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1. Introduction

Ogata [2] introduced the notion of pyeopen sets which are weaker than open sets. The
concept of prey-open sets and prg-open maps in topological spaces are introduced by
Ibrahim [3, 4] and also fuzzy generalizeetlosed sets are introduced by De [1]. In this
paper, some characterizations of these notionspegeented. Also, some topological
operations such as: pne-boundary, prey-exterior and prey-limit, etc, are introduced.
Further, we introduce and study some new classemppings called pre¥-open, pre*-
y-closed and super pre-open by pres-open sets. Also, the relationships between these
mappings are discussed. Several properties of thipee of mappings are presented.

2. Preliminaries

Let (X, ) be a topological space adda subset ok. The closure off and the interior of
A are denoted byl(A) andint(A), respectively. An operation [2] on a topology is a
mapping fromz into power seP(X) of X such that/ < y(V) for eachV € 7, where
y(V) denotes the value gfatV. A subsetd of X with an operatiory ont is called y-
open [2] if for eachx € A, there exists an open détsuch thatt € U andy(U) < A.
Then, 7, denotes the set of aly-open sets iX. Clearlyr, € 7. Complements ofy-
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open sets are calleg-closed. Ther, -interior [5] of A is denoted by, -int(4) and
defined to be the union of ajl-open sets ok contained imM. A subsetd of a spac« is
said to be pre-open [3] if A € 7,-int(cl(4)) .

Definition 2.1. [4] A subsetd of X is called pres-closed if and only if its complement is
pre-y-open.

Moreover, prey0(X) denotes the collection of all pre-open sets ofX, ) and
pre-yC(X) denotes the collection of all pyeelosed sets of (X%).

Definition 2.2. [4] Let A be a subset of a topological sp&&et). The intersection of all
pre-y-closed sets containing is called the prey-closure of A and is denoted by pre-

yCl(A) .

Definition 2.3. [4] A subsetN of a spac€X, 1) is called a prey-neighborhood (briefly,
pre-y-nbd) of a poinp € X if there exists a prg~open set# suchthap e W < N.

The class of all prg-nbds ofp € X is called the pre-neighborhood system of
p and denoted by pre-N,, .

Definition 2.4. [4] A mappingf : (X,t) — (Y,0) is called:
(i) pre-y-continuous iff ~1(V ) € pre-y0(X) for every open séf of Y,
(ii) pre-y-irresolute iff~1(V ) € prey0(X) for every prey-open sev of Y.

Definition 2.5. A space(X, 1) is called:

(i) pre-y-T,[3] if for every two distinct pointx, y of X, there exist two pre~open sets
U, Vsuchthak € U, y ¢ Uandx ¢V, y € V,

(i) pre-y-T, [3] if for every two distinct points,y of X , there exist two disjoint pre-
open setd/, V suchthatt € U, y € V,

(iii) pre-y-compact if for every prg-open cover oX has a finite subcover,

(iv) pre-y-connected if it can not be expressed as the uoidwo disjoint non-empty
pre-y- open sets of,

(v) pre-y- Lindeloff if every pres-open cover ok has a countable subcover.

3. Sometopological operations
Definition 3.1. Let (X,t) be a space and& X . Then the prg-~boundary of4 (briefly,
preyb(A)) is given by preyb(A) = preycl(4) n pre-ycl(X\A).

Theorem 3.1. If A is a subset of a spa¢#, 7), then the following statements are hold:

(1) pre-yb(A) = preyb(X \A) .

(2) preyb(A) = preycl(A)\pre-yint(A) .

(3) pre-yb(A) n pre-yint(A) = 0.

(4) pre-yb(A) U pre-yint(A) = preycl(4) .

Proof: (1) Obvious from Definition 3.1.

(2) Since,

preyb(A) = pre-ycl(A) n pre-ycl(X \A) = pre-ycl(4) n (X \preyint(A))
=(preycl(4) n X)\ [preycl(A) n preyint(A)]=prevycl(A)\ pre-yint(A).
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(3) Also, by using (2),

preyb(A) n preyint(A) = ( preycl(A)\pre-yint(A)) n pre-yint(A)
= ( preycl(4) n preyint(A))\ pre-yint(A)
= preyint(4) \ preyint(4) = @.
(4) By using (3),
preyb(A) U preyint(A) = (preycl(A)\ pre-yint(A4)) U preyint(4) = preycl(A) .

Theorem 3.2. If A is a subset of a spa&e then the following statements are hold:

(1) Ais a prey -open set if and only #l n preyb(4) = ¢.

(2) Ais a prey-closed set if and only if prgp(4) < A.

(3) Alis a prey-clopen set if and only if preb(4A) = ¢.

Proof: (1) LetA be a presopen set. Thed =pre yint(4), henced n pre-yb(A4) =
preyint(A) N pre yb(A) = Q.

Conversely, le npre-yb(A) = @ . Then by Theorem 3.1.,

A N (preycl(A)\preyint(4)) = (Anpreycl(A)) \ (Anpreyint(4d)) =

A\pre-y int(4) = 0. So,A =pre-yint(A) and hencd is prey-open.

