Annals of Pure and Applied Mathematics Vol. 8, No. 1, 2014, 121-134 ISSN: 2279-087X (P), 2279-0888(online) Published on 24 November 2014 www.researchmathsci.org

Properties of Pre-*γ***-Open Sets and Mappings**

A. Vadivel¹ and C. Sivashanmugaraja²

¹Mathematics Section (FEAT), Annamalai University, Annamalainagar Tamil Nadu-608 002, India. e-mail: <u>avmaths@gmail.com</u>

²Department of Mathematics, Periyar Arts College, Cuddalore- 607 001 India. e-mail: <u>csrajamaths@yahoo.co.in</u>

Received 14 October 2014; accepted 8 November 2014

Abstract. Hariwan Z. Ibrahim introduced the concepts of pre- γ -open sets and pre- γ -open maps in a topological space. In this paper, some characterizations of these notions are presented. Also, some topological operations such as: pre- γ -boundary, pre- γ -exterior and pre- γ -limit, etc. are introduced. Further we introduce and study some new classes of mappings called pre*- γ -open, pre*- γ -closed and super pre- γ -open by pre- γ -open sets. Also, the relationships between these mappings are discussed. Several properties of these types of mappings are presented.

Keywords: pre- γ -open sets, pre- γ -boundary, pre- γ -exterior, pre- γ -limit, locally pre- γ -closed, pre*- γ -open, super pre- γ -open mappings; pre- γ -compact; pre- γ -connected spaces

AMS Mathematics Subject Classifications (2010): 54C05, 54C08, 54C10, 54D10

1. Introduction

Ogata [2] introduced the notion of pre- γ -open sets which are weaker than open sets. The concept of pre- γ -open sets and pre- γ -open maps in topological spaces are introduced by Ibrahim [3, 4] and also fuzzy generalized γ -closed sets are introduced by De [1]. In this paper, some characterizations of these notions are presented. Also, some topological operations such as: pre- γ -boundary, pre- γ -exterior and pre- γ -limit, etc, are introduced. Further, we introduce and study some new classes of mappings called pre*- γ -open, pre*- γ -closed and super pre- γ -open by pre- γ -open sets. Also, the relationships between these mappings are discussed. Several properties of these types of mappings are presented.

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively. An operation γ [2] on a topology τ is a mapping from τ into power set P(X) of X such that $V \subseteq \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V. A subset A of X with an operation γ on τ is called γ -open [2] if for each $x \in A$, there exists an open set U such that $x \in U$ and $\gamma(U) \subseteq A$. Then, τ_{γ} denotes the set of all γ -open sets in X. Clearly $\tau_{\gamma} \subseteq \tau$. Complements of γ -

open sets are called γ -closed. The τ_{γ} -interior [5] of A is denoted by τ_{γ} -int(A) and defined to be the union of all γ -open sets of X contained in A. A subset A of a space X is said to be pre- γ -open [3] if $A \subseteq \tau_{\gamma}$ -int(cl(A)).

Definition 2.1. [4] A subset *A* of *X* is called pre- γ -closed if and only if its complement is pre- γ -open.

Moreover, pre- $\gamma O(X)$ denotes the collection of all pre- γ -open sets of (X, τ) and pre- $\gamma C(X)$ denotes the collection of all pre- γ -closed sets of (X, τ) .

Definition 2.2. [4] Let *A* be a subset of a topological space (X, τ) . The intersection of all pre- γ -closed sets containing *A* is called the pre- γ -closure of A and is denoted by pre- $\gamma Cl(A)$.

Definition 2.3. [4] A subset *N* of a space (X, τ) is called a pre- γ -neighborhood (briefly, pre- γ -nbd) of a point $p \in X$ if there exists a pre- γ -open set *W* such that $p \in W \subseteq N$.

The class of all pre- γ -nbds of $p \in X$ is called the pre- γ -neighborhood system of p and denoted by pre- γ - N_p .

Definition 2.4. [4] A mapping $f : (X, \tau) \to (Y, \sigma)$ is called: (i) pre- γ -continuous if $f^{-1}(V) \in \text{pre-}\gamma O(X)$ for every open set *V* of *Y*, (ii) pre- γ -irresolute if $f^{-1}(V) \in \text{pre-}\gamma O(X)$ for every pre- γ -open set *V* of *Y*.

Definition 2.5. A space (X, τ) is called:

(i) pre- γ - $T_1[3]$ if for every two distinct points x, y of X, there exist two pre- γ -open sets U, V such that $x \in U, y \notin U$ and $x \notin V, y \in V$,

(ii) pre- γ - T_2 [3] if for every two distinct points x, y of X, there exist two disjoint pre- γ -open sets U, V such that $x \in U, y \in V$,

(iii) pre- γ -compact if for every pre- γ -open cover of X has a finite subcover,

(iv) pre- γ -connected if it can not be expressed as the union of two disjoint non-empty pre- γ - open sets of X,

(v) pre- γ - Lindelöff if every pre- γ -open cover of *X* has a countable subcover.

3. Some topological operations

Definition 3.1. Let (X, τ) be a space and $\subseteq X$. Then the pre- γ -boundary of A (briefly, pre- $\gamma b(A)$) is given by pre- $\gamma b(A) = \text{pre-}\gamma cl(A) \cap \text{pre-}\gamma cl(X \setminus A)$.

Theorem 3.1. If A is a subset of a space (X, τ) , then the following statements are hold: (1) pre- $\gamma b(A) = \text{pre-}\gamma b(X \setminus A)$. (2) pre- $\gamma b(A) = \text{pre-}\gamma cl(A) \setminus \text{pre-}\gamma int(A)$. (3) pre- $\gamma b(A) \cap \text{pre-}\gamma int(A) = \emptyset$. (4) pre- $\gamma b(A) \cup \text{pre-}\gamma int(A) = \text{pre-}\gamma cl(A)$. **Proof:** (1) Obvious from Definition 3.1. (2) Since, pre- $\gamma b(A) = \text{pre-}\gamma cl(A) \cap \text{pre-}\gamma cl(X \setminus A) = \text{pre-}\gamma cl(A) \cap (X \setminus \text{pre-}\gamma int(A))$ $=(\text{pre-}\gamma cl(A) \cap X) [\text{pre-}\gamma cl(A) \cap \text{pre-}\gamma int(A)] = \text{pre-}\gamma cl(A) \setminus \text{pre-}\gamma int(A).$

(3) Also, by using (2),

$$pre-\gamma b(A) \cap pre-\gamma int(A) = (pre-\gamma cl(A) \setminus pre-\gamma int(A)) \cap pre-\gamma int(A)$$

= (pre-\gamma cl(A) \oper-\gamma int(A)) \pre-\gamma int(A)
= pre-\gamma int(A) \pre-\gamma int(A) = \varnothing.
(4) By using (3),
pre-\gamma b(A) \oper-\gamma int(A) = (pre-\gamma cl(A) \pre-\gamma int(A)) \oper-\gamma pre-\gamma int(A) = pre-\gamma cl(A)

Theorem 3.2. If *A* is a subset of a space *X*, then the following statements are hold:

(1) A is a pre- γ -open set if and only if $A \cap \text{pre-}\gamma b(A) = \phi$.

(2) A is a pre- γ -closed set if and only if pre- $\gamma b(A) \subset A$.

(3) A is a pre- γ -clopen set if and only if pre- $\gamma b(A) = \phi$.

