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1. Introduction 
A mathematical frame work to describe the phenomena of uncertainty in real life 
situation has been suggested by Zadeh in 1965 [29]. The advantage of replacing the 
classical sets by Zadeh’s fuzzy sets is that it gives more accuracy and precision in 
theory and more efficiency and system compatibility in applications. The theory of 
fuzzy graphs was independently developed by Rosenfeld [19], Yeh and Bang [28] in 
1975. Abdul Jabbar et al. [1] introduced the concept of fuzzy planar graph. Interval 
valued fuzzy planar graphs and interval valued fuzzy dual graph are defined by 
Tarasankar et al. in [26]. Some properties of Interval valued fuzzy planar graphs and 
interval valued fuzzy dual graph are also studied by the authors. Recently,  Akram et al.  
introduced the concepts of bipolar fuzzy graphs and interval-valued fuzzy line graphs 
[2,5,6,7,8] . Further he has defined length, distance, eccentricity, radius and diameter of 
a bipolar fuzzy graph and has introduced the concept of self centered bipolar fuzzy 
graphs[3]. The author has also introduced the concept of an antipodal intuitionistic fuzzy 
graph and self median intuitionistic fuzzy graph of the given intuitionistic fuzzy graph 
[4]. To model ecological problems, in 1968 Cohen [14] introduced the notion of 
competition graphs. Fuzzy competition graph was introduced by Samanta and Pal [20]. 
Two generalizations of fuzzy competition graph as fuzzy k-competition graphs and p-
competition fuzzy graphs are also defined by the same authors. In [21], Samanta et al.  
define another generalization of fuzzy competition graph, called m-step competition 
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graph. Rosenfeld has obtained the fuzzy analogues of several basic graph-theoretic 
concepts like bridges, paths, cycles, trees and connectedness and established some of 
their properties. He introduced the concept of µ-distance in fuzzy graphs and based on 
this µ- distance Bhattacharya [9] has introduced the concepts of eccentricity and center in 
fuzzy graphs and the properties of this metric are further studied by Sunitha and 
Vijyakumar [25]. Bhutani and Rosenfeld have introduced the concepts of strong arcs 
[11], fuzzy end nodes [13] and geodesics in fuzzy graphs [12]. Further studies based on 
the g-distance are carried out by Sameena and Sunitha in [22] and [23]. The concepts of 
g-peripheral nodes, g-boundary nodes and g-interior nodes based on g-distance ware 
introduced by Linda and Sunitha [16]. In this paper we introduce the idea of sum distance 
in fuzzy graphs. 

Section 2 contains preliminaries and in section 3, sum distance in fuzzy graphs is 
defined and proved that it is a metric. Based on this metric, eccentricity, radius, diameter, 
center in fuzzy graphs are defined. Necessary conditions for a fuzzy graph to be self 
centered are obtained in this section. By an example it is shown that a unique eccentric 
node fuzzy graph with each node eccentric need not be self centered. Sufficient 
conditions for a fuzzy cycle to be self centered is given in section 4. A necessary and 
sufficient condition for a complete fuzzy graph to be self centered is obtained in section 5. 
In section 6 we have the embedding theorem i.e. construction of fuzzy graph G from a 
given fuzzy graph H such that <C(G)> ≈ H. In section 7, it is shown by examples that 
the center of a fuzzy tree need not be a fuzzy tree and that there are self centered fuzzy 
trees. We have given three algorithms in section 8. First algorithm is to generate an 
adjacency matrix, second algorithm is to find sum distance from adjacency matrix and the 
third algorithm is to find out the eccentric nodes, diameter and radius of a fuzzy graph G 
from the distance matrix. 

 
2. Preliminaries 
A fuzzy graph(f-graph) [18] is a triplet G : (V,σ,µ) where V the vertex set, σ is a fuzzy 

subset of V and µ is a fuzzy relation on σ such that  µ(u, v) ≤ σ(u) ∧ σ(v) ∀u,v ∈ V . We 
assume that V is finite and non empty, µ is reflexive and symmetric. In all the examples σ is 
chosen suitably. Also we denote the underlying crisp graph [15] by G* : (σ*, µ*) where σ*  

= {u ∈ V : σ(u) > 0} and µ* = {(u, v) ∈ V x V : µ(u, v) >0}. Here we assume σ*  = V . A 

fuzzy graph H : (V ,τ ,υ) is called a partial fuzzy subgraph of G : (V ,σ,µ) if τ (u) ≤ σ(u) ∀u ∈ 

τ*  and υ( u, v) ≤  µ(u, v) ∀(u, v) ∈ υ* . In particular we call H : (V ,τ ,υ) a fuzzy subgraph 

of G : (V,σ,µ) if τ (u) = σ(u) ∀u ∈ τ *  and υ(u, v) = µ(u, v) ∀(u, v) ∈ υ*  and  if  in addition τ * 