(2) LetA be a prey-closed set. TheA = pre ycl(A) , but preyb(A4) = pre ycl(A)\
pre yint(A) = A\ pre yint(A), then preyb(4) c A. Conversely, let prerb(A) c
A. Then by Theorem 3.lpreycl(A) =preyb(A) Upreyint(4d) € AU
pre yint(A) = A, thus preycl(A) ¢ A and A cpreycl(4). Therefore, A =
pre-ycl(A).

(3) LetA be a prep-clopen set. TheA = pre-yint(A) andA = pre-ycl(A4) , hence by
Theorem 3.1., preb(A) =preycl(A)\preyint(A) = A\A =0. Conversely,
suppose that prgb(4A) = @ . Then preyb(4) = pre ycl(A)\ pre-yint(4) = @ and
henceA is prey-clopen.

Definition 3.2. Let (X,7) be a space andl ¢ X. Then the seX \(pre ycl(A)) is called
the prey-exterior ofA and is denoted by preext(A). Each pointp € X is called a
prey-exterior point of4, if it is a pre-y-interior point ofX\A.

Theorem 3.3. If A andB are two subsets of a spacg 1) , then the following statements
are hold:

(1) preyext(A) = pre-yint(X\A4) .

(2) preyext(A) npre-yb(A) =0.

(3) pre-yext(A) U pre-yb(A) = pre-ycl(X\A) .

(4) {pre-yint(A), preyb(A) and preyext(A)} form a partition off .

(5) If A c B, then preyext(B) c pre-yext(A).

(6) preyext(A U B) cpre-yext(A) U preyext(B) .

(7) preyext(A n B) D preyext(A) Nnpreyext(B) .

(8) preyext(®) = X and preyext(X) = Q.

Proof: (1) Obvious from Definition 3.2.

(2) By Theorem 3.1., preext(A4) n preyb(A) =pre-yint(X\A) npreyb(X\A) = 0.
(3) Also, by Theorem 3.1.,

pre-yext(A) U preyb(A) = preyint(X\A) U preyb(X\A) = preycl(X\4) .
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(4) and (5) Obvious.
(6) preyext(A U B) = X\pre-ycl(A U B) c X\( pre-ycl(A) U pre-ycl(B))
= (X\( preycl(4))) n (X\( preycl(B)))
= pre-yext(A) n pre-yext(B) cpre-yext(A) U pre-yext(B) .
(7) Further,
preyext(A N B) = X\ preycl(A n B) o X\( preycl(4) n preycl(B))
= (X\(preycl(4))) U (X\(pre-ycl(B)))
= pre-yext(A) U preyext(B) D preyext(A) N preyext(B).
(8) Obvious.

Remark 3.1. The inclusion relation in part (5), (6) of the abotheorem cannot be
replaced by equality as is shown by the followirgreple.

Example3.1. LetX = {a,b, c, d} with topologies
T = {X,0,{a},{b},{c},{a, b},{a,c},{b, c}, {a b,c}}. Define an operatiory ont by

int(cl(A) if Az{a)

A) =
A {CI(A) if A={a}

If A={a,d}andB = {b,d}, then preyrext(A) = {b,c}, pre-yext(B) = {a,c}. But
pre- yext(AU B) = {c}, Therefore, preext(A) U preyext(B) ¢ preyext(A U B).
Also, preyext(A N B) = {a,b,c}, hence, preext(A N B) ¢ preyext(4) N pre-
yext(B).

Definition 3.3. If A is a subset of a space {X, then a poinp € X is called a prey-
limit point of a setd c X if every prey-open seti c X containingp contains a point
of A other tharp.

The set of all pre~limit points of A is called a prey -derived set ofA and is
denoted by pre<d(A).

Proposition 3.1. Let (X,7) be a topological space amd € X. Then, the following
statements are hold:

(i) A is pre-y-closed if and only if preyd(A) < A

(ii) A'is pre-y -open if and only if it is prey-nbd for every poinp € A

(i) pre-ycl(A) =AU pre-yd(A) .

Proof: (i) Let A be a prey-closed set angd € A. Thenp € X \A which is open, hence
there exists a pre-open (X \A) such that(X\4A) N A =@, sop & pre-yd(A4),
therefore, preyd(A) c A.

Conversely, suppose that pyet(A) c A andp ¢ A. Thenp ¢ pre-yd(4) , hence there

exists a prey-open set containingp such thall N A = ¢ and henc&\A = | {G.G
pOA

is pre-y-open}, therefored is pre-y -closed.

(i) Let A be a prey-open set. Theml is a prey -neighborhood for eacp € A.

Conversely, lefl be a prey-neighborhood for each € G. Then there exists a pre-

124



Properties of Preg--Open Sets and Mappings

open set,, containingp such thap € U, € 4, so A= Up, thereforeA is a prey-
pOG

open.

(iii) Since, preyd(A) cpreycl(A) andA c pre-ycl(A) , preyd(A) U A cpreycl(A).

