Annals of Pure and Applied Mathematics
Vol. 8, No. 1, 2014, 1-9

ISSN: 2279-087X (P), 2279-0888(online) Pure and App'l@d
Published on 9 October 2014 .
Wl\jVV\I/.rese(;?ctha?h:(r:i.org Mathematlcs

Distancesin Weighted Graphs
Dhanyamol M V* and Sunil Mathew?

Department of Mathematics, National Institute o€Aieology, Calicut - 673 601, India
'E-mail: dhanyamukalel@gmail.canfE-mail: sm@nitc.ac.in

Received 14 September 2014; accepted 25 September 2014

Annals of

Abstract. The concept oflistance is one of the basic concepts in Mathematics. Haw fa
two objects (vertices) are apart in a discretecsitine is of interest, both theoretically and
for its applications. Since discrete structuresratirally modeled by graphs, this leads
us to studying distance in graphs. Starting frormiyée, an explosion of interest in finite
metric spaces occurred. Now finite distance mditaice become an essential tool in many
areas of Mathematics. This paper discussing almut distances in weighted graphs,
namelyw- distanced,,, strong geodesic distandg,, strongest strong distandg, and
é-distanced. They are all different metrics in weighted graphghen strength of
connectedness between every pair of verticemdv in G equals to the weight of the
edge(u, v), G becomes self-centered with respect to the medyjcsl,,, dss ands. Also

it is proved that every connected weighted grapésiself centered as well as —self
centered.
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1. Introduction

Weighted graphs are as old as that of graphs. ljrityaof applications related with
graphs, especially in networks, weighted graph rsogle used. Minimum and maximum
spanning tree problems are well known. Severalaastincluding Bondy and Fan]|
Lin, Huang,Tan and Hsw] and Mathew and Sunith&{L3] introduced many concepts
in weighted graphs. And some related works are se] and [L4].

We consider only undirected graphs without loopsnaitiple edges. LetV (G)
and E(G) denote the set of vertices and edges of a gfapbspectively. For simplicity,
we usel instead ofV (G) if no confusion occurss is called a weighted graph if each
edgee is assigned a nonnegative weighte) called the weight of e. For a subgraph H of
G, the weight of H is defined bw(H) = Y.eguyw(e). An unweighted graph can be
regarded as a weighted graph in which each edgeassigned weightw(e) = 1. A
path in a weighted grapf (weighted path) is a sequences of vertices andsedith a
nonzero weight assigned to each edge. A weightaphgt is connected, if every pair of
vertices are connected by a weighted path. TwospsdlgP; andP, are said to be edge
disjoint if they do not have any common edge andewedisjoint or simply disjoint if
they do not share any common vertex. Tawve v paths are said to be internally disjoint,
if they have no common vertices other thaandv. A maximum spanning tree (MST) of
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a weighted grapld is a spanning graph @, which is a tree and sum of weight of its
arcs, the largest among all such tregé]]

Let G be a weighted graph. The strength of a Patin edgese;, forl <i < n,
denoted by (P) is equal tas(P) = min,<;<,w(ei). The strength of connectedness of a
pair of verticesu,v € V (G), denoted byCONN; (u,v), is defined a€ONN;(u,v) =
max {s(P) : Pisau—vpathinG} [8]. Au—v pathP in a weighted graphi is called
a strongestt — v path ifs(P) = CONN¢;(u,v). An edge(x, y) is strong if its weight is
atleast equal to the strength of connectednessebetthe vertices andy in G [8]. A
pathP is called strong if every arc &f is strong §]. A connected weighted graghis
called a weighted partial tree (partial tree inrghidé G has a spanning subgraphwhich
is a tree and for all edgds,y) in G which are not inF, we haveCONN;(x,y) >
w(x,y) [7].

