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Abstract. The concept of distance is one of the basic concepts in Mathematics. How far 
two objects (vertices) are apart in a discrete structure is of interest, both theoretically and 
for its applications. Since discrete structures are naturally modeled by graphs, this leads 
us to studying distance in graphs. Starting from Menger, an explosion of interest in finite 
metric spaces occurred. Now finite distance metric have become an essential tool in many 
areas of Mathematics. This paper discussing about four distances in weighted graphs, 
namely �- distance ��, strong geodesic distance ���, strongest strong distance ��� and �-distance �. They are all different metrics in weighted graphs. When strength of 
connectedness between every pair of vertices � and 	 in 
 equals to the weight of the 
edge ��, 	
, 
 becomes self-centered with respect to the metrics ��, ���, ��� and �. Also 
it is proved that every connected weighted graph is ��-self centered as well as � –self 
centered. 
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1. Introduction 
Weighted graphs are as old as that of graphs. In majority of applications related with 
graphs, especially in networks, weighted graph models are used. Minimum and maximum 
spanning tree problems are well known. Several authors including Bondy and Fan [1], 
Lin, Huang,Tan and Hsu [2] and Mathew and Sunitha [6-13] introduced many concepts 
in weighted graphs.  And some related works are seen in [5] and [14]. 

We consider only undirected graphs without loops or multiple edges. Let  ��

 
and  ��

 denote the set of vertices and edges of a graph 
, respectively. For simplicity, 
we use � instead of ��

 if no confusion occurs. 
 is called a weighted graph if each 
edge � is assigned a nonnegative weight ���
 called the weight of e. For a subgraph H of 
G, the weight of H is defined by, ���
  �  ∑ ���
�����
 . An unweighted graph can be 
regarded as a weighted graph in which each edge � is assigned weight  ���
  �  1. A 
path in a weighted graph 
 (weighted path) is a sequences of vertices and edges with a 
nonzero weight assigned to each edge. A weighted graph 
 is connected, if every pair of 
vertices are connected by a weighted path. Two paths say �� and �� are said to be edge 
disjoint if they do not have any common edge and vertex disjoint or simply disjoint if 
they do not share any common vertex. Two � � 	 paths are said to be internally disjoint, 
if they have no common vertices other than � and 	. A maximum spanning tree (MST) of 
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a weighted graph 
 is a spanning graph of 
, which is a tree and sum of weight of its 
arcs, the largest among all such trees [3,4]. 

Let 
 be a weighted graph. The strength of a path � of � edges ��, for 1  !  �, 
denoted by ���
 is equal to ���
  �  "!��#�#$���!
. The strength of connectedness of a 
pair of vertices �, 	 �  � �

, denoted by &'(()��, 	
,  is defined as &'(()��, 	
 �
max - s�P
 0  P is a u � v path in G9 [8]. A � � 	  path � in a weighted graph 
 is called 
a strongest � � 	 path if ���
 �  &'(()��, 	
. An edge �:, ;
 is strong if its weight is 
atleast equal to the strength of connectedness between the vertices : and ; in 
 [8]. A 
path � is called strong if every arc of � is strong [8]. A connected weighted graph 
 is 
called a weighted partial tree (partial tree in short) if 
 has a spanning subgraph < which 
is a tree and for all edges �:, ;
 in 
 which are not in <, we have &'(()�:, ;
  =
 ��:, ;
 [7].  

Let 
 be any connected weighted graph, � be any vertex in 
 and  � be any 
metric. Then eccentricity of  � with respect to � denoted by  �>��
, is defined as 
�>��
 �  "?:@�A�)
d�u, v
.  Let 	 be a vertex in 
 such that �>�	
 �  "!�C�A�)
eE��
 
�  F, then 	 is called a central vertex of 
 and F is called the radius of 
 with respect to 
the metric �. The subgraph of 
 induced by the central vertices of 
 is called the centre 
of 
 with respect to � and is denoted by  G  &>�

  =. Let 	 be a vertex in 
 such that 
�>��
 �  ���, 	
, then 	 is called eccentric node of � with respect to � and is denoted by 
�>

H . Let � and I are two paths, then, � J I denotes the path � followed by I. 
In everyday life distance usually means some degree of closeness between two 

physical objects or ideas, i.e., length, time interval, gap, rank difference, etc. The term 
metric is often used as a standard for a measurement. But here we consider the 
mathematical meaning of these terms. 