Conversely, suppose that¢ pre-yd(A) U A. Thenp & pre-yd(A), p ¢ A and hence

there exists a pre—open setl containingp such thaty N A # @. Thusp & pre-y

cl(A) which implies that preycl(A) c pre-yd(A) U A. Therefore, preycl(A) =pre-y

d(A)u A.

Theorem 3.4. If A andB are two subsets of a spate then the following statements are
hold:
(1) If A c B, then preyd(A) c pre-yd(B).
(2) A is a prey-closed set if and only if it contains each ofgte-y-limit points.
(3) pre-ycl(4) = AU preyd(A).
Proof: (1) Obvious.
(2) LetA be a prey -closed set and ¢ A. Thenp € X\A which is pre¥ -open, hence
there exists a prg-open (X\A) such that(X\A) N A = @ , sop ¢ pre-yd(A),
therefore, presd(4) c A.
Conversely, suppose that pyet(A) c A andp € A. Then pg pre-yd(4) , hence there
exists a prey-open set; containingp such thati N A = @ and hence

X\A = {G,G is pre y-open} , therefored is prey-closed.

pOA

(3) Since, presd(A) c preycl(A) andA c preycl(A) , pre-yd(A) U A c preycl(A).
Conversely, suppose that¢ preyd(A) U A. Thenp ¢ preyd(A), p € Aand hence
there exists a prg—open set containingp such thatG N A = @. Thusp & pre-
ycl(A) which implies that pre«<l(4) < pre-yd(A) U A. Therefore, preycl(A) =pre-
yd(A) U A.

Theorem 3.5. A subsetG of a spaceX is prey-open if and only if it is pre-nbd, for
every pointp € G.

Proof: Let G be a pres-open set. Thefi is a prey-nbd for eaclp € G. Conversely, let
G be a prex-nbd for eactp € G. Then there exists a pyeepen sett, containing p

suchthap € W,, € G,s0G = |J W, , therefore( is a prey-open.
pOG

Theorem 3.6. In a spacgX, 7). If pre-y-N,, be the prey-nbd. Systems of a point
p € X, then the following statements are hold:

(1) pre-y-N, is not empty ang belongs to each member of pyeN,,

(2) Each superset of members\pf belongs prey-N,,

(3) Each membel € pre-y-N,, is a superset of a membér € pre-y-N,,, where

W is prey-nbd of each point € W.

Proof: Obvious.
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Definition 3.4. A subsetA of a topological spac€X, t) is said to be locally pre- -
closedifA =U n F foreachU € tandF € pre-yC(X) .

Theorem 3.7. Let H be a subset of a spa€eThenH is locally pre -closed if and only
if H = Un preycl(H) .

Proof: SinceH is a locally prey-closed setH = U N F, foreachU € tandF € pre-
yC(X), henceH < pre-ycl(H) < pre-ycl(F) = F,thusH < Un pre-ycl(H) < U n
preycl(F) = H. ThereforeH = U n preycl(H). Conversely, since pnezl(H) is pre-
y-closed andd = U n preycl(H) , thenH is locally pre¥y-closed.

Theorem 3.8. Let A be a locally preg~closed subset of a spa¢&, t). Then the
following statements are hold:
(1) pre-ycl(A)\A is a prey-closed set.
(2) (A U (X\preycl(A))) is a prey-open.
(3) A€ prey-int(A U (X\ pre-ycl(4))).
Proof: (1) If A is a locally prey-closed set, then there exists an openUsetich that
A = U n pre-ycl(4). Hence,
pre-ycl(A)\A = pre-ycl(A)\(U n pre-ycl(A4))

= pre-ycl(A) n [X\(U n pre-ycl(4))]

= pre-ycl(4) N [(X\U) U (X\ pre-ycl(4))]

=pre-ycl(A) n (X\U)
which is prey-closed.
(2) From (1), prescl(A)\A is pre-y-closed, therX\[( prev-cl(A)\A)] is a prey-open
set and¥\[( preycl(A)\A)] = X\ preycl(A) U (X N A) = AU (X\ preycl(4)) , hence
AU (X\ preycl(4)) is prey-open.
(3) Itisclearthatd < (A U (X\ preycl(4))) = preyint(A U (X\ preycl(4))).

4. Pre-y -open and pre-y-closed mappings

Definition 4.1. [3] A mappingf : (X, t) = (Y, o) is said to be

(i) pre-y-open if the image of each open se{Xft) is prey-open in(Y, o),

(i) pre-y-closed if the image of each closed setXf ) is prey-closed in(Y, g).

Definition 4.2. For a spacé€X,7) and4 < X:
() pre-y- b(A) = preycl(A)\ pre-yint(A)
(i) pre-yBd(A) = A\ pre-yint(A).
The set of prey-boundary (respectively prg-border) ofA is denoted by pre-
b(A) (respectively prey-Bd(A) ).