= σ* , then H is called a spanning fuzzy subgraph of G. A weakest arc of G : (V, σ,µ) is an 
arc with least membership value. A path P of length n is a sequence of distinct nodes u0, 
u1,  … , un such that µ(ui-1 ,ui)> 0, i = 1,2,3,…,n and the degree of membership of a 
weakest arc in the path is defined as its strength. If u0 = un and n ≥ 3, then P is called a 
cycle and a cycle P is called a fuzzy cycle (f-cycle) if it contains more than one weakest 

arc. A fuzzy graph G : (V ,σ,µ)is said to be complete  if µ(u ,v) = σ(u) ∧ σ(v) , ∀u ,v ∈ σ* . 
Rosenfeld [19]  has defined µ-length of any u−v path P as the sum of reciprocals of 
arc weights in P and distance between u and v called the µ-distance denoted by dµ(u, v), 
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as the smallest µ-length of P.  In a fuzzy graph G : (V,σ,µ), dµ(u, v) is a metric on V ∀ 

u,v ∈ V . The strength of connectedness between two nodes u and v is defined as the 
maximum of the strengths of all paths between u and v and is denoted by CONNG(u,v) . A 
u − v path P is called a strongest u−v path if its strength equals CONNG(u, v). A fuzzy 
graph G : (V, σ,µ) is connected if for every u,v in σ* , CONNG(u, v) > 0. Throughout 
this, we assume that G is connected. An arc of a fuzzy graph is called strong if its 
weight is at least as great as the strength of connectedness of its end nodes when it is 
deleted and a u − v path is called a strong path if it contains only strong arcs [11]. A 
strong path P from u to v is a u − v geodesic if there is no shorter strong path from u to 
v and the length of a u − v geodesic is the geodesic distance from u to v denoted by dg (u, 
v) [12]. The geodesic eccentricity and geodesic center of a fuzzy graph G is also 
discussed in [12]. Consider the fuzzy graphs G1 : (V1, σ1,µ1) and G2 : (V2, σ2,µ2) with σ1*  

= V1 and σ2*
 = V2. An isomorphism [10] between two fuzzy graphs G1 and G2 is a bijective  

map h : V1 → V2 that satisfies σ1(u)  =  σ2(h(u)) ∀ u ∈ V1 and µ1(u, v)  = µ2(h(u), h(v)) ∀ u, v 

∈ V1 and  is denoted by G1 ≈ G2.  
An arc (u,v) is a fuzzy bridge(f-bridge) of G if deletion of (u,v) reduces the strength 

of connectedness between some pair of nodes [19]. Equivalently, (u,v) is a fuzzy bridge 
if and only if there exist x,y such that (u,v) is an arc on every strongest  x − y path. A node is 
a fuzzy cutnode (f-cutnode) of G if removal of it reduces the strength of connectedness 
between some other pair of nodes [19]. Equivalently, w is a fuzzy cutnode if and only if 
there exist u,v distinct from w such that w is on every strongest u − v path. A connected 
fuzzy graph G : (V ,σ,µ) is a fuzzy tree (f-tree) if it has a spanning fuzzy subgraph F : (V 
,σ,υ), which is a tree, where for all arcs (u, v) not in F there exists a path from u to v in 
F whose strength is more than µ(u, v). Thus for all arcs (u, v) which are not in F, µ(u, 
v) < CONNF (u, v). Depending on the CONNG(u, v) of an arc (u, v) in a fuzzy graph G, 
strong arcs are further classified as α−strong & β−strong and the remaining arcs are 
termed as δ−arcs [24] as follows. Note that G − (u, v) denotes the fuzzy subgraph of G 
obtained by deleting the arc (u, v) from G. 

Definition 2.1. An arc (u, v) in G is called α−strong if µ(u, v) > CONNG−(u,v)(u, v). 

Definition 2.2. An arc (u, v) in G is called β−strong if µ(u, v) = CONNG−(u,v)(u, v).  

Definition 2.3. An arc (u, v) in G is called a δ−arc if µ(u, v) < CONNG−(u,v)(u, v). 

Definition 2.4. A δ−arc (u, v) is called a δ* − arc if µ(u, v) > µ(x, y) where (x, y) is a weakest 
arc of G. 

3. Sum distance in fuzzy graph 
In [27], the authors define the distance d[σ(vi), σ(vj )] between two nodes σ(vi) and σ(vj ) 
in a fuzzy graph as the length of the shortest path between them, i.e.   d[σ(vi), σ(vj )] 

= Min[Σi,j∈^ µ(vi, vj)]. But this definition does not satisfy the triangle inequality (Fig.1). 
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Remark 3.1. In Fig.1 consider the nodes v1 and v4 , the two paths joining v1 and v4 are 
P1 : v1 − v2 − v4 and P2 : v1 − v2 − v3 − v4, of which the shortest path is P1 . Therefore by the 
above definition the distance between v1 and v4 is the length of P1. i.e. d(v1, v4) = 0.6. 
Proceeding similarly we have d(v1, v3) = 0.41, d(v3, v4) = 0.01 and d(v1, v3) + d(v3, v4) = 
0.42. Then d(v1, v4)  > d(v1, v3) + d(v3, v4) , the triangular inequality is not satisfied. Hence 
the distance d given in the above definition is not a metric. We modify this definition of 
distance in [27] so that it is a metric. 

