(v) <ds(u,V). .".|e(u)-e(Vv)|<ds(u,V).
Theorem 3.10. Let u and v be adjacent nodes in a connected fgraph G: (V,o,l),
then|ds(u, X - ds(v, X¥|<1 for every node x of G.

Proof: Let uandv be adjacent nodes 1@ and letx be any node o. Assumeds(u, X
> ds(v, ¥. Then by triangle inequality we hasdg(u, X) <ds(u, V) + ds(v, ¥. Sinceu andv
are adjacent nodeds(u, Y <1 +ds(v, ¥ = 0<ds(u, X - ds(v, X <1..". |ds(u, X - ds(v, X)|<
1.

Remark 3.11. For any two real numbers b such that < a <b < 2a, there exist a
fuzzy graphG such that(G) =aandd(G) =b.

u

®\\
v b

Figure4: Fuzzy grap

In figure 4,ds(u, V) =a, ds(u, w) =aandds(v,w) =b. Thene(u) =a, e(v) =bande(w)=b.
Thereforer(G) =aandd(G) =h.

Theorem 3.12. If G: (V,0,l) is a self centered fuzzy graph, then each nb@eis
eccentric.

Proof: AssumeG is self centered and latbe any node oB. Letv be an eccentric node
of ui.e.u* =v. Thene(u) =ds(u, V). SinceGis self centered we haeév) =e(u). Therefore
e(u)=ds(u, V) =eg(Vv) , which showslis an eccentric node of i.e. v*=u. Hence the proof.
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u 0.9 v
0.7 0.5

0.4 06

X 0.8 w

Figure5: Fuzzy graph which is not self cente

Remark 3.13. The condition in Theorem 3.12 is not sufficient.figure 5, each node is
eccentric buG is not self centered. HeréG) = 0.8 andd(G) = 0.9 andw andx are the
centralnodes

Theorem 3.14. If G : (V,0,l) is a self centered fuzzy graph, then for epaiy of nodes

u,v € G, ue vV* implies ve U*, where U*is the set of all eccentric nodes of u andi¥ *
the setof all eccentric nodes of v.

Proof: AssumeG is self centered and letv be any two nodes oB. Let u be an
eccentricnode ofv. i.e.ds(v, U = g(Vv), so we have € V*. Now required to prove that
U*. SinceG is self centered we haegv) = e(u). Also we havels(v, U) = ds(u, V) = &(V).

Thereforee(u) = ds(u, V) which showsr is an eccentric node ofi.e. v € U*. Hence the
proof.

Remark 3.15. The condition in Theorem 3.14 is not sufficient.figure 5 each node is
eccentric and we hawe =v, v* =uandw* =x, x* =wbutGis not self centered.

Remark 3.16. A unique eccentric node f-graph with each node mtciceneed not be self
centered. In figure Bach node is eccentric and each node has a urégeetgc node but
Gis not self centered.

u 0.2 u

0.5
0.4 01 0.5 q
0.2
0.4 q
0.2 - 0.t

X 0.2 W

Figure6: Fuzzy graptG: (V,o,l) <C(G)>

Remark 3.17. The center of a connected f-graph need not be ctetheas shown in
Figure 6 .
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Theorem 3.18. In a fuzzy graph G(V,,) all peripheral nodes are eccentric nodes.

Proof: Letube a peripheral node &. Thereforeg(u) = d(G) and there exist at least one
nodevin G such thag(u) =ds(u, V) = d(G). Therefores* = u, i.e. uis an eccentric node of
V.

Remark 3.19. The converse of Theorem 3.18 is not true. In fighre, v, w, xare
eccentricnodes but only andv are peripheral nodes.