Theorem 4.1. For a bijective mapping : (X, ) - (Y,0), the following statements
are equivalent:

(i) £~ is pre-y-continuous,

(i) f is prey-open,

(iii) f is pre-y-closed.

Proof: Obvious.
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Theorem 4.2. For a mappingf : (X,t) — (Y,0), the following statements are
equivalent:

(i) f is pre-y-open,

(i) For eachx € X and each neighborhood of x, there existsV € prey0(Y)
containing f(x) such that’ < f(U),

(i) f(int(A)) < preyint(f(A)), foreacd c X,

(iv) int(f~1(B)) € f~1( preyint(B)), for eachB <€ Y,

(v) f~1( pre¥Bd(B)) S Bd(f~1(B)), for eachB <€ Y,

(vi) f~2( preycl(B)) < cl(f~1(B)), for eachB c Y.

Proof: (i) — (ii) Let U be neighborhood of in X. Then there exists an open &esuch
thatx e G < U and hencg(x) € f(G) < f(U) . Since fis preg~open, therf(G) is
prey-openinY. Putf(G) = V,thenf(x) € V < f(U).

(i) — (i) Let U be an open set containimgn X . ThenU is neighborhood of eache U.
By hypothesis, there exisig € pre-y0(Y ) suchthatx) € V < f(U) .

Hence,f (U) is prey-neighborhood of eacfi(x) € f(U). By Proposition 3.1.f(U) is
prey-open inY. Thereforef is prey-open mapping.

(i) — (i) Sinceint(A) € A < X which is open and is prey-open, therf (int(4)) is
prey-open in Y. Hence,f(int(4)) < preyint(f(4)), then f(int(A)) < pre-
yint(f(A)) & f(A).

(iiiy — (iv) By replacingf~1(B) instead of4 in (iii), we havef(int(f~1(B)) < prey
int(f(f~1(B)) and thenint(f~1(B)) € f~*( pre-y- int(f(f*(B)))) S f~*( pre-
yint(B)).

(iv) — (i) LetA € 7. Thenf(4) < Y and by hypothesisnt(f~1(f(4))) € f~1( pre-
y int(f(A))) . This implies thatint(A) < f~( preyint(f(A))) . Thusf(int(4)) €
preyint(f(A)) . Thereforef is prey-open.

(iv) — (v) Let B € Y. Then by hypothesisf~*(B)\f~( preyint(B)) <€ f~1(B)\
int(f~1(B)) and hence,f~1(B\pre-yint(B)) € f~Y(B)\int(f"1(B)). Therefore,
f~*(preyBd(B)) < Bd(f~(B)).

(vV) — (iv) Let B € Y. Then by Definition 2.3., we havg~1(B\preyint(B)) <
fH(B)\int(f~*(B)) and hencef ~'(B)\f ~*(preyint(B)) < f~H(B)\int(f~'(B)).
Thereforejnt(f~1(B)) € f~1( pre-yint(B)).

(i) — (vi) LetB € Y andx € f~I(pre-ycl(B)). Thenf(x) € pre-ycl(B). Assume
thatU is an open set containing Sincef is prey-open, therf (U) is prey-open inY.
Hence, B n f(U) # @. ThusU n f~Y((B) # @ . Thereforex € cl(f~1((B)). So,
fH(( pre-ycl(B)) € cl(f((B)).

(vii — (i) Let B €Y. ThenY\B € Y . By hypothesis,f~*( preycl(Y\B)) <
cl(f~Y(Y\B))and hence X\f~!( preyint(B)) € X\int(f~"1(B))that implies
int(f~1(B)) < f~(pre-yint(B)). Then by (iv)f is prey-open.

c
c

Theorem 4.3. Letf : (X,7) = (Y,0) be a pres-open mapping. IW < Y andF € X
is a closed set containirfg * (W), then there exists a preclosed seH of Y containing
W such thaf ~1(H) € F.
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Proof: LetH = Y\f(X\F) and F be a closed setXfcontainingf (W) . Butf is pre-
y-open mapping, thefi(X\F) is prey-open set ot . ThereforeH is prey-closed and
fHH) = X\fHf(X\F)] € X\(X\F) = F.

Remark 4.1. The converse of above theorem is not true in geén8uppose that =
Y = {a,b,c,d} with topologies 1= {X,0,{a},{c}{a b} {a c}{c d},{a b,c},
{a,c,d}} ando={Y, 0,{a},{b},{c},{a, b} {a,c},{b, c} {a b, c}}. Define an operatiopy
onoc by

int(cl(A)) if Az{a
V(A):{ (c(A) it A%(d

cl(A) if A={a}.
Hence the identity maf: (X,7) — (Y, 0) is satisfying the condition but it is not pre-
y-open. Sincgd} S Y and{d} € X is a closed set containiffg!({d}) = {d}, hence
there exist{d} € preyC(Y ) containing{d} such thatf~1({d}) € {d} but,{a} € 7
andf({a}) = {a} & pre-yO(Y).