Definition 3.2. Let G : (V, σ,µ) be a connected fuzzy graph. For any path P : u0 − u1 − u2 − 
u3 − …… − un , length of P is defined as the sum of the weights of the arcs in  P  i.e. L(P) = 
 ∑ µ�����, ��	 


��� . If n = 0, define L(P) = 0 and for n ≥ 1, L(P) > 0.  For any two nodes 
u,v in G, let P ={  Pi : Pi  is a u – v  path, i = 1,2,3, … }. The sum distance between 

u and v is defined as ds(u, v) = Min {L(Pi) : Pi ∈P, i = 1,2,3, … }.  

Remark 3.3. If µ(u, v) = 1 ∀ (u, v) ∈ µ* then ds(u, v) is the length of the shortest path as 
in crisp graph. 

Theorem 3.4. In a fuzzy graph G : (V, σ,µ), ds : V × V → [0, 1] is a metric on V . i.e. 

∀u, v, w ∈ V 
(1) ds(u, v) ≥ 0 ∀ u, v ∈ V 
(2) ds(u, v)= 0 if and only if u = v 
(3) ds(u, v) = ds(v, u) 
(4) ds(u, w)≤ ds(u, v) + ds(v, w) 

Proof: (1) and  (2) follows from the definition. Next, since reversal of a path from u to v is 
a path from v to u and vice versa, ds(u, v) = ds(v, u). Let P1 be a u − v path such that ds(u, v) = 
L(P1) and P2 be a v − w path such that ds(v, w) = L(P2). The path P1 followed by P2 is a u − 
w walk and since every walk contains one path, there exists a u − w path in G whose length 
is at most ds(u, v) + ds(v, w).Therefore, ds(u, w) ≤ ds(u, v) + ds(v, w). 

Definition 3.5. Let G : (V, σ,µ) be a connected fuzzy graph and let u be a node of G. 
The eccentricity e(u) of u is the sum distance to a node farthest from u. Thus e(u) = 

0.01 

v4 

v3 

v1 0.4 

0.2 

0.01 

v2 

Figure 1: Fuzzy graph 
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max{ds(u, v) : v ∈ V }. For a node u, each node at sum distance e(u) from u is an eccentric 
node for u denoted by u*. G is a unique eccentric node (u.e.n) fuzzy graph if each node in G 
has a unique eccentric node. The radius r(G) is the minimum eccentricity of the nodes, 
whereas the diameter d(G) is the maximum eccentricity. A node u is a central node if 
e(u) = r(G), and C(G) is the set of all central nodes. The fuzzy subgraph induced by 
C(G) denoted by <C(G)> = H : (V, τ ,υ) is called the center of G. A connected fuzzy 
graph G is self centered if each node is a central node i.e. G≈ H. A node u is a 
peripheral node if e(u) = d(G). 

 
Example 3.6. In Figure 2, ds(u, v) = 0.4,  ds(u, w) = 0.5,  ds(u, x) = 0.6,  ds(u, y) = 0.3, ds(v, 
w)= 0.1, ds(v, x) = 0.2, ds(v, y) = 0.2, ds(w, x) = 0.3, ds(w, y) = 0.3, ds(x, y) = 0.4 . 
Therefore e(u) = 0.6, u* = x, e(v) = 0.4, v* = u, e(w) = 0.5, w* = u, e(x) = 0.6, x* = u, e(y) = 
0.4, y* = x. The central nodes are v and y. The peripheral nodes are u and x. Here r(G) = 
0.4 and d(G) = 0.6 . Note that the f-graph in figure 2 is a u.e.n. f-graph. 

 

Theorem 3.7. For any connected fuzzy graph G : (V, σ,µ), the radius and diameter 
satisfy r(G) ≤ d(G) ≤ 2r(G). 

Proof:  r(G) ≤ d(G) follows from the definition of radius and diameter. Let w be a central 
node of G. Therefore e(w) = r(G). Let u and v be two peripheral nodes of G. Therefore e(u) 
= e(v)= d(G). 
By triangle inequality ds(u, v) ≤ ds(u, w) + ds(w, v) 
i.e. d(G) ≤ r(G) + r(G) . d(G) ≤ 2r(G) . Therefore r(G) ≤ d(G) ≤ 2r(G). 

0.2 

y 

v 

Figure 3: Center of fuzzy graph in figure 2 
Fuzzy graph 

0.4 

0.7 

0.1 

0.3 

0.4 
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0.2 

0.6 

y x 

w 

v u 

Figure 2: Eccentric nodes, Central nodes, Peripheral nodes 
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Theorem 3.8. For every two adjacent nodes u and v in a connected fuzzy graph G : (V, 
σ,µ), |e(u) - e(v)| ≤ 1. 