Remark 3.20. There are fuzzy graphs with peripheral nodes agyfuit nodes. In
figure 2 ,nodesu andx are peripheral nodes as well as fuzzy cut nodete tat removal
of the nodau reduces strength of connectedness between the né@d&sand removal of
the nodexreducesstrength of connectedness between the nodeg.

u_ 0.2 v

0.2

X 0.5
Figure 7: Fuzzy cycle which is not self cente

Remark 3.21. A fuzzy cycle need not be self centered. In Figur€G) = 0.6 andi(G) =
0.7 and the central nodeus

4. Self centered fuzzy cycle
Using the concept gfi—eccentric nodes, in [25] Sunitha and Vijayakumas Iproved
the sufficient conditions for a fuzzy graph such thaiG* is a cycle to be self centered.
In this section, sufficient conditions for a cytbebe self centered based on sum distance is
discussed.
Theorem 4.1. Let G: (V,0,l) be a fuzzy graph with n nodes such that@h, cycle on
n nodes with arcs;& (u, ,u,,)i=12---,n-1land e = (u,,u,) . LetO< t<s<1 Then
G is self centered if
i) p(e)=tfori=2135,-,n-1, u(e)=sfori =24,6,--,n-2and We,) = swhen nis
even.
i) p(g)=sfori=135,--,n-2, y(e)=tfori =24,6,--,n—1land y(e,) = swhennis
odd and r=4k—1, where k=1,2,3, ---.
iii) p(e)=tfori=1,35,--,n-2, y(e) =sfori =24,6,---,n-1land We,) =t whennis
odd and r=4k+1, where k=1,2,3, -
Also,

(k+s),n=4korn=4k+1, k=123, -

r(G) = kt+s)—t,n=4k-1,k=1,2,3, -
(k+s)+t,n=4k+2, k=1,2,3, -
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Illustration 1. Taket=0.3 ands=0.4

Case 1nis even andh = 4k wherek = 1,2,r(C,) = 0.7 and (C;) = 1.4.

Uy 0.3 Uy
0.4
04
Uy 0.3 ]
Figure8: C,4

0.3 0.4
Uy Us
0.4 0.3

03 0.4

Us

Figure9: Cg

Case 2nis even andh = 4k + 2 wherek = 1,2,r(C;) = 1.0 and'(C,) = 1.7.

u5 0.4 uA

Figure 10: Cq

U

0.4 0.3

u
04 Us 0.3

Figure 11: Cy
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Case 3nis odd andh = 4k -1 wherek = 1,2,r(C;) = 0.4 and (C,;) = 1.1.

0.4
Uy Uy,
0.4 0.4 0.3
U, Us
U,
0.4 0 0.4
0.3
d 0.4 03
3 Us
Figure12: C; Figurel3: C,

Case 4nis odd andh = 4k + 1 wherek = 1,2,r(C;) = 0.7 and'(C,) = 1.4.

u 0.3

Up

Uy
Us
Uy 0.3 Uy 04
0.4 ' 03
Us
0.3 Us Uy
0.3
0.3 0.4
Us 0.4 Uy
0.4 ue 03
Figure 14: Cs Figure 15: Cq

5. Sum distance in complete fuzzy graph

In [17] Mini and Sunitha proved that any-v pathP in a CFG is a strongest path if and
only if either u or v is a weakest node in the path. In this section s prove a
necessary angufficient condition for all paths in a CFG to brosgest and then a
necessary and sufficient condition for a CFG tedlécentered.

Remark 5.1. A complete fuzzy graph need not be self centenediglire 16,r(G) = 0.3
andd(G) = 0.5 and the central nodelis

82



Sum Distance in Fuzzy Graphs

0.3)u 0.3 v(0.4)
0.3 0.4

Figure 16: Complete fuzzy graph which is not self cent

Theorem 5.2. Let G: (V,0,u) be a CFG witls* ={u,, u,, u,, ...y} such that(u,) <o(u,)<
o(uy)<:----=o(u,). Thenthe sum distance between any two nqedegin G is eitherfu; ,u)
or 2o(u,).

Proof: Let u;,u be any two nodes i . We haveds(u; ,u) = min{u(y;,u) , u(u; , u)
+ U(u,,u) }. SinceGis CFG we haveu(y; ,u) = a(u) A a(u,) . Also sinces(u,) < o(u,)
fori=23,--,n,whenk=1,u(y u,) =o(u;) andu(u, u) = o(u,) . Thereforeds(u, ,u) =

min{p(u, u), 20(u)}.

Theorem 5.3. Let G: (V,0,1) be a CFG on n nodes>3. All paths in G are strongest
paths if and only if there is at most one node w in Gihguifferent node strength and
o(w)>o(u) i=1,2,3;-,n-1.