Theorem 4.4. Letf : (X,t) — (Y,0) be a prey-closed mapping. Then the following
statements are hold:

(i) If £ is a surjective anfi"*(B), f~1(C) have disjoint neighborhoods &f thenB and
C are disjoint of,

(i) pre-yint( pre-ycl(f(4))) € f(cl(A)), foreachd < X.

Proof: (i) Let M, N be two disjoint neighborhoods of "1(B) , f~1(C). Then there
exist two prey-open setd/, V such thatf~*(B) c U € M, f71(C) €V € N.
But, f is a surjective map, thefif 1(B) = B € f(U) € f(M) , ff~X(C) = C <
f(V) € f(N). Since M,N are disjoint, then alsg(M N N) = @ and henceB n
C<S fUNV)<cf(Mn N)= @ Thereforep andC are disjoint ofY.

(i) Sinced < cl(A) € X andf is a prey -closed mapping, thefi(cl(4)) is pre-y-
closed in Y. Hence, f(A) Spreycl(f(4)) < f(cl(4)) . So preyint( pre -
ycl(f(A)) € f(cl(A)).

Theorem 4.5. For a mapping : (X, t) — (Y, 0), then the following are equivalent:
() f is prey -closed,

(i) pre-ycl(f(A)) < f(cl(A)) foreachd < X,

(i) If f is surjective, then for each sub&bf Y and each open sétin X containing
f~1(B), there exists a pre-open se¥’ of Y containingB such thay ~1(V ) c U.

Proof: (i) — (i) Let cl(A) € X be a closed set. Sincg is pre-y-closed, then
f(cl(A)) € pre-yC(Y ). Hence, preycl(f(4)) € f(cl(4)).

(i) — (i) Let A € X be a closed set. By hypothesis, ptétf(4)) < f(cl(4)) =
f(A). Hencef(A) € preyC(Y ). Thereforef is pre-y -closed.

(i) — (i) Suppose tha¥ = Y \f(X\U) andU is an open set df containing~1((B).
Then by hypothesis/ is pre-y-open inY. But,f~*(B) € U , thenB < f(U) and
f(X\U) € Y\B, thatisB € Vandg~1((V) c U.

(iii) — (i) Let F € X be a closed set andbe any point ot \f(F). Thenf~1(y) €
X\F which is open irX. Hence by hypothesis, there exists a prepen seV’
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containing y such thgt™(V' ) € X\F. But f is surjective, them € V < Y \f(F) and
Y \f(F) is the union of prey -open sets and heng&F) is pre-y-closed. Therefore; is
pre-y -closed.

Remark 4.2. The restriction of prg-open mapping is not pre-open. Consider the
Remark 4.1., the functiorf: (X,7) » (Y,0) is defined asf(a) = f(c) = c,
f(b) = b and f(d) = a is prey-open. Butd = {a,d} € X and, f;: (4,74) —
(Y, o) is not prey-open. Sincdd} € t, butf({d}) = {d} & pre-yO(Y).

Remark 4.3. The composition of two pre- -open mappings may not be pye-open.
Let X = Y= Z = {a,b,c,d} with topologies tx = {X,0,{a, b} {c,d}}, 7y is an
indiscrete topology andr; = {Z,9,{a},{c},{a,c}}. Let f: (X,7x) » (Y,Ty), 9
(Y,ty) = (Z,7t,) be the identity mappings and define an operafioon t, andz,
defined byy(4) = A. Clearlyf andg are prey-open but(g o f) is not prey-open.
Since{c,d} < X is an open set &, but(g o ) ({c,d}) = {c,d} & prey0(Z) . In the
following, we give some further properties of themposition of two prey-open
(respespectly preg~closed) mappings.

Theorem 4.6. Letf : (X,tx) —» (Y,7y) andg: (Y,7y ) — (Z,t;) be two mappings.
Then the following statements are hold:

() If fis an open ang is a prey -open mappings, then o f is pre-y -open,

(ii) If g o fis aprey -open and is a surjective continuous map, thgiis prey-open,
(iii) If g o fis an open ang is an injective prey-continuous map, thefiis prey-open.
Proof: (i) Let U € tx . Then by hypothesis;(U) € 1y. But g is a prey-open map,
theng(f(U)) € pre-y0(Z). Hence,g o f is pre-y -open.

(i) Let U € 1y, andf be a continuous map. Th¢nl(U) € ty. Butgo f is a prey -
open map, theg o f)(f~1(U)) € prey0(Z) . Hence by surjective of, g(U) € pre-
y0(Z). Henceg is prey-open.

(i) Let U € 74 andg o f be an open map. Th€g o f)(U) = g(f(U)) € t, . Since
g is an injective prg~continuous map, henggU) € prey0(Y ). Thereforef is pre-
y-open.

Theorem 4.7. Let f: (X,7) » (Y,0) be a bijective prg-open mapping. Then the
following statements are hold:

() If X is aT;-space, theli is prey- T; wherei=1, 2.

(i) If Y is a prey-compact (respectively pnelindel6ff ) space, theX is compact
(respectively Lindel6ff ).