Let G be any connected weighted graphbe any vertex ir¢G and d be any
metric. Then eccentricity ofu with respect tod denoted by e;(u), is defined as
eq(u) = max,ey)d(u,v). Letv be a vertex ifr such thaty(v) = minyeyg)eq(w)
= r, thenv is called a central vertex 6f andr is called the radius af with respect to
the metricd. The subgraph of induced by the central vertices ®fis called the centre
of G with respect tal and is denoted by C,;(G) >. Letv be a vertex irG such that
eq(w) = d(u,v), thenv is called eccentric node afwith respect tal and is denoted by
uy. LetP andQ are two paths, the®, U Q denotes the path followed byQ.

In everyday lifedistance usually means some degree of closeness between two
physical objects or ideas, i.e., length, time wékrgap, rank difference, etthe term
metric is often used as a standard for a measutenBert here we consider the
mathematical meaning of these terms.

Now a days finite distance metrics have becomesarrgial tool in many areas
of Mathematics and its applications include Geowmefrobability, Statistics, Coding
Theory, Graph Theory, Clustering, Data Analysisitdta Recognition, Networks,
Engineering, Computer Graphics/Vision, Astronomys@ology, Molecular Biology,
and many other areas of science. Devising the suikstble distance metrics has become
a standard task for many researchers. Especiaignse ongoing searches for such
distances occur, for example, in Genetics, Imagelysis, Speech Recognition,
Information Retrieval. Often the same distance imetppears independently in several
different areas; for example, the edit distanca/beh words, the evolutionary distance in
Biology, the Levenstein distance in Coding Theayd the Hamming+Gap or shuffle-
Hamming distance.

2. Some metricsin weighted graphs
In this section, we introduce some metrics in wiighgraphs and prove that they are
indeed metrics on their vertex sets.

Definition 2.1. Let G be a weighted graph. The-distance between two distinct vertices
u andv in G, denoted byl,, (u, v), is defined as the smallagtlength of anyu — v path,

wherew-length of a pattP = ug, uq,u,, ..., u, is denoted ag, (P) =Y~ !

Elwuiw)’
Also d,,(u,u) = 0 for every vertexu in G. If u andv are not connected by a path, then
d,,(u,v) = oo,
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In the following theorem we prove thaj, is a metric.

Theorem 2.2. Let G be a weighted graph with vertex gethend,, is a metric orv.
Proof: Let P = ug,uy,uy, ..., u, be any path inG. Thenw(u;_u;) >0 for i =
1,2,3,...,n. Sow-length ofP > 0. Thereforew-distanced,, (u, v) = 0 for every pair
of verticesu andv in G. Also, from the definition ofl,,, we getd,, (u,v) =0, if and
only if u = v. The reversal of a path fromto v is a path fromy tou and vice versa. So
d,(w,v)=d,(vuw), VuvelvV.

Supposed,, (u, v) > d,,(u,w)+d,,(w,v) for some vertices,, v,w € V. Then
there exist a patl® from u to w and a patiQ from w to v such that thet — v path
contained inP U Q hasw-length strictly less than the minimum-length of allu — v
paths, which is a contradiction. Therefatg(u,v) < d,,(u, w)+d,,(w,v), Yu,v,w €
V. Henced,, is a metric.

Definition 2.3. The strong geodesic distance or sg-distance battvaeverticesu andv
in a weighted grapti denoted byl,, (u, v), is defined as the length of the shortest v
strong path. it andv are not connected by a path, tligp(u, v) = oo.

In the following theorem, we prove tha, is a metric.

Theorem 2.4. Let G be a weighted graph with vertex $etThend,,(u,v) is a metric
onV.
Proof: Clearlyds,(u,v) =0, Vu,v € V. Alsods,(u,v) = 0 if and only ifu = v.
Since, the reversal of a path framo v is a path fromv tou and vice versa
dsg(u,v) =dsg(v,u),Vu,v € V.

Supposed, (u,v) > dgg(u,w) + dsg(w,v) for some verticesu,v,w €V.
Let P be a shortest — w strong pathQ be a shortesv — v strong path an@& be a
shortestu — v strong path. Then, sindg@uU Q contains a« — v strong path, the above
inequality leads to a contradiction. 8g,(u,v) < dsg(u,w) + dsg(w,v), Yu,v,w €
V. Henced, (u, v) is a metric onV.