Proof: (1) Let A be a pre- γ -open set. Then $A = \text{pre-}\gamma int(A)$, hence $A \cap \text{pre-}\gamma b(A) = \text{pre-}\gamma int(A) \cap \text{pre-}\gamma b(A) = \emptyset$.

Conversely, let $A \cap \text{pre-} \gamma b(A) = \emptyset$. Then by Theorem 3.1.,

 $A \cap (\operatorname{pre-\gamma cl}(A) \setminus \operatorname{pre-\gamma int}(A)) = (A \cap \operatorname{pre-\gamma cl}(A)) \setminus (A \cap \operatorname{pre-\gamma int}(A)) =$

 $A \setminus \text{pre-}\gamma int(A) = \emptyset$. So, $A = \text{pre-}\gamma int(A)$ and hence A is pre- γ -open.

(2) Let A be a pre- γ -closed set. Then $A = \text{pre-}\gamma cl(A)$, but pre- $\gamma b(A) = \text{pre-}\gamma cl(A) \setminus A$

pre- $\gamma int(A) = A \setminus \text{pre-}\gamma int(A)$, then pre- $\gamma b(A) \subset A$. Conversely, let pre- $\gamma b(A) \subset A$. *A*. Then by Theorem 3.1., pre- $\gamma cl(A) = \text{pre-}\gamma b(A) \cup \text{pre-}\gamma int(A) \subset A \cup \text{pre-}\gamma int(A) = A$, thus pre- $\gamma cl(A) \subset A$ and $A \subset \text{pre-}\gamma cl(A)$. Therefore, $A = \text{pre-}\gamma cl(A)$.

(3) Let A be a pre- γ -clopen set. Then $A = \text{pre-}\gamma int(A)$ and $A = \text{pre-}\gamma cl(A)$, hence by Theorem 3.1., $\text{pre-}\gamma b(A) = \text{pre-}\gamma cl(A) \setminus \text{pre-}\gamma int(A) = A \setminus A = \emptyset$. Conversely, suppose that $\text{pre-}\gamma b(A) = \emptyset$. Then $\text{pre-}\gamma b(A) = \text{pre-}\gamma cl(A) \setminus \text{pre-}\gamma int(A) = \emptyset$ and hence, A is $\text{pre-}\gamma$ -clopen.

Definition 3.2. Let (X,τ) be a space and $A \subset X$. Then the set $X \setminus (\text{pre-}\gamma cl(A))$ is called the pre- γ -exterior of A and is denoted by $\text{pre-}\gamma ext(A)$. Each point $p \in X$ is called a pre- γ -exterior point of A, if it is a pre- γ -interior point of $X \setminus A$.

Theorem 3.3. If *A* and *B* are two subsets of a space (X, τ) , then the following statements are hold:

(1) pre- $\gamma ext(A) = pre-\gamma int(X \setminus A)$. (2) pre- $\gamma ext(A) \cap pre-\gamma b(A) = \emptyset$. (3) pre- $\gamma ext(A) \cup pre-\gamma b(A) = pre-\gamma cl(X \setminus A)$. (4) {pre- $\gamma int(A)$, pre- $\gamma b(A)$ and pre- $\gamma ext(A)$ } form a partition of X. (5) If $A \subset B$, then pre- $\gamma ext(B) \subset pre-\gamma ext(A)$. (6) pre- $\gamma ext(A \cup B) \subset pre-\gamma ext(A) \cup pre-\gamma ext(B)$. (7) pre- $\gamma ext(A \cap B) \supset pre-\gamma ext(A) \cap pre-\gamma ext(B)$. (8) pre- $\gamma ext(\emptyset) = X$ and pre- $\gamma ext(X) = \emptyset$. **Proof:** (1) Obvious from Definition 3.2. (2) By Theorem 3.1., pre- $\gamma ext(A) \cap pre-\gamma b(A) = pre-\gamma int(X \setminus A) \cap pre-\gamma b(X \setminus A) = \emptyset$. (3) Also, by Theorem 3.1., pre- $\gamma ext(A) \cup pre-\gamma b(A) = pre-\gamma int(X \setminus A) \cup pre-\gamma b(X \setminus A) = pre-\gamma cl(X \setminus A)$.

(4) and (5) Obvious. (6) pre- $\gamma ext(A \cup B) = X \setminus pre-\gamma cl(A \cup B) \subset X \setminus (pre-\gamma cl(A) \cup pre-\gamma cl(B))$ $= (X \setminus (pre-\gamma cl(A))) \cap (X \setminus (pre-\gamma cl(B)))$ $= pre-\gamma ext(A) \cap pre-\gamma ext(B) \subset pre-\gamma ext(A) \cup pre-\gamma ext(B).$ (7) Further, $pre-\gamma ext(A \cap B) = X \setminus pre-\gamma cl(A \cap B) \supset X \setminus (pre-\gamma cl(A) \cap pre-\gamma cl(B))$ $= (X \setminus (pre-\gamma cl(A))) \cup (X \setminus (pre-\gamma cl(B)))$ $= pre-\gamma ext(A) \cup pre-\gamma ext(B) \supset pre-\gamma ext(A) \cap pre-\gamma ext(B).$ (8) Obvious

(8) Obvious.

Remark 3.1. The inclusion relation in part (5), (6) of the above theorem cannot be replaced by equality as is shown by the following example.

Example 3.1. Let $X = \{a, b, c, d\}$ with topologies $\tau = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Define an operation γ on τ by

$$\gamma(A) = \begin{cases} \inf(cl(A)) & \text{if } A \neq \{a\} \\ cl(A) & \text{if } A = \{a\} \end{cases}$$

If $A = \{a, d\}$ and $B = \{b, d\}$, then pre- $\gamma ext(A) = \{b, c\}$, pre- $\gamma ext(B) = \{a, c\}$. But pre- $\gamma ext(A \cup B) = \{c\}$, Therefore, pre- $\gamma ext(A) \cup$ pre- $\gamma ext(B) \not\subset$ pre- $\gamma ext(A \cup B)$. Also, pre- $\gamma ext(A \cap B) = \{a, b, c\}$, hence, pre- $\gamma ext(A \cap B) \not\subset$ pre- $\gamma ext(A) \cap$ pre- $\gamma ext(B)$.

Definition 3.3. If *A* is a subset of a space (X,τ) , then a point $p \in X$ is called a pre- γ -limit point of a set $A \subset X$ if every pre- γ -open set $G \subset X$ containing *p* contains a point of *A* other than *p*.

The set of all pre- γ -limit points of A is called a pre- γ -derived set of A and is denoted by pre- $\gamma d(A)$.

Proposition 3.1. Let (X, τ) be a topological space and $A \subseteq X$. Then, the following statements are hold:

(i) A is pre- γ -closed if and only if pre- $\gamma d(A) \subseteq A$

(ii) A is pre- γ -open if and only if it is pre- γ -nbd for every point $p \in A$

(iii) pre- $\gamma cl(A) = A \cup \text{pre-} \gamma d(A)$.

Proof: (i) Let A be a pre- γ -closed set and $p \in A$. Then $p \in X \setminus A$ which is open, hence there exists a pre- γ -open $(X \setminus A)$ such that $(X \setminus A) \cap A = \emptyset$, so $p \notin \text{pre-}\gamma d(A)$, therefore, pre- $\gamma d(A) \subset A$.