Now a days finite distance metrics have become an essential tool in many areas 
of Mathematics and its applications include Geometry, Probability, Statistics, Coding 
Theory, Graph Theory, Clustering, Data Analysis, Pattern Recognition, Networks, 
Engineering, Computer Graphics/Vision, Astronomy, Cosmology, Molecular Biology, 
and many other areas of science. Devising the most suitable distance metrics has become 
a standard task for many researchers. Especially intense ongoing searches for such 
distances occur, for example, in Genetics, Image Analysis, Speech Recognition, 
Information Retrieval. Often the same distance metric appears independently in several 
different areas; for example, the edit distance between words, the evolutionary distance in 
Biology, the Levenstein distance in Coding Theory, and the Hamming+Gap or shuffle-
Hamming distance. 
 
2. Some metrics in weighted graphs 
In this section, we introduce some metrics in weighted graphs and prove that they are 
indeed metrics on their vertex sets. 
 
Definition 2.1. Let 
 be a weighted graph. The �-distance between two distinct vertices 
� and 	 in 
, denoted by ����, 	
, is defined as the smallest �-length of any � � 	 path, 

where �-length of a path � �  �K, ��, ��, … , �$ is denoted as M���
  � ∑ �
��CNOP,CN 


$
�Q� . 

Also ����, �
 � 0 for every vertex � in 
. If � and 	 are not connected by a path, then 
����, 	
 � ∞. 
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In the following theorem we prove that �� is a metric. 
 
Theorem 2.2. Let 
 be a weighted graph with vertex set � then �� is a metric on �. 
Proof: Let � �  �K, ��, ��, … , �$  be any path in 
. Then �T��U�,�� V = 0 for ! � 1, 2,3, … , �. So �-length of � =  0. Therefore �-distance, ����, 	
 Y 0 for every pair 
of vertices � and 	 in 
. Also, from the definition of ��, we get ����, 	
 � 0,  if and 
only if  � � 	. The reversal of a path from � to 	 is a path from 	 to � and vice versa. So ����, 	
 � ���	, �
,  Z �, 	 � �.  

Suppose ����, 	
 = ����, �
[����, 	
 for some vertices �, 	, � � �. Then 
there exist a path � from � to � and a path I from � to 	 such that the � � 	  path 
contained in � J I has �-length strictly less than the minimum �-length of all � �  	 
paths, which is a contradiction. Therefore ����, 	
  ����, �
[����, 	
,  Z�, 	, � ��. Hence �� is a metric. 
 
Definition 2.3. The strong geodesic distance or sg-distance between two vertices � and 	 
in a weighted graph 
 denoted by �����, 	
, is defined as the length of the shortest � � 	 
strong path. If � and 	 are not connected by a path, then �����, 	
  �  ∞. 

In the following theorem, we prove that ��� is a metric. 
 
Theorem 2.4. Let 
 be a weighted graph with vertex set �. Then �����, 	
  is a metric 
on �. 
Proof: Clearly �����, 	
 Y 0,  Z �, 	 �  �. Also �����, 	
 � 0 if and only if � �  	. 
Since, the reversal of a path from � to 	 is a path from 	 to � and vice versa  �����, 	
 � ����	, �
, Z �, 	 �  �. 

Suppose �����, 	
  =  �����, �
  [  �����, 	
 for some vertices �, 	, � � �.  
Let � be a shortest � �  � strong path, I be a shortest � �  	 strong path and \ be a 
shortest � �  	 strong path. Then, since � J I contains a � � 	 strong path, the above 
inequality leads to a contradiction. So �����, 	
    �����, �
  [ �����, 	
,  Z �, 	, � � �. Hence �����, 	
  is a metric on  �.   
 
Definition 2.5. Let 
 be a weighted graph. The strongest strong distance between two 

vertices � and 	 in 
, denoted by ����u, v
 , is defined as ����u, v
 � �
]^__`�C,@
 and  

����u, u
 � 0, Z � � ��

.  If 
 is disconnected and two vertices(say) � and 	 of 
 are 
not connected by a path, then &'(()��, 	
 � 0 and ����u, v
 � ∞. 
 