Definition 2.5. Let G be a weighted graph. The strongest strong distaebgeen two

verticesu andv in G, denoted byl (u,v), is defined asi,(u,v) = m and
G y

des(u,u) =0,Vu € V(G). If G is disconnected and two vertices(sayandv of G are
not connected by a path, theANN; (u, v) = 0 andd,(u,v) = .

Theorem 2.6. Let G be a weighted graph with vertex dét Then strongest strong

distanced, is a metric orv.

Proof: For any two distinct verticea and v, CONN;(u,v) = 0. So, dss(u,v) =0,

vu,v €V. Alsod,(u,v) = 0 if and only ifu = v. Since, reversal of a path framto v

is a path fromv to u and vice versad,(u,v) = dg(v,u). For any three vertices

u,v,w €V, CONN;(u,v) = CONN;(u,w) ACONN;(w,v), where A represents the
1 1

.. . . 1
minimum. This gives, < < .
CONNg(u,v) — CONNg(uw)ACONNg(w,v) — CONNg(uw) CONNg(w,v)

That isdgs(u,v) < dgs(u,w) + dgs(w,v), Vu,v,w € V.
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Sinced,, satisfies all the conditions for a metrit, is a metric onl/.

Definition 2.7. The §-distance between two verticasandv in a connected weighted
graphG denoted by (u, v), is defined a$(u,v) =1+ A,, — CONN;(u, v), whereA,,
is the maximum weight of all arcs atifu, u) = 0, for every vertex. € V.

Theorem 2.8. §-distance in a connected weighted gré&ptvith vertex seV is a metric
onV.

Proof: CONNg(u,v) <A, for every pair of verticea, v e V. Also, A, +1=0.
Therefore,6(u,v) =20, Vu,veV. Also §(u,v) =0 if and only if u =v. Since
CONN;(u,v) = CONNg(v,u),Vu,v €V, é(u,v) =8, u), Vu,v eV. Also for any
three verticesu,v,w € V. CONN;(u,v) = CONN;(u,w) A CONN;(w,v), where A
represents the minimum.

So,14+ A, — CONNg;(u,v) <1+ A, — [CONNg;(u,w) ACONN;(w, v)].
Therefore§(u,v) < 6(u,w) + §(w,v),Vu,v,w € V. Hences is a metric onV.

Example 2.9.
u 2 Vv
3 3
X 4 w
Figure 1.

In Figure 1d,,(u,v) = % ydsg(u,v) =3, dgs(u,v) = %, N, v) = 2.
From this example, it can be seen that all metdeSned above are different in a
weighted graph.

3. Metricsin partial trees

Partial trees are weighted graphs with unigue masirspanning tree. It was introduced
by the authors of/]. In the following section, we shall discuss thiegerties of the
above mentioned metrics in partial trees.

Proposition 3.1. Let G be a partial tree anid be the maximum spanning treetfThen
dsg, dss In G are eguivalent td,,, dg, respectively inf.

This is because every strong arcszimre in the unique maximum spanning tree
F ofG.

sg’
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In the next theorem, we show that centre of a @arie and the centre of the associated
maximum spanning tree are isomorphic with respetiié metrial;,.

Theorem 3.1. Let G be a partial tree anfl be the maximum spanning treetfThen

< Co(G) >=< Cgq(F) >.
Proof: Consider a vertex in G. Letes,(v) = k in G. We want to prove that, = k in
F.esq = k in G implies that there exist a vertex= v* such that there is a strong- u
pathP of lengthk in G andd, (v, u) = max,ey dsq (v, a). SinceG ia a partial treep is
the unique strong — u path inG andF contains all strong edges ¢h ThusF contains
the pathP andes,(v) =k in F . Soes; =k in F. That is, for any vertew in G
eccentricities irG andF are the same. Therefore by the definition of aeot@ weighted
graph< Cg4(G) > =< Cgq(F) >.

Remark 3.2. Let G be a partial tree anfl be the maximum spanning treefThen,G
andF have the same set @f-eccentric vertices, same setsefeccentric vertices, same
set of§-eccentric vertices.