Conversely, suppose that pre- $\gamma d(A) \subset A$ and $p \notin A$. Then $p \notin \text{pre-}\gamma d(A)$, hence there exists a pre- γ -open set U containing p such that $U \cap A = \emptyset$ and hence $X \setminus A = \bigcup_{p \in A} \{G, G\}$

is pre- γ -open}, therefore A is pre- γ -closed.

(ii) Let A be a pre- γ -open set. Then A is a pre- γ -neighborhood for each $p \in A$. Conversely, let A be a pre- γ -neighborhood for each $p \in G$. Then there exists a pre- γ -

open set U_p containing p such that $p \in U_p \subseteq A$, so $A = \bigcup_{p \in G} U_p$, therefore, A is a pre- γ -

open.

(iii) Since, pre- $\gamma d(A) \subset \text{pre-}\gamma cl(A)$ and $A \subset \text{pre-}\gamma cl(A)$, pre- $\gamma d(A) \cup A \subset \text{pre-}\gamma cl(A)$. Conversely, suppose that $p \notin \text{pre-}\gamma d(A) \cup A$. Then $p \notin \text{pre-}\gamma d(A)$, $p \notin A$ and hence there exists a pre- γ -open set U containing p such that $U \cap A \neq \emptyset$. Thus $p \notin \text{pre-}\gamma cl(A)$ which implies that pre- $\gamma cl(A) \subset \text{pre-}\gamma d(A) \cup A$. Therefore, pre- $\gamma cl(A) = \text{pre-}\gamma d(A) \cup A$.

Theorem 3.4. If A and B are two subsets of a space X, then the following statements are hold:

(1) If $A \subset B$, then pre- $\gamma d(A) \subset \text{pre-} \gamma d(B)$.

(2) *A* is a pre- γ -closed set if and only if it contains each of its pre- γ -limit points.

(3) pre- $\gamma cl(A) = A \cup \text{pre-}\gamma d(A)$.

Proof: (1) Obvious.

(2) Let A be a pre- γ -closed set and $p \notin A$. Then $p \in X \setminus A$ which is pre- γ -open, hence there exists a pre- γ -open $(X \setminus A)$ such that $(X \setminus A) \cap A = \emptyset$, so $p \notin \text{pre-}\gamma d(A)$, therefore, $\text{pre-}\gamma d(A) \subset A$.

Conversely, suppose that pre- $\gamma d(A) \subset A$ and $p \notin A$. Then $p \notin \text{pre-} \gamma d(A)$, hence there exists a pre- γ -open set *G* containing *p* such that $G \cap A = \emptyset$ and hence

 $X \setminus A = \bigcup_{p \in A} \{G, G \text{ is pre-}\gamma\text{-open}\}$, therefore A is pre- γ -closed.

(3) Since, $\operatorname{pre-\gamma d}(A) \subset \operatorname{pre-\gamma cl}(A)$ and $A \subset \operatorname{pre-\gamma cl}(A)$, $\operatorname{pre-\gamma d}(A) \cup A \subset \operatorname{pre-\gamma cl}(A)$. Conversely, suppose that $p \notin \operatorname{pre-\gamma d}(A) \cup A$. Then $p \notin \operatorname{pre-\gamma d}(A)$, $p \notin A$ and hence there exists a pre- γ -open set G containing p such that $G \cap A = \emptyset$. Thus $p \notin \operatorname{pre-\gamma cl}(A)$ which implies that $\operatorname{pre-\gamma cl}(A) \subset \operatorname{pre-\gamma d}(A) \cup A$. Therefore, $\operatorname{pre-\gamma cl}(A) = \operatorname{pre-\gamma d}(A) \cup A$.

Theorem 3.5. A subset G of a space X is pre- γ -open if and only if it is pre- γ -nbd, for every point $p \in G$.

Proof: Let G be a pre- γ -open set. Then G is a pre- γ -nbd for each $p \in G$. Conversely, let G be a pre- γ -nbd for each $p \in G$. Then there exists a pre- γ -open set W_p containing p

such that
$$p \in W_p \subseteq G$$
, so $G = \bigcup_{p \in G} W_p$, therefore, G is a pre- γ -open.

Theorem 3.6. In a space (X, τ) . If pre- γ - N_p be the pre- γ -nbd. Systems of a point $p \in X$, then the following statements are hold:

(1) pre- γ - N_p is not empty and p belongs to each member of pre- γ - N_p ,

(2) Each superset of members of N_p belongs pre- γ - N_p ,

(3) Each member $N \in \text{pre-} \gamma - N_p$ is a superset of a member $W \in \text{pre-} \gamma - N_p$, where W is pre- γ -nbd of each point $p \in W$.

Proof: Obvious.

Definition 3.4. A subset A of a topological space (X, τ) is said to be locally pre- γ - closed if $A = U \cap F$ for each $U \in \tau$ and $F \in \text{pre-}\gamma C(X)$.

Theorem 3.7. Let *H* be a subset of a space *X*. Then *H* is locally pre- γ -closed if and only if $H = U \cap \text{pre-}\gamma cl(H)$.

Proof: Since *H* is a locally pre- γ -closed set, $H = U \cap F$, for each $U \in \tau$ and $F \in \text{pre-} \gamma C(X)$, hence $H \subseteq \text{pre-} \gamma cl(H) \subseteq \text{pre-} \gamma cl(F) = F$, thus $H \subseteq U \cap \text{pre-} \gamma cl(H) \subseteq U \cap \text{pre-} \gamma cl(F) = H$. Therefore $H = U \cap \text{pre-} \gamma cl(H)$. Conversely, since $\text{pre-} \gamma cl(H)$ is pre- γ -closed and $H = U \cap \text{pre-} \gamma cl(H)$, then *H* is locally pre- γ -closed.

Theorem 3.8. Let A be a locally pre- γ -closed subset of a space (X, τ). Then the following statements are hold:

(1) pre- $\gamma cl(A) \setminus A$ is a pre- γ -closed set.

(2) $(A \cup (X \setminus pre-\gamma cl(A)))$ is a pre- γ -open.

(3) $A \in \text{pre-}\gamma\text{-}int(A \cup (X \setminus \text{pre-}\gamma cl(A))).$

Proof: (1) If A is a locally pre- γ -closed set, then there exists an open set U such that $A = U \cap \text{pre-} \gamma cl(A)$. Hence,

pre- $\gamma cl(A) \setminus A$ = pre- $\gamma cl(A) \setminus (U \cap \text{pre-} \gamma cl(A))$

 $= \operatorname{pre-} \gamma cl(A) \cap [X \setminus (U \cap \operatorname{pre-} \gamma cl(A))]$ = $\operatorname{pre-} \gamma cl(A) \cap [(X \setminus U) \cup (X \setminus \operatorname{pre-} \gamma cl(A))]$

= pre-
$$\gamma cl(A) \cap (X \setminus U)$$

which is pre- γ -closed.

(2) From (1), pre- $\gamma cl(A)\setminus A$ is pre- γ -closed, then $X\setminus[(\text{pre-}\gamma - cl(A)\setminus A)]$ is a pre- γ -open set and $X\setminus[(\text{pre-}\gamma cl(A)\setminus A)] = X\setminus \text{pre-}\gamma cl(A) \cup (X \cap A) = A \cup (X\setminus \text{pre-}\gamma cl(A))$, hence $A \cup (X\setminus \text{pre-}\gamma cl(A))$ is pre- γ -open.