Proof: (i) We prove that for the case offgspace. Ley,, y, be two distinct points df.
Then there exisk;, x , € X such thatf(x,) =y, and f(x,) = y,. SinceX is aT; -
space, then there exist two open gdétsV of X such thatx; e U,x, € U andx, €
V,x, € V. But, f is a prey-open map, theii(U), f(V ) are prey-open sets of with
v, € f(U), y, € f(U)andy, € f(V), vy, €& f(V). ThereforeY is pre-y -T;.

(ii) We prove that the theorem for pyecompact. Le{U; : i € I} be a family of open
cover ofX andf be a surjective prg~open mapping. Theff (U;) : i € I} is a prey -
open cover of. But, Y is pre-y-compact space, hence there exists a finite supsst
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Isuch thatt =uU {f (U;) : i € I,} . Then by injective off, {U; : i € I,} is a finite
subfamily ofX . ThereforeX is compact.

Theorem 4.8. If f : (X,7) = (Y, 0) is a surjective pres~open mapping and is pre-y-
connected space, th&nis connected.

Proof: Suppose thaX is a disconnected space. Then there exist twoengoty disjoint
open setdJ, V of X such thatX = U U V. But f is a surjective prg-open map, then
f(U) and f (V) are non-empty disjoint pne-open sets ot withY = f(U) U f(V)
which is a contradiction with the fact tHais prey-connected.

5. Super pre- y-open and super pre- y-closed mappings
In the following, we introduce and study the conaafpsuper prey-open and super pre-
y-closed mappings. Also, some of their propertiesimwvestigated.

Definition 5.1. A mappingf : (X,7) - (Y,0) is called:
(i) super prey -open iff (U) is open ir¥ for eachy € pre-y0(X,7) .
(i) super prey-closed iff (U) is closed ir¥ for eachU € preyC (X, 1).

Example5.1. LetX = Y = {a, b, c,d} with topologies
T = {X,0,{a},{b},{c},{a b}, {a,c}, {b c}{a b, c}} and
o={Y,0,{a},{b},{c},{a, b} {a,c},{c,d}.{b,c},{a b, c}.{a cd}, {b, c,d}}. Define an
operationy ont by

int(cl(A)) if A#{a

V(A):{ (A if A(a

cl(A) if A={a}.
Also the mapf : (X,t) — (Y,o0) is defined ag(a) =b,f(b) = a,f(c) = ¢ and
f(d) = dis super prey-open.

Proposition 5.1. Every super pres-open mapping is pre--open.
Proof: LetA < X be an open set and hentés prey-open. Butf is super pre~open,
thenf (A4) is open irt, hencef (A) is prey-open inY. Thereforef is pre-y-open.

Remark 5.1. The converse of the above proposition is not &aimehown in the following
Example. Suppose th#t=Y = {a, b, ¢, d} with topologies
T= {X, @,{a},{c},{a, c}} and o ={Y,0,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}.
Define an operatiop ont byy(4A) = A and an operatiop onc by

int(cl(A) if Az{a}

V(A = TR

cl(A) if A={a}.
Also a mappingf : (X,t) - (Y,o)which defined byf(a) =b,f(b) =a,f(c) =
cand f(d)=d is prey-open but not super pre-open. Since{a,c,d} € pre-
yO(X)andf({a,c,d}) = {b,c,d} ¢ 0.

Theorem 5.1. If f: (X,t) - (Y,0) is a mapping, then the following statements are
equivalent:

(i) f is super prey-open,
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(i) for eachx € X and each pres-neighborhood/ of x , there exists a neighborhod
of f(x) such thaV < f(U) ,

(i) f( pre-yint(A4)) < int(f(A4)), foreachd c X,

(iv) pre-yint(f~1(B)) < f~'(int(B)) , for eachB C Y,

(v) f~Y(Bd(B)) < prey¥Bd(f~*(B)), foreachB c Y,

(vi) f~1(cl(B)) cpreycl(f~1(B)), for eachB C Y,

(vii) If f is surjective, then for each subBebf Y and for any sefF € preyC(X)
containing f~1(B) , there exists a closed subgétof Y containingB such that
f~Y(H) c F.

Proof: (i)— (ii): Let U be a prey-neighborhood ok in X. Then there existd/ € pre-
yO(X)suchthatt € W < U and henc¢(x) € f(W) € f(U). Hence by hypothesis,
f(W) € o and containingx) . Putf(W) =V ,thenf(x) € V < f(U).

(ii)— (i): Suppose thal/ is pre-y -open set o and containinge € X. Thenf(x) €
f(U) . Hence by hypothesis, there exiBtg o containingf (x) such thalff(x) € V <
f(U). Hence,f(U) is neighborhood forf (x) € f(U). Thus f(U) is open inY and
hencef is super prey-open.

(i) — (iii): Since pre-yint(A) € A < X is prey-open set and is super prey-open,
thenf( preyint(4)) < f(A) is open int. Hence f( preyint(4)) < int(f(4)).