Proof: LetG : (V,o,1) be a CFG . Assume all paths@are strongest paths. Suppose
3 two nodesv, win G having different strength. i.ea(v) # o(u) ando(w) # o(u), i
=1,2,3,--,n-2.

Case 15(u)<a(w)ands(u)<o(v),i=1,2,3,--,n-2.

LetP:w-u, —u,—....... -u,—Vv,k<n-2, be av—vpath. TherP is not a strongest -
v path since neithew norvis a weakest node P [17], contradiction.

Case 2 o(u)> o(w) ando(u,) > o(v) ,i=1,2,3,---,n— 2.

Let P be anyu -y, path,i,j = 1,2,3,-- ,n—2j #] with eitherv or was an internal node.
ThenP is not a strongest; —u, path since neitheg, nor u is a weakest node iR
[17], contradiction .

Case 3da(u)) < o(w) ands(u) > o(v),i=1,2,3,--,n—2.

Let P be anyy, —w path,i = 1,2,3,-- ,n—2, withv as an internal node. Théhis not a
strongesty, — w path since neithes, nor w is a weakest node iR [17], contradiction.
Hence there exist at most one neda G having different node strength. Next to prove
a(w) > o(u) i=1,2,3,--,n—1. Suppose not lex(w) < o(u) i = 1,2,3,-- ,n—-1.Then by case
2, we arrive at a contradiction. Hend) > o(u) i=1,2,3,--,n-1.

Conversely assume that there is at most onewau& having different node strength
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ando(w) > o(uj) i =1,2,3,--,n—1. Then any patR, joining any two nodes i is such
that at least one of the end node$adf a weakest node in the p&hand hencd is a
strongest patfil7].

Theorem 5.4. Let G: (V,0,u) be a CFG on n nodes>8. Then G is self centered if and
only if all paths in G are strongest paths.
Proof: LetG : (V,o,1) be a CFG . Assum@ is self centered. Then by Theorem 3.12,
eachnode ofGis eccentric. Also for any two noday in G, e(u) = e(v) =r(G) = d(G). If
possibleassume that all paths {& are not strongest paths. Therefore by Theorem 5.3,
there exist ateast two nodes, vwith different node strength and htbe an arbitrary
node inG such thats(w) is least. i.e. we hauwgw) < o(u) andas(w) < o(v). Also we have
MU, V) = o(u) A o(v) > o(w) andds(u, V) = min{ p(u, v) , 2o(w) } by Theorem 5.2.
Thereforeds(u, V) > o(w). Also we havee(u) = max{ds(u,\) :vE V} .

Therefore e(u) &(w) @)
Now, for any nodelin G we havgi(u, w) = o(w) and thereforéls(u, w) = a(w) by Theorem
5.2.
Thuse(w)=max{ds(w, U :ueV}=a(w) (2)
From (1) and (2§(u) > e(w), which contradicts our assumption tlitais self centered.
Hence all paths i are strongest paths.
Conversely assume all paths@are strongest paths. Since all path&iare strongest
paths, there is at most one nodésihaving different strength and the strength of saich
nodeis greater than the strength of all other nodeS by Theorem 5.3. Hence all arcs
in G havesame strength. Alsds(u, V) = (u, V) Yu, vby Theorem 5.2. Hence for any two
nodeu, vin G,e(u) =gVv). Thereforesis self centered.

6. Embedding Theorem
In this section, we shall consider the constructidna fuzzy graphG from a fuzzy
graphH such thak C(G) > =H.

Theorem 6.1. H : (V,o', ) be a fuzzy graph. Then there exists a connédciery
graph G: (V,o,l) such that < @G) > =~ H.

Proof: Let 0 <c= Ag'(u). Construct a fuzzy grap®: (V,o,)) fromH as follows. Take
four newnodesu,,u,Vv,,v, and puts* =¢™* U { u, u,, v, v, } wheres = ¢’ for all nodes
winH, u=p'’ for all arcs (,V) in H. Leta(u) =o(v) =t (t<c),i = 1,2; u(u,, w,) = p(vy,
V,) = tandp(u,, w) =p(v;, w) =t V w € H. Then clearlyG : (V,o,) is a fuzzy graph and
ew)=22VweHande(u,) = ev,) = 3ande(u,) = &V,) = 4. Thus< C(G) > =H and
r(G) = 2 andd(G) = 4t.
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u (0.4)
0.2
0. w (0.6) v
(0.1)
0.5
v (0.5)

Figurel7: H: (V,o',W)

7. Center of afuzzy tree

u (0.4)

U
(0.1)

v (0.5)
Figure18: G : (Vgo,u)where< C(G) > = H.