(3) It is clear that, $A \subseteq (A \cup (X \setminus \text{pre-}\gamma cl(A))) = \text{pre-}\gamma int(A \cup (X \setminus \text{pre-}\gamma cl(A))).$

4. Pre- γ -open and pre- γ -closed mappings

Definition 4.1. [3] A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be (i) pre- γ -open if the image of each open set of (X, τ) is pre- γ -open in (Y, σ) , (ii) pre- γ -closed if the image of each closed set of (X, τ) is pre- γ -closed in (Y, σ) .

Definition 4.2. For a space (X, τ) and $A \subseteq X$:

(i) pre- γ - $b(A) = \text{pre-}\gamma cl(A) \setminus \text{pre-}\gamma int(A)$

(ii) pre- $\gamma Bd(A) = A \setminus \text{pre-} \gamma int(A)$.

The set of pre- γ -boundary (respectively pre- γ -border) of A is denoted by pre- γ -b(A) (respectively pre- γ -Bd(A)).

Theorem 4.1. For a bijective mapping $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent:

(i) f⁻¹ is pre-γ-continuous,
(ii) f is pre-γ-open,
(iii) f is pre-γ-closed. **Proof:** Obvious.

Theorem 4.2. For a mapping $f: (X,\tau) \to (Y,\sigma)$, the following statements are equivalent:

(i) f is pre- γ -open,

(ii) For each $x \in X$ and each neighborhood U of x, there exists $V \in \text{pre-}\nu O(Y)$ containing f(x) such that $V \subseteq f(U)$,

(iii) $f(int(A)) \subseteq \operatorname{pre-}\gamma int(f(A))$, for each $A \subseteq X$,

(iv) $int(f^{-1}(B)) \subseteq f^{-1}(\text{pre-}\gamma int(B))$, for each $B \subseteq Y$, (v) $f^{-1}(\text{pre-}\gamma Bd(B)) \subseteq Bd(f^{-1}(B))$, for each $B \subseteq Y$,

(vi) $f^{-1}(\text{pre-}\gamma cl(B)) \subseteq cl(f^{-1}(B))$, for each $B \subseteq Y$.

Proof: (i) \rightarrow (ii) Let U be neighborhood of x in X. Then there exists an open set G such that $x \in G \subseteq U$ and hence $f(x) \in f(G) \subseteq f(U)$. Since f is pre- γ -open, then f(G) is pre- γ -open in Y. Put f(G) = V, then $f(x) \in V \subseteq f(U)$.

(ii) \rightarrow (i) Let U be an open set containing x in X. Then U is neighborhood of each $x \in U$. By hypothesis, there exists $V \in \text{pre-} \gamma O(Y)$ such that $(x) \in V \subseteq f(U)$.

Hence, f(U) is pre- γ -neighborhood of each $f(x) \in f(U)$. By Proposition 3.1., f(U) is pre- γ -open in Y. Therefore, f is pre- γ -open mapping.

(i) \rightarrow (iii) Since $int(A) \subseteq A \subseteq X$ which is open and f is pre- γ -open, then f(int(A)) is pre- γ -open in Y. Hence, $f(int(A)) \subseteq \text{pre-}\gamma int(f(A))$, then $f(int(A)) \subseteq \text{pre-}\gamma int(f(A))$ γ int $(f(A)) \subseteq f(A)$.

(iii) \rightarrow (iv) By replacing $f^{-1}(B)$ instead of A in (iii), we have $f(int(f^{-1}(B)) \subseteq pre-\gamma)$ $int(f(f^{-1}(B)))$ and then $int(f^{-1}(B)) \subseteq f^{-1}(\text{ pre-}\gamma - int(f(f^{-1}(B))))) \subseteq f^{-1}(\text{ pre-}\gamma - int(f(f^{-1}(B)))))$ γ int(B)).

(iv) \rightarrow (i) Let $A \in \tau$. Then $f(A) \subseteq Y$ and by hypothesis, $int(f^{-1}(f(A))) \subseteq f^{-1}(pre \gamma$ int(f(A)). This implies that, int $(A) \subseteq f^{-1}(\operatorname{pre-\gamma}int(f(A)))$. Thus $f(int(A)) \subseteq$ $pre-\gamma int(f(A))$. Therefore, f is pre- γ -open.

(iv) \rightarrow (v) Let $B \subseteq Y$. Then by hypothesis, $f^{-1}(B) \setminus f^{-1}(\text{ pre-}\gamma int(B)) \subseteq f^{-1}(B) \setminus f^{-1}(B)$ $int(f^{-1}(B))$ and hence, $f^{-1}(B \setminus pre-\gamma int(B)) \subseteq f^{-1}(B) \setminus int(f^{-1}(B))$. Therefore, $f^{-1}(\operatorname{pre-}\gamma Bd(B)) \subseteq Bd(f^{-1}(B)).$

(v) \rightarrow (iv) Let $B \subseteq Y$. Then by Definition 2.3., we have $f^{-1}(B \setminus pre-\gamma int(B)) \subseteq$ $f^{-1}(B) \setminus int(f^{-1}(B))$ and hence $f^{-1}(B) \setminus f^{-1}(\text{pre-}\gamma int(B)) \subseteq f^{-1}(B) \setminus int(f^{-1}(B))$. Therefore, $int(f^{-1}(B)) \subseteq f^{-1}(\text{ pre-}\gamma int(B))$.

(i) \rightarrow (vi) Let $B \subseteq Y$ and $x \in f^{-1}(pre-\gamma cl(B))$. Then $f(x) \in pre-\gamma cl(B)$. Assume that U is an open set containing x. Since f is pre- γ -open, then f(U) is pre- γ -open in Y. Hence, $B \cap f(U) \neq \emptyset$. Thus $U \cap f^{-1}((B) \neq \emptyset$. Therefore, $x \in cl(f^{-1}((B)))$. So, $f^{-1}((\text{ pre-} \gamma cl(B)) \subseteq cl(f^{-1}(B)).$

(vi) \rightarrow (i) Let $B \subseteq Y$. Then $Y \setminus B \subseteq Y$. By hypothesis, $f^{-1}(\text{ pre-}\gamma cl(Y \setminus B)) \subseteq$ $cl(f^{-1}(Y \setminus B))$ and hence $X \setminus f^{-1}(\text{ pre-}\gamma int(B)) \subseteq X \setminus int(f^{-1}(B))$ that implies $int(f^{-1}(B)) \subseteq f^{-1}(\text{ pre-}\gamma int(B))$. Then by (iv), f is pre- γ -open.

Theorem 4.3. Let $f : (X, \tau) \to (Y, \sigma)$ be a pre- γ -open mapping. If $W \subseteq Y$ and $F \subseteq X$ is a closed set containing $f^{-1}(W)$, then there exists a pre- γ -closed set H of Y containing W such that $f^{-1}(H) \subseteq F$.

Proof: Let $H = Y \setminus f(X \setminus F)$ and F be a closed set of X containing $f^{-1}(W)$. But f is pre- γ -open mapping, then $f(X \setminus F)$ is pre- γ -open set of Y. Therefore, H is pre- γ -closed and $f^{-1}(H) = X \setminus f^{-1}[f(X \setminus F)] \subseteq X \setminus (X \setminus F) = F$.