Proof: Assume without loss of generality e(u) ≥ e(v). Let x be a node farthest from u. 
i.e. e(u) = ds(u,x)  ≤  ds(u,v) + ds(v,x) , by triangle inequality. Therefore e(u) ≤ ds(u,v) + e(v), 
since e(v) ≥ ds(v, x). Since u and v are adjacent nodes we have ds(u, v) ≤ 1 . Therefore 

e(u) ≤ 1 + e(v) ⇒ 0 ≤ e(u) - e(v) ≤ 1.    Therefore,  |e(u) - e(v)| ≤ 1. 
The above theorem can be generalized as follows. 

Theorem 3.9. For every two nodes u and v in a connected fuzzy graph G : (V, σ,µ),  |e(u) 
- e(v)|       ≤                                   ds(u,v). 

Proof: Assume without loss of generality e(u) ≥ e(v). Let x be a node farthest from u. 
i.e. e(u) = ds(u, x) ≤ ds(u, v) + ds(v, x) , by triangle inequality. Therefore e(u) ≤ ds(u, 

v) + e(v), since e(v) ≥ ds(v,x). i.e. 0 ≤ e(u) - e(v) ≤ ds(u, v).   ∴ |e(u) - e(v)| ≤ ds(u, v). 
Theorem 3.10. Let u and v be adjacent nodes in a connected fuzzy graph G : (V, σ,µ), 
then |ds(u, x) - ds(v, x)| ≤ 1 for every node x of G. 
Proof: Let u and v be adjacent nodes in G and let x be any node of G. Assume ds(u, x) 
≥ ds(v, x). Then by triangle inequality we have ds(u, x) ≤ ds(u, v) + ds(v, x). Since u and v 

are adjacent nodes ds(u, x) ≤ 1 + ds(v, x) ⇒ 0 ≤ ds(u, x) - ds(v, x) ≤ 1. ∴ |ds(u, x) - ds(v, x)| ≤ 
1. 
 
Remark 3.11. For any two real numbers a, b such that 0 < a ≤ b ≤ 2a, there exist a 
fuzzy graph G such that r(G) = a and d(G) = b. 

  

In figure 4, ds(u, v) = a , ds(u, w) = a and ds(v, w) = b. Then e(u) = a, e(v) = b and e(w) = b . 
Therefore r(G) = a and d(G) = b. 

Theorem 3.12. If G : (V, σ,µ) is a self centered fuzzy graph, then each node of G is 
eccentric. 
Proof: Assume G is self centered and let u be any node of G. Let v be an eccentric node 
of u i.e. u* = v. Then e(u) = ds(u, v). Since G is self centered we have e(v) = e(u). Therefore 
e(u)= ds(u, v) = e(v) , which shows u is an eccentric node of  v  i.e. v*= u. Hence  the  proof. 

v 

Figure 4: Fuzzy graph 

  a 

  b 
w 

0.

  a 

u  
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Remark 3.13. The condition in Theorem 3.12 is not sufficient. In figure 5, each node is 
eccentric but G is not self centered. Here r(G) = 0.8 and d(G) = 0.9 and w and x are the 
central nodes 

 
Theorem 3.14. If G : (V, σ,µ) is a self centered fuzzy graph, then for every pair of nodes 

u,v ∈ G, u ∈ V* implies v ∈ U*, where U *  is the set of all eccentric nodes of u and V * is 
the set of all eccentric nodes of v. 
Proof: Assume G is self centered and let u,v be any two nodes of G. Let u be an 
eccentric node of v. i.e. ds(v, u) = e(v), so we have u ∈ V*.  Now  required  to prove that v ∈ 
U* . Since G is self centered we have e(v) = e(u). Also we have ds(v, u) = ds(u, v) = e(v). 

Therefore e(u) = ds(u, v) which shows v is an eccentric node of u i.e. v ∈ U* . Hence the 
proof. 

Remark 3.15. The condition in Theorem 3.14 is not sufficient. In figure 5 each node is 
eccentric and we have u* = v, v* = u and w* = x, x* = w but G is not self centered. 

Remark 3.16. A unique eccentric node f-graph with each node eccentric need not be self 
centered. In figure 5 each node is eccentric and each node has a unique eccentric node but 
G is not self centered. 

 

Remark 3.17. The center of a connected f-graph need not be connected as shown in 
Figure 6 . 

q 

w 

   Figure 6: Fuzzy graph G : (V, σ,µ)                                           <C(G)> 
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Figure 5: Fuzzy graph which is not self centered 
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Theorem 3.18. In a fuzzy graph G : (V, σ,µ) all peripheral nodes are eccentric nodes. 

Proof: Let u be a peripheral node of G. Therefore e(u) = d(G) and there exist at least one 
node v in G such that e(u) = ds(u, v) = d(G). Therefore v*  = u,  i.e. u is an eccentric node of 
v. 

Remark 3.19. The converse of Theorem 3.18 is not true. In figure 5, u, v, w, x are 
eccentric nodes but only u and v are peripheral nodes. 