(i) — (iv): By replacingf ~*(B) instead ofd of (iii), we havef (pre-yint(f~1(B))) €
int(f(f~1(B))) < int(B) and hence, preint(f~1(B)) € f~(int(B)).

(iv) — (v): Let B € Y. Then by hypothesis and Definition 2.3., we hgve(B)\
f~Y(int(B)) € f~Y(B)\ pre-yint(f~1(B)) and hencef~1(Bd(B)) < pre-
yBd(f~1(B)).

(vV) — (iv): Let B € Y. Then by hypothesis and Definition 2.3., we hgve(B\
int(B)) < f~'(B)\preyint(f~*(B)) and hence f(B)\f ' (int(B)) < f~1(B)\
pre-yint(f~1(B)) . Therefore, prgdnt(f~1(B)) € f~1(int(B)).

(iv) — (vi): Let B € Y. Then Y\B < Y, hence by hypothesis, we have pre-
yint(f~1(Y \B)) € f~1(int(Y \B)) and henc&\ preycl(f~1(B)) € X\f (cl(B)) .
Therefore f~1(cl(B)) [I preycl(f ~1(B)).

(vi) — (iv): LetB € Y. ThenY \B € Y . So by hypothesis, we haye(cI/(Y\B)) <
preycl(f~1(Y \B)) and henceX\f 1(int(B)) € X\ preyint(f~1(B)). Therefore,
preyint(f~1(B) € f~1(int(B)).

(iv) — (i): LetA € pre-y0(X). Thenf(4) € Y and by hypothesis,
preyint(f~1(f(4))) € f~1(int(f(4))). This implies that,

preyint(A) € f~1(int(f(4))). Thus f( preyint(4)) € int(f(A)) . Therefore by
(iii), f is super prg~open.

(i) — (vii): Let H = Y \f(X\F) andF be a prey-closed set o containingf ~1(B).
ThenX\F is a prey-open set. Buf is a super-pre-open mapping, thefi(X\F) is open
inY. ThereforeH is a closed set ¢f andf ~1(H) = X\f f(X\F) € X\(X\F) = F.
(vii) — (i): Let U € pre-y0O(X) and putB =Y \f(U). ThenX\U € pre-yC(X) with
f~1(B) € X\U. By hypothesis, there exists a closed I$etf Y such thatB € H and
f~Y(H) € X\U. Hence, f(U) € Y\H and sinceB € H, thenY\H € Y\B =
f(U) . This impliesf(U) = Y \H which is open. Thereforg,is super prg~open.
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Theorem 5.2. Letf : (X,7) — (Y,0) be a bijective super pgeopen mapping. Then
the following statements are hold:

() If X'is a prey- T;-space, thel is T;, wherei=1, 2.

(i) If Y is a compact (respectively Lindel6ff.) space, thEnis prey-compact
(respectively pre~Lindeloff).

Proof: (i) We prove that for the case of a prd~, -space. Lely;, y, be two distinct
points ofY. Then there exist, ,x, € X such thaff(x;) = y; andf(x;) = y, . SinceX
is a prey-T,-space, then there exist two disjoint prepen setd/, V of X such that
x; € Uandx, € V. But, f is super pre~open map, thefi(U), f(V ) are open sets of
Ywithy, € f(U), y, € f(V),andf(U) n f(V) = @. ThereforeY isT, .

(i) We prove that the theorem for pyekindel6ff. space. Letd; : i € I} be a family of
pre-y-open cover o andf be a surjective super pre-open mapping. Thefif (Ui) :

i € I}is an open cover &f. But,Y is a Lindel6ff space, hence there exists a colmtab
subsetl, of I such that=uU {f(Ui): i € Iy}. Then by injective of, {U; : i € I}isa
countable subfamily of . ThereforeX is prey-Lindeloff

Theorem 53.If f: (X,7) — (Y,0) is a surjective super pyeopen mapping and is a
connected space, th&nis prey-connected.
Proof: Obvious.

6. Pre*-y-open and pre*-y-closed mappings
In this section, we introduce the concepts of prafpen and prej-closed mappings.
Also, we study some of their basic properties dratacterizations.

Definition 6.1. A mappingf : (X,7) - (Y,0) is said to be:
(i) pre*-y-open iff (V) € prey0(Y ) for eachV € prey0(X),
(i) pre*- y-closed iff (V') € preyC(Y ) for eachV € pre-yC(X) .

Theorem 6.1. Let f: (X,7) - (Y,0) be a bijective mapping. Then the following
Statements are equivalent:

() f is pre*y-closed,

(i) f is pre *y-open,

(iii) f 1 is prey-irresolute.

Proof: Obvious.

Proposition 6.1. (i) Every super prg-open mapping is prej-open, (ii) Every pre¥:-
open mapping is prg-open.

Proof: (i) LetA € X be a pres-open set and be super pre-open, therf(4) is open
in Y and henc¢ (A) is prey-open. Thereforef is pre*y-open.

(ii) Let A € X be an open set and hendeis prey-open. But,f is pre*y-open, then
f(A) is pre-y-open inY. Thereforef is pre-y-open.