Remark 4.1. The converse of above theorem is not true in general. Suppose that $X = Y = \{a, b, c, d\}$ with topologies $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Define an operation γ on σ by

$$\gamma(A) = \begin{cases} \operatorname{int}(cl(A)) & \text{if } A \neq \{a\} \\ cl(A) & \text{if } A = \{a\}. \end{cases}$$

Hence the identity map $f : (X, \tau) \to (Y, \sigma)$ is satisfying the condition but it is not pre- γ -open. Since $\{d\} \subseteq Y$ and $\{d\} \subseteq X$ is a closed set containing $f^{-1}(\{d\}) = \{d\}$, hence there exists $\{d\} \in \text{pre-}\gamma C(Y)$ containing $\{d\}$ such that $f^{-1}(\{d\}) \subseteq \{d\}$ but, $\{a\} \in \tau$ and $f(\{a\}) = \{a\} \notin \text{pre-}\gamma O(Y)$.

Theorem 4.4. Let $f : (X, \tau) \to (Y, \sigma)$ be a pre- γ -closed mapping. Then the following statements are hold:

(i) If f is a surjective and $f^{-1}(B)$, $f^{-1}(C)$ have disjoint neighborhoods of X, then B and C are disjoint of Y,

(ii) pre- γ *int*(pre- γ *cl*(f(A))) $\subseteq f(cl(A))$, for each $A \subseteq X$.

Proof: (i) Let M, N be two disjoint neighborhoods of $f^{-1}(B)$, $f^{-1}(C)$. Then there exist two pre- γ -open sets U, V such that $f^{-1}(B) \subseteq U \subseteq M$, $f^{-1}(C) \subseteq V \subseteq N$. But, f is a surjective map, then $ff^{-1}(B) = B \subseteq f(U) \subseteq f(M)$, $ff^{-1}(C) = C \subseteq f(V) \subseteq f(N)$. Since M, N are disjoint, then also $f(M \cap N) = \emptyset$ and hence $B \cap C \subseteq f(U \cap V) \subseteq f(M \cap N) = \emptyset$. Therefore, B and C are disjoint of Y.

(ii) Since $A \subseteq cl(A) \subseteq X$ and f is a pre- γ -closed mapping, then f(cl(A)) is pre- γ -closed in Y. Hence, $f(A) \subseteq pre-\gamma cl(f(A)) \subseteq f(cl(A))$. So pre- γ int(pre- $\gamma cl(f(A))) \subseteq f(cl(A))$.

Theorem 4.5. For a mapping $f : (X, \tau) \to (Y, \sigma)$, then the following are equivalent: (i) *f* is pre- γ -closed,

(ii) pre- $\gamma cl(f(A)) \subseteq f(cl(A))$ for each $A \subseteq X$,

(iii) If f is surjective, then for each subset B of Y and each open set U in X containing $f^{-1}(B)$, there exists a pre- γ -open set V of Y containing B such that $f^{-1}(V) \subseteq U$.

Proof: (i) \rightarrow (ii) Let $cl(A) \subseteq X$ be a closed set. Since f is pre- γ -closed, then $f(cl(A)) \in \text{pre-} \gamma C(Y)$. Hence, pre- $\gamma cl(f(A)) \subseteq f(cl(A))$.

(ii) \rightarrow (i) Let $A \subseteq X$ be a closed set. By hypothesis, $\operatorname{pre-\gamma cl}(f(A)) \subseteq f(cl(A)) = f(A)$. Hence, $f(A) \in \operatorname{pre-\gamma C}(Y)$. Therefore, f is $\operatorname{pre-\gamma -closed}$.

(i) \rightarrow (iii) Suppose that $V = Y \setminus f(X \setminus U)$ and U is an open set of X containing $f^{-1}((B)$. Then by hypothesis, V is pre- γ -open in Y. But, $f^{-1}(B) \subseteq U$, then $B \subseteq f(U)$ and $f(X \setminus U) \subseteq Y \setminus B$, that is, $B \subseteq V$ and $f^{-1}((V) \subseteq U$.

(iii) \rightarrow (i) Let $F \subseteq X$ be a closed set and y be any point of $Y \setminus f(F)$. Then $f^{-1}(y) \in X \setminus F$ which is open in X. Hence by hypothesis, there exists a pre- γ -open set V

containing y such that $f^{-1}(V) \subseteq X \setminus F$. But f is surjective, then $y \in V \subseteq Y \setminus f(F)$ and $Y \setminus f(F)$ is the union of pre- γ -open sets and hence, f(F) is pre- γ -closed. Therefore, f is pre- γ -closed.

Remark 4.2. The restriction of pre- γ -open mapping is not pre- γ -open. Consider the Remark 4.1., the function $f: (X, \tau) \to (Y, \sigma)$ is defined as f(a) = f(c) = c, f(b) = b and f(d) = a is pre- γ -open. But $A = \{a, d\} \subseteq X$ and, $f_A: (A, \tau_A) \to (Y, \sigma)$ is not pre- γ -open. Since $\{d\} \in \tau_A$ but $f(\{d\}) = \{d\} \notin \text{pre-} \gamma O(Y)$.

Remark 4.3. The composition of two pre- γ -open mappings may not be pre- γ -open. Let $X = Y = Z = \{a, b, c, d\}$ with topologies $\tau_X = \{X, \emptyset, \{a, b\}, \{c, d\}\}, \tau_Y$ is an indiscrete topology and $\tau_Z = \{Z, \emptyset, \{a\}, \{c\}, \{a, c\}\}$. Let $f : (X, \tau_X) \to (Y, \tau_Y), g : (Y, \tau_Y) \to (Z, \tau_Z)$ be the identity mappings and define an operation γ on τ_Y and τ_Z defined by $\gamma(A) = A$. Clearly f and g are pre- γ -open but $(g \circ f)$ is not pre- γ -open. Since $\{c, d\} \subseteq X$ is an open set of X, but $(g \circ f) (\{c, d\}) = \{c, d\} \notin \text{pre-}\gamma O(Z)$. In the following, we give some further properties of the composition of two pre- γ -open (respespectly pre- γ -closed) mappings.

Theorem 4.6. Let $f : (X, \tau_X) \to (Y, \tau_Y)$ and $g : (Y, \tau_Y) \to (Z, \tau_Z)$ be two mappings. Then the following statements are hold:

(i) If f is an open and g is a pre- γ -open mappings, then $g \circ f$ is pre- γ -open,

(ii) If $g \circ f$ is a pre- γ -open and f is a surjective continuous map, then g is pre- γ -open,

(iii) If $g \circ f$ is an open and g is an injective pre- γ -continuous map, then f is pre- γ -open. **Proof.** (i) Let $U \in \tau$. Then by hypothesis, $f(U) \in \tau$. But g is a pre- γ -open map

Proof: (i) Let $U \in \tau_X$. Then by hypothesis, $f(U) \in \tau_Y$. But g is a pre- γ -open map, then $g(f(U)) \in \text{pre-} \gamma O(Z)$. Hence, $g \circ f$ is pre- γ -open.

(ii) Let $U \in \tau_Y$ and f be a continuous map. Then $f^{-1}(U) \in \tau_X$. But $g \circ f$ is a pre- γ -open map, then $(g \circ f)(f^{-1}(U)) \in \text{pre-}\gamma O(Z)$. Hence by surjective of f, $g(U) \in \text{pre-}\gamma O(Z)$. Hence, g is pre- γ -open.