Remark 3.20. There are fuzzy graphs with peripheral nodes as fuzzy cut nodes. In 
figure 2 , nodes u and x are peripheral nodes as well as fuzzy cut nodes. Note that removal 
of the node u reduces strength of connectedness between the nodes v & x and removal of 
the node x reduces strength of connectedness between the nodes u & y . 

 

Remark 3.21. A fuzzy cycle need not be self centered. In Figure 7, r(G) = 0.6 and d(G) = 
0.7 and the central node is u. 

 
4. Self centered fuzzy cycle 
Using the concept of µ−eccentric nodes, in [25] Sunitha and Vijayakumar has proved 
the sufficient conditions for a fuzzy graph G such that G* is a cycle to be self centered.  
In this section, sufficient conditions for a cycle to be self centered based on sum distance is 
discussed. 
Theorem 4.1. Let G : (V, σ,µ) be a fuzzy graph with n nodes such that G* ≈ Cn, cycle on 
n nodes with arcs ei = (ui , ui+1) i = 1, 2, · · · , n − 1 and en = (un , u1) . Let 0 < t < s ≤ 1. Then 
G is self centered if 
i) µ(ei) = t for i = 1, 3, 5, · · · , n − 1 , µ(ei) = s for i = 2, 4, 6, · · · , n − 2 and µ(en) = s when n is 
even. 
ii) µ(ei) = s for i = 1, 3, 5, · · · , n − 2 , µ(ei) = t for i = 2, 4, 6, · · · , n − 1 and µ(en) = s when n is 
odd and n = 4k − 1, where k = 1, 2, 3, · · · . 
iii) µ (ei) = t for i = 1, 3, 5, · · · , n − 2 , µ(ei) = s for i = 2, 4, 6, · · · , n − 1 and µ(en) = t when n is 
odd and n = 4k + 1 , where k = 1, 2, 3, · · · . 
Also, 
                            k(t + s) , n = 4k or n = 4k + 1, k = 1, 2, 3, · · · 

    r(G) =           k(t + s) − t , n = 4k − 1, k = 1, 2, 3, · · · 

                            k(t + s) + t, n = 4k + 2, k = 1, 2, 3, · · · 

Figure 7: Fuzzy cycle which is not self centered 
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Illustration 1. Take t = 0.3 and s = 0.4 

Case 1. n is even and n = 4k where k = 1,2, r(C4) = 0.7 and r(C8) = 1.4. 
 

 

Case 2. n is even and n = 4k + 2 where k = 1,2, r(C6) = 1.0 and r(C10) = 1.7. 
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Figure 11: C10 
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Case 3. n is odd and n = 4k − 1 where k = 1,2, r(C3) = 0.4 and r(C7) = 1.1. 
 

 

Case 4. n is odd and n = 4k + 1 where k = 1,2, r(C5) = 0.7 and r(C9) = 1.4. 
 

 

5. Sum distance in complete fuzzy graph 
In [17] Mini and Sunitha proved that any u − v path P in a CFG is a strongest path if and 
only if either u or v is a weakest node in the path. In this section we first prove a 
necessary and sufficient condition for all paths in a CFG to be strongest and then a 
necessary and sufficient condition for a CFG to be self centered. 
 
Remark 5.1. A complete fuzzy graph need not be self centered. In figure 16, r(G) = 0.3 
and d(G) = 0.5 and the central node is u. 
 

0.3 

u1 

u8 

0.3 

u3 

0.3 

u9 

0.4 

0.3 

0.4 

0.4 

0.3 

u4 

0.4 

0.3 

u7 

u6 

u5 

u2 

Figure 15: C9 

0.4 

0.4 

0.3 

0.3 

u5 u4 

u3 

u2 u1 

Figure 14: C5 

u2 

u3 

u1 

0.4 

0.3 

0.4 

0.4 
u1 

Figure 13: C7 

u7 

0.4 

0.3 

0.4 0.3 

0.3 

u3 

0.4 

u6 

u5 

u4 

u2 

Figure 12: C3 



Sum Distance in Fuzzy Graphs 

83 
 

 
 

 
Theorem 5.2. Let G : (V, σ,µ) be a CFG with σ*  = { u1, u2, u3, ...un} such that σ(u1) ≤ σ(u2)≤ 
σ(u3) ≤ · · · · · · ≤ σ(un). Then the sum distance between any two nodes ui, uj in G is eitherµ(ui ,uj ) 
or 2σ(u1). 
Proof: Let ui , uj be any two nodes in G .  We have ds(ui , uj) = min{µ(ui , uj) , µ(ui , uk ) 

+ µ(uk,,uj ) }. Since G is CFG we have µ(ui ,uk ) = σ(ui) ∧ σ(uk ) . Also since σ(u1) ≤ σ(ui) 
for i = 2,3,· · · ,n ,when k = 1, µ(ui ,u1) = σ(u1) and µ(u1, uj ) = σ(u1) . Therefore ds(ui ,uj) = 
min{µ(ui , uj), 2σ(u1)}. 
 