Theorem 2.6. Let 
 be a weighted graph with vertex set �. Then strongest strong 
distance ��� is a metric on �. 
Proof: For any two distinct vertices � and 	, &'(()��, 	
 Y 0. So, ����u, v
 Y 0, Z�, 	 � �. Also ����u, v
 � 0 if and only if � � 	. Since, reversal of a path from � to 	 
is a path from 	 to � and vice versa, ����u, v
 � ����v, u
. For any three vertices �, 	, � � �, &'(()��, 	
 Y &'(()��, �
 a &'(()��, 	
, where a represents the 

minimum. This gives, 
�

]^__`�C,@
  �
]^__`�C,�
a]^__`��,@
  �

]^__`�C,�
 [ �
]^__`��,@
. 

That is ����u, v
  ����u, w
 [ ����w, v
, Z u, v, w � V.  
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Since ��� satisfies all the conditions for a metric, ��� is a metric on  �. 
 
Definition 2.7. The �-distance between two vertices � and 	 in a connected weighted 
graph 
 denoted by ���, 	
, is defined as ���, 	
 � 1 [ ∆� � &'(()��, 	
, where ∆� 
is the maximum weight of all arcs and ���, �
 � 0, for every vertex � �  �. 
 
Theorem 2.8. �-distance in a connected weighted graph 
 with vertex set � is a metric 
on  �. 
Proof: &'(()��, 	
  ∆�, for every pair of vertices �, 	 � �. Also, ∆� [ 1 Y 0. 
Therefore, ���, 	
 Y 0,  Z �, 	 � �. Also ���, 	
 � 0 if and only if � � 	. Since &'(()��, 	
 � &'(()�	, �
, Z �, 	 � �, ���, 	
 � ��	, �
, Z �, 	 � �.  Also for any 
three vertices �, 	, � �  �. &'(()��, 	
 Y &'(()��, �
 a CONN)��, 	
, where a 
represents the minimum. 
So, 1 [ ∆� � &'(()��, 	
  1 [ ∆� � h&'(()��, �
 a &'(()��, 	
i.  
Therefore  ���, 	
  ���, �
 [ ���, 	
, Z �, 	, � � �. Hence � is a metric on  �.  
                                                
 
Example 2.9.                         

      
 
                                    Figure 1: 
 
In Figure 1, ���u, v
 � �

� , ����u, v
 � 3, ����u, v
 � �
j, ���, 	
 � 2. 

From this example, it can be seen that all metrics defined above are different in a  
weighted graph. 
 
3. Metrics in partial trees 
Partial trees are weighted graphs with unique maximum spanning tree. It was introduced 
by the authors of [7]. In the following section, we shall discuss the properties of the 
above mentioned metrics in partial trees. 
 
Proposition 3.1. Let 
 be a partial tree and < be the maximum spanning tree of 
. Then ���, ��� in 
 are eguivalent to ���, ��� respectively in <. 

This is because every strong arcs in 
 are in the unique maximum spanning tree < of 
.  

v 

3 

u 
2 

3 

4 w x 

w 
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In the next theorem, we show that centre of a partial tree and the centre of the associated 
maximum spanning tree are isomorphic with respect to the metric ���. 
 
Theorem 3.1. Let 
 be a partial tree and < be the maximum spanning tree of 
. Then 

G  &���

  = � G  &���<
  =. 
Proof: Consider a vertex 	 in 
. Let ����	
 � k in 
. We want to prove that ��� � k in <. ��� � k in 
 implies that there exist a vertex � �  	H such that there is a strong 	 � � 
path � of length k in 
 and ����	, �
 � maxl�A ����	, ?
. Since 
 ia a partial tree, � is 
the unique strong 	 � � path in 
 and < contains all strong edges in 
. Thus < contains 
the path � and ����	
 � k in < . So ��� � k in <. That is, for any vertex 	 in 
 
eccentricities in 
 and < are the same. Therefore by the definition of center of a weighted 
graph G  &���

 = �G  &���<
  =. 
 
Remark 3.2. Let 
 be a partial tree and < be the maximum spanning tree of 
. Then, 
 
and < have the same set of �m-eccentric vertices, same set of ��-eccentric vertices, same 
set of �-eccentric vertices. 
 
Proposition 3.2. Let 
 be a partial tree and < be the maximum spanning tree of G. Then �1
 G  &���

 = � G  &���<
 =  �2
  G  &n�

 = � G  &n�<
 =  
Proof: For any pair of vertices � and 	 in 
, &'(()��, 	
  �  &'((o��, 	
. So 
eccentricity of � in both 
 and < are the same with respect to metrics ��� and �. 
 