(iii) Let $U \in \tau_X$ and $g \circ f$ be an open map. Then $(g \circ f)(U) = g(f(U)) \in \tau_Z$. Since g is an injective pre- γ -continuous map, hence $f(U) \in \text{pre-}\gamma O(Y)$. Therefore, f is pre- γ -open.

Theorem 4.7. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijective pre- γ -open mapping. Then the following statements are hold:

(i) If *X* is a T_i -space, then *Y* is pre- γ - T_i where i = 1, 2.

(ii) If Y is a pre- γ -compact (respectively pre- γ -Lindelöff .) space, then X is compact (respectively Lindelöff).

Proof: (i) We prove that for the case of a T_1 -space. Let y_1 , y_2 be two distinct points of Y. Then there exist x_1 , $x_2 \in X$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since X is a T_1 -space, then there exist two open sets U, V of X such that $x_1 \in U, x_2 \notin U$ and $x_2 \in V, x_1 \notin V$. But, f is a pre- γ -open map, then f(U), f(V) are pre- γ -open sets of Y with $y_1 \in f(U), y_2 \notin f(U)$ and $y_2 \in f(V), y_1 \notin f(V)$. Therefore, Y is pre- γ - T_1 .

(ii) We prove that the theorem for pre- γ -compact. Let $\{U_i : i \in I\}$ be a family of open cover of X and f be a surjective pre- γ -open mapping. Then $\{f(U_i) : i \in I\}$ is a pre- γ -open cover of Y. But, Y is pre- γ -compact space, hence there exists a finite subset I_o of

I such that $Y = \bigcup \{f(U_i) : i \in I_o\}$. Then by injective of $f, \{U_i : i \in I_o\}$ is a finite subfamily of X. Therefore, X is compact.

Theorem 4.8. If $f : (X, \tau) \to (Y, \sigma)$ is a surjective pre- γ -open mapping and Y is pre- γ -connected space, then X is connected.

Proof: Suppose that *X* is a disconnected space. Then there exist two non-empty disjoint open sets *U*, *V* of *X* such that $X = U \cup V$. But f is a surjective pre- γ -open map, then f(U) and f(V) are non-empty disjoint pre- γ -open sets of *Y* with $Y = f(U) \cup f(V)$ which is a contradiction with the fact that *Y* is pre- γ -connected.

5. Super pre- γ -open and super pre- γ -closed mappings

In the following, we introduce and study the concept of super pre- γ -open and super pre- γ -closed mappings. Also, some of their properties are investigated.

Definition 5.1. A mapping $f : (X, \tau) \to (Y, \sigma)$ is called: (i) super pre- γ -open if f(U) is open in Y for each $U \in \text{pre-}\gamma O(X, \tau)$. (ii) super pre- γ -closed if f(U) is closed in Y for each $U \in \text{pre-}\gamma C(X, \tau)$.

Example 5.1. Let $X = Y = \{a, b, c, d\}$ with topologies $\tau = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{c, d\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}\}$. Define an operation γ on τ by

$$\gamma(A) = \begin{cases} \operatorname{int}(cl(A)) & \text{if } A \neq \{a\} \\ cl(A) & \text{if } A = \{a\}. \end{cases}$$

Also the map $f: (X, \tau) \to (Y, \sigma)$ is defined as f(a) = b, f(b) = a, f(c) = c and f(d) = d is super pre- γ -open.

Proposition 5.1. Every super pre- γ -open mapping is pre- γ -open. **Proof:** Let $A \subseteq X$ be an open set and hence A is pre- γ -open. But, f is super pre- γ -open, then f(A) is open in Y, hence f(A) is pre- γ -open in Y. Therefore, f is pre- γ -open.

Remark 5.1. The converse of the above proposition is not true as shown in the following Example. Suppose that $X = Y = \{a, b, c, d\}$ with topologies $\tau = \{X, \emptyset, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{Y, \emptyset, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$.

Define an operation γ on τ by $\gamma(A) = A$ and an operation γ on σ by

$$\gamma(A) = \begin{cases} \inf(cl(A)) & \text{if } A \neq \{a\} \\ cl(A) & \text{if } A = \{a\}. \end{cases}$$

Also a mapping $f : (X, \tau) \to (Y, \sigma)$ which defined by f(a) = b, f(b) = a, f(c) = c and f(d) = d is pre- γ -open but not super pre- γ -open. Since $\{a, c, d\} \in \text{pre-} \gamma O(X)$ and $f(\{a, c, d\}) = \{b, c, d\} \notin \sigma$.

Theorem 5.1. If $f : (X, \tau) \to (Y, \sigma)$ is a mapping, then the following statements are equivalent:

(i) f is super pre- γ -open,

(ii) for each $x \in X$ and each pre- γ -neighborhood U of x, there exists a neighborhood V of f(x) such that $V \subseteq f(U)$,

(iii) $f(\text{pre-}\gamma int(A)) \subseteq int(f(A))$, for each $A \subseteq X$,

(iv) pre- $\gamma int(f^{-1}(B)) \subseteq f^{-1}(int(B))$, for each $B \subseteq Y$,

(v) $f^{-1}(Bd(B)) \subseteq \operatorname{pre-}\gamma Bd(f^{-1}(B))$, for each $B \subseteq Y$,

(vi) $f^{-1}(cl(B)) \subseteq \operatorname{pre-}\gamma cl(f^{-1}(B))$, for each $B \subseteq Y$,

(vii) If f is surjective, then for each subset B of Y and for any set $F \in \text{pre-}\gamma C(X)$ containing $f^{-1}(B)$, there exists a closed subset H of Y containing B such that $f^{-1}(H) \subseteq F$.

Proof: (i) \rightarrow (ii): Let *U* be a pre- γ -neighborhood of *x* in *X*. Then there exists $W \in \text{pre-} \gamma O(X)$ such that $x \in W \subseteq U$ and hence $f(x) \in f(W) \subseteq f(U)$. Hence by hypothesis, $f(W) \in \sigma$ and containing (x). Put f(W) = V, then $f(x) \in V \subseteq f(U)$.

(ii) \rightarrow (i): Suppose that *U* is pre- γ -open set of *X* and containing $x \in X$. Then $f(x) \in f(U)$. Hence by hypothesis, there exists $V \in \sigma$ containing f(x) such that $f(x) \in V \subseteq f(U)$. Hence, f(U) is neighborhood for $f(x) \in f(U)$. Thus f(U) is open in *Y* and hence *f* is super pre- γ -open.

(i) \rightarrow (iii): Since pre- $\gamma int(A) \subseteq A \subseteq X$ is pre- γ -open set and f is super pre- γ -open, then $f(\operatorname{pre-}\gamma int(A)) \subseteq f(A)$ is open in Y. Hence, $f(\operatorname{pre-}\gamma int(A)) \subseteq int(f(A))$.

(iii) \rightarrow (iv): By replacing $f^{-1}(B)$ instead of A of (iii), we have $f(\text{pre-}\gamma int(f^{-1}(B))) \subseteq int(f(f^{-1}(B))) \subseteq int(B)$ and hence, $\text{pre-}\gamma int(f^{-1}(B)) \subseteq f^{-1}(int(B))$.

(iv) \rightarrow (v): Let $B \subseteq Y$. Then by hypothesis and Definition 2.3., we have $f^{-1}(B) \setminus f^{-1}(int(B)) \subseteq f^{-1}(B) \setminus \text{pre-}\gamma int(f^{-1}(B))$ and hence, $f^{-1}(Bd(B)) \subseteq \text{pre-}\gamma Bd(f^{-1}(B))$.