Theorem 5.3. Let G : (V, σ,µ) be a CFG on n nodes, n ≥3. All paths in G are strongest 
paths if and only if there is at most one node w in G having different node strength and 
σ(w) > σ(ui) i = 1,2,3,· · · ,n − 1. 
Proof: Let G : (V, σ,µ) be a CFG . Assume all paths in G are strongest paths. Suppose 
∃ two nodes v, w in G having different strength.  i.e.  σ(v) ≠ σ(ui) and σ(w) ≠ σ(ui), i  
= 1, 2, 3, · · · , n − 2. 
Case 1 : σ(ui) < σ(w) and σ(ui) < σ(v) , i = 1, 2, 3, · · · , n − 2. 

Let P : w − u1 − u2 − ....... − uk − v , k ≤ n − 2 , be a w − v path. Then P is not a strongest w − 
v path since neither w nor v is a weakest node in P [17], contradiction. 

Case 2 : σ(ui) > σ(w) and σ(ui) > σ(v) , i = 1, 2, 3, · · · , n − 2. 

Let P be any ui − uj path, i, j = 1,2,3,· · · ,n − 2 ,i ≠ j with either v or w as an internal node. 
Then P is not a strongest ui − uj path since neither ui nor uj is a weakest node in P  
[17], contradiction . 
 
Case 3 :σ(ui) < σ(w) and σ(ui) > σ(v) , i = 1, 2, 3, · · · , n − 2. 

Let P be any ui − w path, i = 1,2,3,· · · ,n − 2 , with v as an internal node. Then P is not a 
strongest ui − w path since neither ui nor w is a weakest node in P [17], contradiction. 
Hence there exist at most one node w in G having different node strength. Next to prove 
σ(w) > σ(ui)  i = 1,2,3,· · · ,n − 1. Suppose not let, σ(w) < σ(ui) i = 1,2,3,· · · ,n − 1.Then by case 
2, we arrive at a contradiction. Hence σ(w) > σ(ui)  i = 1,2,3,· · · ,n − 1. 

Conversely assume that there is at most one node w in G having different node strength 

0.5 

0.3 

0.3 

0.4 

0.4 

0.3 

(0.6)x w(0.5) 

v(0.4) (0.3) u 

Figure 16: Complete fuzzy graph which is not self centered 
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and σ(w) > σ(ui)  i   = 1,2,3,· · · ,n − 1. Then any path P , joining any two nodes in G is such 
that at  least one of the end nodes of P is a weakest node in the path P and hence P is a 
strongest path [17]. 

 
Theorem 5.4. Let G : (V, σ,µ) be a CFG on n nodes, n ≥3. Then G is self centered if and 
only if all paths in G are strongest paths. 
Proof: Let G : (V, σ,µ) be a CFG . Assume G is self centered. Then by Theorem 3.12, 
each node of G is eccentric. Also for any two nodes u,v in G, e(u) = e(v) = r(G) = d(G). If 
possible assume that all paths in G are not strongest paths. Therefore by Theorem 5.3, 
there exist at least two nodes u, v with different node strength and let w be an arbitrary 
node in G such that σ(w) is least. i.e. we have σ(w) < σ(u) and σ(w) < σ(v). Also we have 
µ(u, v) = σ(u) ∧ σ(v) > σ(w) and ds(u, v) = min{ µ(u, v) , 2σ(w) } by Theorem 5.2. 

Therefore ds(u, v) > σ(w). Also we have e(u) = max{ds(u, v) : v ∈ V } . 
Therefore e(u) > σ(w)                                                                                                              ( 1) 

Now, for any node u in G we have µ(u, w) = σ(w) and therefore ds(u, w) = σ(w) by Theorem 
5.2. 

Thus e(w) = max{ds(w, u) : u ∈ V } = σ(w)                                                                                             (2) 
From (1) and (2) e(u) > e(w), which contradicts our assumption that G is self centered. 
Hence all paths in G are strongest paths. 
Conversely assume all paths in G are strongest paths. Since all paths in G are strongest 
paths, there is at most one node in G having different strength and the strength of such a 
node is greater than the strength of all other nodes in G by Theorem 5.3. Hence all arcs 

in G have same strength. Also ds(u, v) = µ(u, v) ∀u, v by Theorem 5.2. Hence for any two 
node u, v in G, e(u) = e(v) . Therefore G is self centered. 

6. Embedding Theorem 
In this section, we shall consider the construction of a fuzzy graph G from a fuzzy 
graph H such that < C(G) > ≈ H. 
 
Theorem 6.1. H : (V, σ′

 
, µ′) be a fuzzy graph.  Then there exists a connected fuzzy 

graph G : (V, σ,µ) such that < C(G) > ≈ H. 