4.  Metrics in self-centered weighted graphs 
Definition 4.1. A connected weighted graph 
 is self-centered with respect to the metric � if each node is a central node with respect to �. 
 
Theorem 4.2. Let 
 be connected weighted graph and � be any one of the metric �� , ���, ��� or �, then 
 is self-centered with respect to � if &'(()��, 	
 � ���, 	
,  Z�, 	 �  � and �1
 F>p�

  �  �

�q , where �K is the minimum weight of all arcs in 
. 

�2
  F���

  �  1. 
�3
  F���

  �  �

�q, where �K is the least among the weights of edges of 
. 
�4
   Fn�

 �  1 [ ∆� � �K, where �K  is the least among the weights of edges of 
. 
 
Proof: By assumption, since &'(()��, 	
 � ���, 	
, the underlying graph is complete. 
Also every edge ��, 	
 is a strongest � � 	 path and every edges is strong. 
 
1. &'(()��, 	
 � ���, 	
,  Z�, 	 � �. This gives that the weight of the weakest arc in 
any other strongest � � 	 path is w(u,v). Hence the �-length of a strongest � � 	 path is 

atleast  
�

��C,@
. 
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 Let s 0  � � �K, ��, ��, … , �$ � 	 be any � � 	 path which is not strongest. Then the 

strength of s is strictly less than ���, 	
. So �-length of s is strictly greater than 
�

��C,@
, 
and hence ����, 	
 � �

��C,@
. Also, 

����, 	
 �  max@ ����, 	
  � max@ �
��C,@
 � �

tuvw ��C,@
                                                (1) 

 
Claim : ���	�
 � ���	x
, Z 	� , 	x � �. 
If not, let ���	�
 G ���	x
 and let �� and �x are two vertices in 
 such that ���	�
 ��
��@N ,CN
  and ��T	xV � �

��@y ,Cy
. ���	�
 G ��T	xV z �
��@N ,CN
 G �

��@y ,Cy
 z ��	�  , ��
 = �T	x  , �xV.                                 (2) 

Consider the path s: 	x, 	� , �x. Then  �T	x , 	�V Y ��	� , ��
 and  ��	� , �x
  Y  ��	� , ��
, 
since �� � 	�H and by (1). 
So, �T	x , 	�V a �T	� , �xV Y ��	� , ��
 = �T	x  , �xV by (2). 
That is, strength of a 	x � �x path exceeds  �T	x  , �xV, which contradicts our assumption 
that every edge is a strongest path. Interchanging ! and | a similar argument holds.  
Thus ���	�
 � ��T	xV, Z 	� , 	x � �. That is, 
  is self-centered with respect to �� and F>pQ Ppq,  where �K is the minimum weight of all arcs in 
. 
 
2.  By assumption every arc is strong and the underlying graph is complete. So, �����, 	
 � 1, Z �, 	 � �. Therefore  ����	
 � 1, Z 	 � �. So 
 is self-centered and  F���

 � min@�A ��� �	
 �  1. 
 

3.  �����, 	
 � �
]^__�C,@
 � �

��C,@
,  by assumption. 
 
Claim: ����	�
 � ����	x
, Z	� , 	x � �.  
Proof is same as in (1.). Hence 
 is self-centered and   F���

 � �

�q, where  �K is least. 

 
4.   ���, 	
 � 1 [ ∆� � &'(()��, 	
, where ∆� is the maximum weight of all arcs. So, 
      ���, 	
 � 1 [ ∆� � ���, 	
, by assumption. 
 
Claim: �n�	�
 � �n�	x
. 
Suppose not, that is, �n�	�
 G �n�	x
. 
Let �� � 	�H and �x � 	xH. Then �n�	�
 G �nT	xV z  1 [ ∆� � ���� , 	�
 G 1 [ ∆� ��T�x, 	xV.  
That is, ���� , 	�
 = �T�x , 	xV.                                                                                          (3) �� � 	�H and �x � 	xH implies that ���� , 	�
 � max@ � �	� , 	
 and �T�x , 	xV � max@ �T	x , 	V                                              (4) 
Consider the path s: 	x, 	� , �x then (4) gives   �T	x , 	�V Y ��	� , ��
 and �T	� , �xV Y  ��	� , ��
, since �� � 	�H. 
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So, �T	x , 	�V a �T	� , �xV Y ��	� , ��
 = �T	x  , �xV by (3). This is a contradiction to the 
assumption that &'(()��, 	
 � ���, 	
,  Z�, 	 � � . So �n�	�
 � �nT	xV, Z 	� ,  	x � �. 
So 
 is self-centered and  Fn�

 �  1 [  ∆� � �K, where  �K  is the least among the 
weights of edges of 
. 
 