Proposition 3.2. Let G be a partial tree anfdd be the maximum spanning tree of G. Then
(1) < CSS(G) >=< CSS(F) >
(2) < Cé‘(G) > =< Cé-(F) >
Proof: For any pair of verticest and v in G, CONN;(u,v) = CONNg(u,v). So
eccentricity ofu in bothG andF are the same with respect to metrigsands.

4. Metricsin self-centered weighted graphs
Definition 4.1. A connected weighted graghis self-centered with respect to the metric
d if each node is a central node with respedt.to

Theorem 4.2. Let G be connected weighted graph ahdbe any one of the metrit,,,
dsg, dgs Or &, then is self-centered with respect tb if CONNg(u,v) = w(u,v),
vu,v € V and

(D 1g,(G) = Wio , Wherew, is the minimum weight of all arcs h

(2) 14(G) = 1.

(3) rs(G) = Wio wherew, is the least among the weights of edges.of

4) rs(G)= 1+ A, —w,, wherew, is the least among the weights of edge§.of

Proof: By assumption, sincEONN; (u, v) = w(u, v), the underlying graph is complete.
Also every edgéu, v) is a strongest — v path and every edges is strong.

1. CONN;(u,v) = w(u,v), VYu,v € V. This gives that the weight of the weakest arc in

any other strongest — v path is w(u,v). Hence the-length of a strongest — v path is
atleast——.
w(u,v)
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Let p: u =ug uy,uy, ..., uy = v be anyu — v path which is not strongest. Then the

strength ofp is strictly less thamw (u, v). Sow-length ofp is strictly greater tha@ﬁ,
1
and hencel,, (u,v) = ) Also,
1

1
ey, (u,v) = max, d,(u,v) = max, D) = min ) Q)

Clam: e, (v;) = ey (v;),Vv;,v; EV.
If not, lete, (v;) <e,(v;) and letu; andu; are two vertices i such thate,, (v;) =
ande,, (v;) = .

w(vj,uj)

w(v; ,uq)

ew(vo) <ew(v) = o w(v,l-.u,o
Consider the patp: v, v;, u;. Then W(vj,vi) > w(v,u) and w(v, u) = w(v;,w),
sinceu; = v; and by (1).

SO,W(Uj,Ul‘) A W(Ui,u]') = W(‘Ui,ui) > W(U] ,uj) by (2)

That is, strength of a4 — uj path exceeds«v(vj ,uj), which contradicts our assumption
that every edge is a strongest path. Interchangimglj a similar argument holds.
Thuse, (v;) = e, (v;), Y v;,v; € V. That is,G is self-centered with respect &, and
r, _1 Wherew, is the minimum weight of all arcs &

w WO’

=>w;,u;) > w(vj ,uj). 2

2. By assumption every arc is strong and the unitgrhgraph is complete. So,
dsg(u,v) =1, Vu,v €V. Therefore e;,(v) =1, Vv EV. So¢ is self-centered and

Tsg (G) = mingey €sg v)= 1

1
CONN(u,v)  wuv)’

3. des(u,v) = by assumption.

Claim: egs(v;) = ess(v)), Vv, v E V.

Proof is same as il). HenceG is self-centered and(G) = Wi where w, is least.
0

4. §(u,v) =1+ A, — CONNg;(u,v), whereh,, is the maximum weight of all arcs. So,
6(u,v) =1+4, —w(u,v), by assumption.

Claim: es(v;) = es(v)).
Suppose not, that igs(v;) < es(v)).

Let w; =v; and w; = v;. Then es(v;) < e(g(vj) => 1+A, —w(;,v) <1+A, —

w(w, v)).

That is,w(u;, v;) > W(uj,v]-). 3)
u; = v; andy; = v; implies that

&(u;, v;) = max, 6 (v, v) and6(uj,vj) = max, 6(vj,v) 4)

Consider the patp: v;, v;, u; then (4) gives
W(Uj,vl’) = W(Ui,ui) andW(Ul‘,u]‘) = W(Ul',ui), Sinceui = ‘Ui*.