 $(v) \rightarrow (iv)$: Let $B \subseteq Y$. Then by hypothesis and Definition 2.3., we have $f^{-1}(B \setminus int(B)) \subseteq f^{-1}(B) \setminus pre-\gamma int(f^{-1}(B))$ and hence $f^{-1}(B) \setminus f^{-1}(int(B)) \subseteq f^{-1}(B) \setminus pre-\gamma int(f^{-1}(B))$. Therefore, $pre-\gamma int(f^{-1}(B)) \subseteq f^{-1}(int(B))$. (iv) \rightarrow (vi): Let $B \subseteq Y$. Then $Y \setminus B \subseteq Y$, hence by hypothesis, we have pre-

(iv) \rightarrow (vi): Let $B \subseteq Y$. Then $Y \setminus B \subseteq Y$, hence by hypothesis, we have preyint $(f^{-1}(Y \setminus B)) \subseteq f^{-1}(int(Y \setminus B))$ and hence $X \setminus \text{pre-}\gamma cl(f^{-1}(B)) \subseteq X \setminus f^{-1}(cl(B))$. Therefore, $f^{-1}(cl(B)) \Box \text{pre-}\gamma cl(f^{-1}(B))$.

(vi) \rightarrow (iv): Let $B \subseteq Y$. Then $Y \setminus B \subseteq Y$. So by hypothesis, we have $f^{-1}(cl(Y \setminus B)) \subseteq$ pre- $\gamma cl(f^{-1}(Y \setminus B))$ and hence $X \setminus f^{-1}(int(B)) \subseteq X \setminus \text{pre-}\gamma int(f^{-1}(B))$. Therefore, pre- $\gamma int(f^{-1}(B) \subseteq f^{-1}(int(B))$.

(iv) \rightarrow (i): Let $A \in \text{pre-}\gamma O(X)$. Then $f(A) \subseteq Y$ and by hypothesis,

pre- γ *int* $(f^{-1}(f(A))) \subseteq f^{-1}(int(f(A)))$. This implies that,

pre- γ int(A) $\subseteq f^{-1}(int(f(A)))$. Thus $f(\text{ pre-}\gamma int(A)) \subseteq int(f(A))$. Therefore by (iii), f is super pre- γ -open.

(i) \rightarrow (vii): Let $H = Y \setminus f(X \setminus F)$ and F be a pre- γ -closed set of X containing $f^{-1}(B)$. Then $X \setminus F$ is a pre- γ -open set. But f is a super-pre- γ -open mapping, then $f(X \setminus F)$ is open in Y. Therefore, H is a closed set of Y and $f^{-1}(H) = X \setminus f^{-1}f(X \setminus F) \subseteq X \setminus (X \setminus F) = F$. (vii) \rightarrow (i): Let $U \in$ pre- $\gamma O(X)$ and put $B = Y \setminus f(U)$. Then $X \setminus U \in$ pre- $\gamma C(X)$ with $f^{-1}(B) \subseteq X \setminus U$. By hypothesis, there exists a closed set H of Y such that $B \subseteq H$ and $f^{-1}(H) \subseteq X \setminus U$. Hence, $f(U) \subseteq Y \setminus H$ and since $B \subseteq H$, then $Y \setminus H \subseteq Y \setminus B =$ f(U). This implies $f(U) = Y \setminus H$ which is open. Therefore, f is super pre- γ -open.

Theorem 5.2. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijective super pre- γ -open mapping. Then the following statements are hold:

(i) If X is a pre- γ - T_i -space, then Y is T_i , where i = 1, 2.

(ii) If Y is a compact (respectively Lindelöff.) space, then X is pre- γ -compact (respectively pre- γ -Lindelöff).

Proof: (i) We prove that for the case of a pre- γ - T_2 -space. Let y_1 , y_2 be two distinct points of Y. Then there exist $x_1, x_2 \in X$ such that $f(x_1) = y_1$ and $f(x_2) = y_2$. Since X is a pre- γ - T_2 -space, then there exist two disjoint pre- γ -open sets U, V of X such that $x_1 \in U$ and $x_2 \in V$. But, f is super pre- γ -open map, then f(U), f(V) are open sets of Y with $y_1 \in f(U)$, $y_2 \in f(V)$, and $f(U) \cap f(V) = \emptyset$. Therefore, Y is T_2 .

(ii) We prove that the theorem for pre- γ -Lindelöff. space. Let $\{U_i : i \in I\}$ be a family of pre- γ -open cover of X and f be a surjective super pre- γ -open mapping. Then $\{f(Ui) : i \in I\}$ is an open cover of Y. But, Y is a Lindelöff space, hence there exists a countable subset I_0 of I such that $= \bigcup \{f(Ui) : i \in I_0\}$. Then by injective of $f, \{U_i : i \in I_0\}$ is a countable subfamily of X. Therefore, X is pre- γ -Lindelöff

Theorem 5.3. If $f : (X, \tau) \to (Y, \sigma)$ is a surjective super pre- γ -open mapping and Y is a connected space, then X is pre- γ -connected. **Proof:** Obvious.

6. Pre*- γ -open and pre*- γ -closed mappings

In this section, we introduce the concepts of pre*- γ -open and pre*- γ -closed mappings. Also, we study some of their basic properties and characterizations.

Definition 6.1. A mapping $f : (X, \tau) \to (Y, \sigma)$ is said to be: (i) pre*- γ -open if $f(V) \in \text{pre-}\gamma O(Y)$ for each $V \in \text{pre-}\gamma O(X)$, (ii) pre*- γ -closed if $f(V) \in \text{pre-}\gamma C(Y)$ for each $V \in \text{pre-}\gamma C(X)$.

Theorem 6.1. Let $f: (X, \tau) \to (Y, \sigma)$ be a bijective mapping. Then the following Statements are equivalent: (i) *f* is pre*- γ -closed, (ii) *f* is pre *- γ -open, (iii) f^{-1} is pre- γ -irresolute. **Proof:** Obvious.

Proposition 6.1. (i) Every super pre- γ -open mapping is pre*- γ -open, (ii) Every pre*- γ -open mapping is pre- γ -open.

Proof: (i) Let $A \subseteq X$ be a pre- γ -open set and f be super pre- γ -open, then f(A) is open in Y and hence f(A) is pre- γ -open. Therefore, f is pre*- γ -open. (ii) Let $A \subseteq X$ be an open set and hence A is pre- γ -open. But, f is pre*- γ -open, then f(A) is pre- γ -open in Y. Therefore, f is pre- γ -open.

Remark 6.1. According to the above proposition, we have the following diagram

super pre- γ -open \rightarrow pre*- γ -open \rightarrow pre- γ -open

The converse of the above implication is not true in general.

Example 6.1. In Remark 5.1., f is pre- γ -open but not pre*- γ -open. Since $\{a, c, d\} \in \text{pre-}\gamma O(X)$ and $f(\{a, c, d\}) = \{b, c, d\} \notin \text{pre-}\gamma O(Y)$.