Proposition 4.1. If 
 is a self-centered graph. Then each node of 
 is eccentric. This 
property is independent of the metric defined on it. 
 
Remark 4.3. When connectivity of � and 	, &'(()��, 	
 �  ���, 	
, Z �, 	 � �. Then 
the metrics �� and ��� coincide. 
 
Remark 4.4. The condition in the above theorem is not necessary for a weighted graph to 
be self-centered as seen from the following example. 
 
Example 4.5      

                                                
                                                
                                                     Figure 2: 
                                
In Figure 2, &'(()�?, }
 � 1 ~ ��?, }
.  But ���?
 �  ����
 �  ���}
 �  ����
 �  j

�.  Therefore 
 is self-centered with respect to the metric ��. 
Since every arc is strong, ����?
 �  �����
 �  ����}
 �  �����
 � 2. So 
 is self-
centered with respect to the metric ���. Also, ����?
 �  �����
 �  ����}
 �  �����
 � 1. 
That is, 
 is self-centered with respect to the metric ���.  �n�?
 �  1 [  ∆� � min@�A ��?, 	
  z �n�?
 � �n��
 � �n�}
 � �n��
 � 2. So 
 is 
self-centered with respect to the metric �. 
 
Remark 4.6. If 
 is a weighted cycle with � edges in which there exist at least 2 arcs 

having weakest weight ��, Then ����?
 �  �
�q , Z ? � �.   

Moreover all edges of 
 are strong and hence 

����?
 � �
$
� , if n is even

$U�
� , if n is odd�  

This is true for every vertex ? in 
. 

c d 

b a b 
1 

 1 

2 
2 



Dhanyamol M V and Sunil Mathew 

8 

 

Also  �n�?
 �  1 [  ∆� � ��, Z? � �. So G is self-centered with respect to ���, ��� and �. 
 
Theorem 4.7. Every connected weighted graph 
 is ��-self-centered as well as �-self 
centered. 
Proof: Let � be a strongest � � 	 path in 
 having strength � and let � be the least 
strength of connectivity between any pair of vertices in 
. 
Let ��:, ;
 � �, where �:, ;
 is an edge in �. Now consider any vertex � in V. 
Claim: &'(()��, :
  �  � or &'(()��, ;
  �  �. 
Suppose not, that is there is a strongest z- : path �� with strength �� and a strongest � � ; 
path �� with strength �� such that ��, �� = �. 
Clearly both �� and �� do not contain the edge �:, ;
 and every edges in �� and �� has 
weight greater than �. Also �� J �� contains an : � ; path and it does not contain the 
edge �:, ;
. So this path has strength greater than �. Then there exist a � � 	 path �j, 
which has strength greater than �. This contradicts our assumption. 
Therefore &'(()��, :
  �  � or &'(()��, ;
  �  �, Z� � �. Since � is least, "!�-&'(()��, :
� , �&'(()��, ;
9   &'(()��, ?
, where ? is any vertex in 
. 
This gives, �����, :
  �  �����, ;
 Y  �����, ?
, where � denotes the maximum. 

That is, �����
 � �����, :
  � �����, ;
 � �
�, Z� � �. Therefore 
 is ��-self-centered. To 

prove that 
 is �- self-centered, we have  "!�-&'(()��, :
� , �&'(()��, ;
9   &'(()��, ?
, Z ? � �. 
This gives, 1 [ ∆� � "!�-&'(()��, :
� , �&'(()��, ;
9  Y 1 [ ∆� � &'(()��, ?
. 
That is ���, :
 �  ���, ;
 Y  ���, ?
, where ? is any vertex in 
. So, �n��
 � ���, :
  ����, ;
, where � denotes the maximum. �n��
  �  1 [ ∆� � �, Z� � �. Therefore 
 is �-
self-centered. 
 
5. Conclusion 
Weighted graph theory has many applications in various fields like network analysis, 
information theory, database theory, operations research etc. Metric concepts play a key 
role in applications related with graphs. In this article, an attempt is made to define some 
metrics in weighted graphs. The properties of these metrics in partial trees are studied. 
Some relations between these metrics are studied. Also we proved that every connected 
weighted graph is ��-self-centered and  �-self-centered. 
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