6
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So,w(vj,v;) Aw(vi,u;) = w(vg, u) > w(v;,u;) by (3). This is a contradiction to the
assumption thafONN; (u,v) = w(u,v), Yu,v €V . Soes(v;) = eg(vj),v v, v, EV.
So G is self-centered ands(G) = 1 + A, —wy, where w, is the least among the
weights of edges af.

Proposition 4.1. If G is a self-centered graph. Then each nodé @ eccentric. This
property is independent of the metric defined on it

Remark 4.3. When connectivity oft andv, CONNg;(u,v) = w(u,v),Vu,v € V. Then
the metricsl,, andd, coincide.

Remark 4.4. The condition in the above theorem is not necgdsaa weighted graph to
be self-centered as seen from the following example

Example 4.5
a 1 %
z :
d 1 c
Figure2:
In Figure 2,

CONN;(a,c) =1+ w(a,c). Bute,(a)= e,(d) = e,(c)= e,(d) = % Therefore
G is self-centered with respect to the mettjc

Since every arc is strongg,(a) = egq(b) = egq(c) = egq(d) = 2. So G is self-
centered with respect to the metdlig;. Also, ess(a) = es(b) = egs(c) = eg(d) = 1.

That is,G is self-centered with respect to the metkic.

es(a) =1 + A, —min,ey w(a,v) = es(a) =es(b) =es(c) =es(d) =2. SOG is

self-centered with respect to the metftic

Remark 4.6. If G is a weighted cycle witlh edges in which there exist at led@sarcs
having weakest weight,, Theneg (a) = Wi,v a€cvV.

0
Moreover all edges af are strong and hence

n . .
> if n is even

esg(@) = §,_
9 nTl, if n is odd

This is true for every vertexin G.
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Also es(a) = 1 + A, —w,, Va € V. So G is self-centered with respecutg, d s and
d.

Theorem 4.7. Every connected weighted graphis ss-self-centered as well a&self
centered.

Proof: Let P be a strongest — v path inG having strengths and lets be the least
strength of connectivity between any pair of vegiing.

Letw(x,y) = s, where(x, y) is an edge i?. Now consider any vertexin V.

Claim: CONN;(z,x) = s orCONN;(z,y) = s.

Suppose not, that is there is a strongestpathP; with strengths; and a strongegt— y
pathP, with strengths, such thak;, s, > s.

Clearly bothP; andP, do not contain the edde,y) and every edges ih, andP, has
weight greater than. Also P, U P, contains arnx —y path and it does not contain the
edge(x,y). So this path has strength greater thafhen there exist a — v pathP;,
which has strength greater thanThis contradicts our assumption.

Therefore CONN;(z,x) = s or CONNg(z,y) = s, VzeV. Since s is least,
min{CONN;(z,x) ,CONNg;(z,¥)} < CONN;(z, a), wherea is any vertex irG.

This givesds(z,x) V dg(z,y) = dgs(z,a), wherev denotes the maximum.

That is,es(2) = dgs(z,x) Vdg(z,y) = % vz € V. ThereforeG is ss-self-centered. To

prove that; is - self-centered, we have

min{CONN;(z,x) ,CONN;(z,y)} < CONN;(z,a),Va€eV.

This gives1 + A, — min{CONN;(z,x) ,CONN;(z,y)} =1+ A,, — CONN;(z, a).
That isé(z,x) vV 6(z,¥) = 6(z,a), wherea is any vertex irG. So,es(z) = §(z,x) V
6(z,v), wherev denotes the maximures(z) = 1+ A, — s, Vz € V. Therefores is §-
self-centered.

5. Conclusion

Weighted graph theory has many applications inouerifields like network analysis,
information theory, database theory, operationsaneh etc. Metric concepts play a key
role in applications related with graphs. In thiicée, an attempt is made to define some
metrics in weighted graphs. The properties of thrastrics in partial trees are studied.
Some relations between these metrics are studied. we proved that every connected
weighted graph iss-self-centered and-self-centered.
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