Proof: Let  0 < c = ∧σ′
 
(u). Construct a fuzzy graph G : (V, σ,µ) from H as follows. Take 

four new nodes u1,u2,v1,v2 and put σ*  = σ′*  
∪ { u1, u2, v1, v2 } where σ = σ′

 
for all nodes 

w in H, µ = µ′
 
for all arcs (u, v) in H. Let σ(ui) = σ(vi) = t (t ≤ c),i = 1,2; µ(u1, u2) = µ(v1, 

v2) = t and µ(u2, w) =µ(v1, w) = t ∀ w ∈ H. Then clearly G : (V, σ,µ) is a fuzzy graph and 

e(w) = 2t ∀ w ∈ H and e(u1) = e(v1) = 3t and e(u2) = e(v2) = 4t. Thus < C(G) > ≈ H and 
r(G) = 2t and d(G) = 4t. 
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7. Center of a fuzzy tree 
A study of µ− distance in a fuzzy graph G : (V, σ,µ), which is a fuzzy tree is carried out 
in [25]. In this section a similar study is carried out on fuzzy trees using sum distance. 

Remark 7.1. It is well known that center of a tree is either K1 or K2. But, for a fuzzy 
tree it need not be so as in figure 19. 

 
Remark 7.2. In fact, there are self centered fuzzy trees. In figure 20, G : (V, σ,µ) is an f- 
tree which is self centered with e(ui) = 0.5 , i =0,1,2,3. 
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Figure 20: Self centered fuzzy tree 
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Figure 19: Fuzzy Tree G : (V,σ,µ)                                                 < C(G) >      

Figure 17: H : (V,σ′,µ′)  Figure 18: G : (V,σ,µ) where < C(G) > ≈ H. 
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Remark 7.3. The center of a fuzzy tree need not be a fuzzy tree (Figure 19). Note 
that an f-graph G : (V, σ,µ) is an f-tree if and only if it has no β−strong arcs [24]. 
 

8. Algorithm 
In this section we present three algorithms. Let G : (V, σ,µ) be a connected fuzzy graph 
with n nodes u0, u1, u2, · · · · · · , un−1. Let µ(ui, uj ) be the arc strength. First algorithm is to 
generate the adjacency matrix A = (aij ) where 
                        
              aij       =        µ(ui, uj) ,  i ≠ j 

                    0 ,  i =  j 

Note that in the adjacency matrix, any non zero element other than the diagonal 
element is replaced by n, the number of nodes in G, to apply the second algorithm. 
 
Second algorithm is to find sum distance matrix from the adjacency matrix.  
 

Third algorithm is to find out the eccentricities of the nodes, diameter and radius of a 
fuzzy graph G from the distance matrix. 

Algorithm 8.1: ADJACENCY(a, n) 

Comment: Input : a is an array representing strength of arcs in the f-graph 

Comment: Input : n is number of nodes of the f-graph 

      for i ← 0 to n − 1 

            for j ← 0 to n − 1 

                           if  j = i  

                             then a[i,j]  ← 0 

                                     if  j > i 

    do      do                                 a[i,j]  ← arc strength 

                         else                     if a[i,j]  = 0 

                                    then              then   a[i,j]  ←  n 

                                                    a[j,i] ←a[i,j]                  

  

Algorithm 8.2: DISTANCE MATRIX(a, n) 

Comment: Input : a is an array representing elements of the adjacency matrix 
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Comment: Input : n is number of nodes of the f-graph 

for k ← 0 to n − 1 

                   for i ← 0 to n − 1 

                           mtemp ← 0 

                         for j ← 0 to n − 1 

                                     if  j > i 

    do      do                                 mtemp ← a[i,k] + a[k,j]                                  

                         do                      if mtemp < a[i,j]  

                                    then              then          a[i,j]  ←  mtemp 

                                                                                a[j,i]←a[i,j]                  

The complexity of this algorithm is O(n3). 
 
Algorithm 8.3: ECCENTRICITY(a, n) 

Comment: Input : a is an array representing elements of the distance matrix 
Comment: Input : n is number of nodes of the f-graph 

for i← 0 to n − 1 

                 max ← 0 
               for j ← 0 to n − 1 

                          if  a[i,j]  > max 

               do           then max ← a[i,j]  

    do       e[i] ← max 

               if i =0 

                   then      dia ←  e[i]  

                              rad ← e[i]   

                                   if e[i] > dia 

                   else               then   dia ← e[i]   

                                    if e[i] < rad  

                                         then   rad ← e[i] 
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The complexity of this algorithm is O(n2). 
 
9. Conclusion 
The idea of sum distance which is a metric, in a fuzzy graph is introduced. The 
concepts of eccentricity, radius, diameter, center, self centered f-graphs etc. are studied 
using this metric. A characterization of self centered complete fuzzy graph is obtained 
and conditions under which a fuzzy cycle is self centered are established. A necessary 
and sufficient condition for all paths in a CFG with n ≥ 3 to be strongest paths is 
obtained. It is shown by an example that center of a fuzzy tree need not be a fuzzy tree 
and there are self centered fuzzy trees. Also discussed the construction of a fuzzy graph 
G from a given fuzzy graph H such that <C(G)> ≈ H. An algorithm is developed to 
find sum distance matrix of a fuzzy graph. 