Remark 6.1. According to the above proposition, we have tilWwing diagram

super pre-y-open — pre*-y-open — pre-y-open
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The converse of the above implication is not trugeneral.

Example 6.1. In Remark 5.1.f is prey-open but not prej~open. Sincda,c,d} € pre-
yO(X) andf({a,c,d}) = {b,c,d} ¢preyO(Y).

Example 6.2. Suppose that = Y = {a, b, c, d} with topologies
T ={X,0,{a}, {b},{c},{a, b}, {ac}{b c}{ab,c}} and o= {Y,0,{d}}. Define an
operationy ong byy(4A) = A and an operationp ont by

int(cl(A) if Az{a
V(A):{ (c(A) if A%(d

cl(A) if A={a}.
Also a mapping : (X,7) = (Y,0) which defined byf(a) = b, f(b) = f(c¢) =d and
f(d) = cis pre-y-open but not super pre-open. Since{a, b} € prey0(X) and
f({a,b})=1{b, d} ¢ 0.

Theorem 6.2. For a mappingf : (X,t) — (Y,0), the following statements are
equivalent:

() f is pre*y-open,

(i) For each xe X and each pre-neighborhoodU of x, there existsV € pre-
yO(Y ) containingf (x) such thaV < f(U),

(i) f( preyint(A)) < pre yint(f(A)) for eachd < X,

(iv) preyint(f~1(B)) € f~1( pre yint(B)) for eachB C Y,

(v) f~*( pre-yBd(B)) < prey Bd(f~*(B)) for eachB <c Y,

(vi) f~1( pre-ycl(B)) < prevy cl(f~1(B)) for eachB < Y.

Proof: It is similar to that of Theorem 5.1.

c
c

Theorem 63. If f: (X,t) = (Y,0) is a surjective prey-closed mapping and
f~Y(B), f~1(C) have disjoint prey-neighborhoods af, thenB, C are disjoint of.
Proof: Obvious.

Theorem 6.4. For a mapping : (X,t) = (Y,0), then the following statements are
equivalent:

() fis pre*-y-closed,

(i) pre-ycl(f(A)) < f( preycl(A)), foreactd € X,

(i) If f is surjective for each subsst of Y and for each prg~open setU of X
containing f~1(B) , there exists a prg-open setV/ of Y containingB such that
fffvycu.

Proof: Obvious.

Theorem 6.5. Letf: (X,tx) = (Y,ty) andg : (Y,7y) = (Z,t;) be two mappings.
Then the following statements are hold:

() g o f is a pre*y-open mapping, if, g are pre*y-open,

(i) g o f is a prey-open mapping if is pre-y-open and g is prej-open,

(iii) If f is a surjective prg-continuous mapping argle f is pre*y-open, thery is pre-
y-open.
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Proof: (i) Let U € prey0(X) and f be a pre*-open mapping. Theif (U) € pre-

yO(Y ). But, g is pre*y-open, thery(f(U)) € prey0(Z). Henceg o f is pre*y-open.

(i) Let U € Ty andf be a pres-open mapping. Thefi(U) € preyO(Y ). But, g is

pre*-y-open, thery(f(U)) € prey0(Z) . Henceg o f is prey-open.

(i) Let U € 1, and f be a pre*y-continuous mapping. Thefi1(U) € prey0(X) .

But, g o f is pre*y-open, then(g o )(f~1(U)) € prey0(Z). Also, by surjective of
f, g(U) €pre-y0(Z). Henceg is prey-open.

Theorem 6.6. Let f: (X,7x) » (Y,7y) and g : (Y, 1y) - (Z,t;) be two mappings
suchthay o f : X — Zis prey-irresolute. Then:

() f is prey-irresolute, ifg is an injective pre*-open mapping.

(ii) g is prey-irresolute, iff is a surjective prej~open mapping.

Proof: (i) LetU € prey0(Y ). Theng(U) € prey0(Z) . But, g o f is prey-irresolute,
then (g o f)"1(g(U)) € prey0(X). Sinceg is an injective map, thefi"1(U) € pre-
yO0(X). Hencef is prey-irresolute.

(i) Let V € prey0(Z) . Then(go f)"1(V) € prey0(X) . But, f is a pre*y-open
mapping, thenf[(ge f)~*(V)] € pre¥0(Y). Since f is a surjective map, then
g (V) € prey¥0(Y). Thereforeg is pre-y-irresolute.

Theorem 6.7. Let f: (X,7) = (Y,0) be a bijective prg-open mapping. Then the
following statements are hold:

(i) If X is a prey- T;-space, thefl is prey- T; , wherei=1, 2.

(i) If Y is a prey-compact (respectively pne-Lindel6ff.) space, theX is prey-compact
(respectively pre~Lindeloff.).

Proof: Obvious.

Theorem 6.8. If f: (X,7) — (Y,0) is a surjective prej~open mapping and is a pre-
y-connected space, th&nis prey-connected.
Proof: Obvious.
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