A study ofp- distance in a fuzzy graph : (V,o,l), which is a fuzzy tree is carried out
in [25]. In this section a similar study is carried on fuzzy trees using sum distance.

Remark 7.1. It is well known that center of a tree is eitlgror K,. But, for a fuzzy
tree itneed not be so as in figure 19.

u 0.6a v
ba
0.7 04
7| oa 03
)
w 0.6 a X

0.2

Figure 19: Fuzzy TreeG : (Vpo,U)

<C(G)>

Remark 7.2. In fact, there are self centered fuzzy trees.daré 20G: (V,o,M) is an f-
tree which is self centered wit(u;) = 0.5 ,i =0,1,2,3.

uo 02 5 Uy
0.5 0.5
a o
03 0.3
5 1)
Us 05 «a Uz

Figure 20: Self centered fuzzy tr
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Remark 7.3. The center of a fuzzy tree need not be a fuzzy (fégure 19). Note
that anf-graphG: (V,o,1) is an f-tree if and only if it has gi-strong arcs [24].

8. Algorithm
In this section we present three algorithms. Get(V, o,11) be a connected fuzzy graph
with n nodesu,, u;, W, - -+ - , Uy Letp(ui, u) be the arc strength. First algorithm is to

generatehe adjacency matri& = (a;) where

a = [Hu,u), i#]
0,i=j

Note that in the adjacency matrix, any non zeronelet other than the diagonal
element isreplaced by, the number of nodes @, to apply the second algorithm.

Second algorithm is to find sum distance matrixfithe adjacency matrix.

Third algorithm is to find out the eccentricitieltloe nodes, diameter and radius of a
fuzzy graphG from the distance matrix.

Algorithm 8.1: ADJACENCY (@, n

Comment: Input : ais an array representing strength of arcs in tip@ph

Comment: Input : nis number of nodes of the f-graph
fori<—0Oton-1

[ for j —Oton—-1

(ifj=i
then ali,j] <0
if j>i
do <do < (a[i,j] «arc strength
dse { if ali,j =0
then then afi,j] < n
L \ k afj,i] «ali,j]

Algorithm 8.2: DISTANCE MATRIX(a, 1)

Comment: Input : ais an array representing elements of the adjaceratsix
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Comment: Input : nis number of nodes of the f-graph

for k—Oton-1
[ for i <—0Oton-1

( mtemp—0

forj«<—0Oton-1

if j>i
do <do < [ mtempea[i K] + a[k,j]

do if mtemp<ali,j]

then then a[i,j « mtemp

afj,i] —ali]]
AN

\
The complexity of this algorithm @(n3).

Algorithm 8.3: ECCENTRICITY(@, n)

Comment: Input : ais an array representing elements of the distaratexm
Comment: Input : nis number of nodes of the f-graph

for i<~ Oton-1

max—0
for j < Oton-1

if a[i,j] >max
do then max<ai,j]
do | eJ[i] «max
ifi =0
then | dia < eJi]
rad — eJi]
if e[i] > dia
else then dia < e€][i]

if e[i] < rad

then rad <« e€[i]
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The complexity of this algorithm '@(nz).

9. Conclusion

The idea of sum distance which is a metric, in azyugraph is introduced. The
concepts ofccentricity, radius, diameter, center, self catdrgraphs etc. are studied
using this metric. Acharacterization of self centered complete fuzaphris obtained
and conditions under which a fuzzy cycle is seliteeed are established. A necessary
and sufficient condition for all pathin a CFG withn > 3 to be strongest paths is
obtained. It is shown by an example that centea fiizzy tree need not be a fuzzy tree
and there are self centered fuzzy trees. Also dgalitheonstruction of a fuzzy graph
G from a given fuzzy graphi such that<C(G)> = H. An algorithm is developed to
find sum distance matrix of a fuzzy graph.
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