REFERENCES 

1. N.Abdul Jabbar, J.H.Naoom and E.H.Ouda, Fuzzy dual graph, J. Al Nahrain Univ, 
12 (2009) 168-171. 

2. M.Akram, Bipolar fuzzy graphs, Inform. Sci., 181 (2011) 5548-5564. 
3. M.Akram, and M.G. Karunambigai, Metric in bipolar fuzzy graphs, World Applied 

Sciences Journal 14 12 (2011) 1920-1927. 
4. M.Akram and M.G.Karunambigai, Some metric aspects of intuitionistic fuzzy 

graphs, World Applied Sciences Journal, 17 12 (2012) 1789-1801. 
5. M.Akram and W.A.Dudek, Regular bipolar fuzzy graphs, Neural Computing and 

Applications,  21 (2012) 197-205. 
6. M.Akram, Interval-valued fuzzy line graphs, Neural Computing and 

Applications, 21 (2012) 145-150. 
7. M.Akram and W.A.Dudek, Interval-valued fuzzy graphs, Computers Math. 

Applications, 61 (2011) 289-299. 
8. M.Akram, Bipolar fuzzy graphs with applications, Knowledge-Based Systems, 39 

(2013) 1-8. 
9. P.Bhattacharya, Some remarks on fuzzy graphs, Pattern Recognition Lett., 6 (1987) 

297- 302. 
10. K.R.Bhutani, On automorphisms of fuzzy graphs, Pattern Recognition Lett., 9 

(1989) 159 - 162. 
11. K.R.Bhutani and A.Rosenfeld, Strong arcs in fuzzy graphs, Inform. Sci., 152 (2003) 

319- 322. 
12. K.R.Bhutani and A.Rosenfeld, Geodesics in fuzzy graphs, Electron. Notes Discrete 

Math.,15 (2003) 51 - 54. 
13. K.R.Bhutani and A.Rosenfeld, Fuzzy end nodes in fuzzy graphs, Inform. Sci., 152 

(2003) 323-326. 
14. J.E.Cohen, Interval graphs and food webs: a finding and a problem, Document 

17696-PR, RAND Corporation, Santa Monica, CA (1968). 
15. F.Harary, Graph Theory, Addison-Wesley Publishing Company, Inc (1969). 
16. J.P.Linda and M.S.Sunitha, On g-eccentric nodes g-boundary nodes and g-interior 

nodes of a fuzzy graph, Int J. of Mathematics Sciences and Applications, 2 (2012) 
697 - 707. 



Sum Distance in Fuzzy Graphs 

89 
 

17. Mini Tom and M.S.Sunitha, Notes on types of arcs in a fuzzy graph, Journal of 
Uncertainty in Mathematics Sciences, 2014 (2014) 1- 4. 

18. J.N.Mordeson and P.S.Nair, Fuzzy Graphs and Fuzzy Hypergraphs, Physica   Verlag 
(2000). 

19. A.Rosenfeld, Fuzzy Graphs, in: L.A.Zadeh, K.S. Fu.M.Shimura(Eds), Fuzzy Sets 
and their Application to Cognitive and Decision Processes. Academic Press, 
New York, (1975) , 77-95. 

20. S.Samanta and M.Pal , Fuzzy k-competition graphs and p-competition fuzzy graphs, 
Fuzzy Inf. Eng., 5(2) (2013) 191-204 

21. S.Samanta, M.Akram and M.Pal, m-step fuzzy competition graphs, J. Appl. Math. 
Comput.,  DOI 10.1007/s12190-014-0785-2. 

22. K.Sameena, M.S.Sunitha, A characterisation of g-selfcentered fuzzy graphs, The 
Journal of Fuzzy Mathematics, 16 (2008) 787 - 791. 

23. K.Sameena and M.S.Sunitha, On g- distance in fuzzy trees, The Journal of Fuzzy 
Mathematics, 19 (2011) 787 - 791. 

24. S.Mathew and M.S.Sunitha, Types of arcs in a fuzzy graph, Inform. Sci., 179 (2009) 
1760- 1768. 

25. M.S.Sunitha and A.Vijayakumar, Some metric aspects of fuzzy graphs, 
Proceedings of the Conference on Graph Connections, Cochin University of 
Science and Technology, Cochin, (1998), 111 - 114. 

26. T.Pramanik, S.Samanta and M.Pal, Interval-valued fuzzy planar graphs, Int. J. 
Mach. Learn and Cyber, DOI 10.1007/s13042-014-0284-7. 

27. Y.Vaishnav and S.Sharma, Some analoges results on fuzzy graphs, Int. J. 
Mathematics Sciences and Applications, 2, (2012) 535 - 539. 

28. R.T.Yeh and S.Y.Bang, Fuzzy relations, fuzzy graphs and their application to 
clustering analysis, In Fuzzy sets and their Application to Cognitive and Decision 
Processes, Zadeh L.A., Fu. K.S.Shimura M.Eds, Academic Press, New York, (1975) 
125 - 149. 

29. L.A.Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338 - 353. 
 

 