Example 6.2. Suppose that $X = Y = \{a, b, c, d\}$ with topologies $\tau = \{X, \emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ and $\sigma = \{Y, \emptyset, \{d\}\}$. Define an operation γ on σ by $\gamma(A) = A$ and an operation γ on τ by

$$\gamma(A) = \begin{cases} \operatorname{int}(cl(A)) & \text{if } A \neq \{a\} \\ cl(A) & \text{if } A = \{a\} \end{cases}$$

Also a mapping $f : (X, \tau) \to (Y, \sigma)$ which defined by f(a) = b, f(b) = f(c) = d and f(d) = c is pre- γ -open but not super pre- γ -open. Since $\{a, b\} \in \text{pre-}\gamma O(X)$ and $f(\{a, b\}) = \{b, d\} \notin \sigma$.

Theorem 6.2. For a mapping $f : (X, \tau) \to (Y, \sigma)$, the following statements are equivalent: (i) *f* is pre*- γ -open, (ii) For each $r_{0} \in Y$ and each are transichly checked *U* of *t*, there exists *U* \in respectively.

(ii) For each $x \in X$ and each pre- γ -neighborhood U of x, there exists $V \in \text{pre-} \gamma O(Y)$ containing f(x) such that $V \subseteq f(U)$, (iii) $f(\text{pre-}\gamma int(A)) \subseteq \text{pre-} \gamma int(f(A))$ for each $A \subseteq X$,

(iv) pre- $\gamma int(f^{-1}(B)) \subseteq f^{-1}(\text{ pre-}\gamma int(B))$ for each $B \subseteq Y$, (v) $f^{-1}(\text{ pre-}\gamma Bd(B)) \subseteq \text{ pre-}\gamma Bd(f^{-1}(B))$ for each $B \subseteq Y$, (vi) $f^{-1}(\text{ pre-}\gamma cl(B)) \subseteq \text{ pre-}\gamma cl(f^{-1}(B))$ for each $B \subseteq Y$. **Proof:** It is similar to that of Theorem 5.1.

Theorem 6.3. If $f : (X, \tau) \to (Y, \sigma)$ is a surjective pre*- γ -closed mapping and $f^{-1}(B)$, $f^{-1}(C)$ have disjoint pre- γ -neighborhoods of X, then B, C are disjoint of Y. **Proof:** Obvious.

Theorem 6.4. For a mapping $f : (X, \tau) \to (Y, \sigma)$, then the following statements are equivalent: (i) f is pre*- γ -closed, (ii) pre- $\gamma cl(f(A)) \subseteq f(\text{ pre-}\gamma cl(A))$, for each $A \subseteq X$, (iii) If f is surjective for each subset B of Y and for each pre- γ -open set U of X containing $f^{-1}(B)$, there exists a pre- γ -open set V of Y containing B such that $f^{-1}(V) \subseteq U$. **Proof:** Obvious.

Theorem 6.5. Let $f : (X, \tau_X) \to (Y, \tau_Y)$ and $g : (Y, \tau_Y) \to (Z, \tau_Z)$ be two mappings. Then the following statements are hold:

(i) $g \circ f$ is a pre*- γ -open mapping, if f, g are pre*- γ -open,

(ii) $g \circ f$ is a pre- γ -open mapping if f is pre- γ -open and g is pre*- γ -open,

(iii) If f is a surjective pre- γ -continuous mapping and $g \circ f$ is pre*- γ -open, then g is pre- γ -open.

Proof: (i) Let $U \in \text{pre-}\gamma O(X)$ and f be a $\text{pre*-}\gamma$ -open mapping. Then $f(U) \in \text{pre-}\gamma O(Y)$. But, g is $\text{pre*-}\gamma$ -open, then $g(f(U)) \in \text{pre-}\gamma O(Z)$. Hence, $g \circ f$ is $\text{pre*-}\gamma$ -open. (ii) Let $U \in \tau_X$ and f be a $\text{pre-}\gamma$ -open mapping. Then $f(U) \in \text{pre-}\gamma O(Y)$. But, g is $\text{pre*-}\gamma$ -open, then $g(f(U)) \in \text{pre-}\gamma O(Z)$. Hence, $g \circ f$ is $\text{pre-}\gamma$ -open.

(iii) Let $U \in \tau_{\gamma}$ and f be a pre*- γ -continuous mapping. Then $f^{-1}(U) \in \text{pre-}\gamma O(X)$. But, $g \circ f$ is pre*- γ -open, then $(g \circ f)(f^{-1}(U)) \in \text{pre-}\gamma O(Z)$. Also, by surjective of $f, g(U) \in \text{pre-}\gamma O(Z)$. Hence, g is pre- γ -open.

Theorem 6.6. Let $f : (X, \tau_X) \to (Y, \tau_Y)$ and $g : (Y, \tau_Y) \to (Z, \tau_Z)$ be two mappings such that $g \circ f : X \to Z$ is pre- γ -irresolute. Then:

(i) *f* is pre- γ -irresolute, if *g* is an injective pre*- γ -open mapping.

(ii) g is pre- γ -irresolute, if f is a surjective pre*- γ -open mapping.

Proof: (i) Let $U \in \text{pre-}\gamma O(Y)$. Then $g(U) \in \text{pre-}\gamma O(Z)$. But, $g \circ f$ is $\text{pre-}\gamma$ -irresolute, then $(g \circ f)^{-1}(g(U)) \in \text{pre-}\gamma O(X)$. Since g is an injective map, then $f^{-1}(U) \in \text{pre-}\gamma O(X)$. Hence, f is $\text{pre-}\gamma$ -irresolute.

(ii) Let $V \in \text{pre-}\gamma O(Z)$. Then $(g \circ f)^{-1}(V) \in \text{pre-}\gamma O(X)$. But, f is a $\text{pre}^*-\gamma$ -open mapping, then $f[(g \circ f)^{-1}(V)] \in \text{pre-}\gamma O(Y)$. Since f is a surjective map, then $g^{-1}(V) \in \text{pre-}\gamma O(Y)$. Therefore, g is $\text{pre-}\gamma$ -irresolute.

Theorem 6.7. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijective pre- γ -open mapping. Then the following statements are hold:

(i) If X is a pre- γ - T_i -space, then Y is pre- γ - T_i , where i = 1, 2.

(ii) If Y is a pre- γ -compact (respectively pre- γ -Lindelöff.) space, then X is pre- γ -compact (respectively pre- γ -Lindelöff.).

Proof: Obvious.

Theorem 6.8. If $f : (X, \tau) \to (Y, \sigma)$ is a surjective pre*- γ -open mapping and Y is a pre- γ -connected space, then X is pre- γ -connected. **Proof:** Obvious.

Acknowledgement

The author is grateful to the referees who were all given the valuable comments and corrections on earlier drafts of this article.

REFERENCES

- 1. D. De, Fuzzy generalized γ -closed set in fuzzy topological space, Annals of Pure and Applied Mathematics, 7(1) (2014) 104-109.
- 2. H. Ogata, Operation on topological spaces and associated topology, *Math. Jap.*, 36(1) (1991) 175-184.
- 3. Hariwan Z. Ibrahim, Weak forms of γ -open sets and new separation axioms, *Int. J. Sci. Eng. Res.*, 3(4) (2012) 1-4.
- Hariwan Z. Ibrahim, Pre-γ- T_{1/2} and pre-γ-continuous, *Journal of Advanced Studies in Topology*, 4(2) (2013) 1-9.
- 5. G. Sai Sundara Krishnan, A new class of semi open sets in a topological space, *Proc. NCMCM*, Allied Publishers, 2003.